
Earth Planets Space, 54, 511–521, 2002

Thin-sheet electromagnetic inversion modeling using
Monte Carlo Markov Chain (MCMC) algorithm

Hendra Grandis1, Michel Menvielle2, and Michel Roussignol3

1 Department of Geophysics and Meteorology, Institut Teknologi Bandung (ITB), Jalan Ganesha 10, Bandung - 40132, Indonesia
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3Equippe d’Analyse et de Mathématique Appliquée, Université de Marne la Vallée, 5, Boulevard Descartes, F-77454 Marne la Vallée, France

(Received November 20, 2000; Revised February 13, 2002; Accepted February 13, 2002)

The well-known thin-sheet modeling has become a very useful interpretation tool in electromagnetic (EM)
methods. The thin-sheet model approximates fairly well 3-D heterogeneities having a limited vertical dimension.
This type of approximation leads to amenable computation of EM response of a relatively complex conductivity
distribution. This paper describes the integration of thin-sheet forward modeling into an inversion method based on
a stochastic Monte Carlo Markov Chain (MCMC) algorithm. Effective exploration of the model space is performed
using a biased sampler capable to avoid entrapment to local minima frequently encountered in a such highly non-
linear problem. Results from inversion of synthetic EM data show that the algorithm can reasonably resolve the
true structure. Effectiveness and limitations of the proposed inversion method is discussed with reference to the
synthetic data inversions.

1. Introduction
The thin-sheet modeling has proven to be an effective tool

for the interpretation of electromagnetic (EM) data, espe-
cially when heterogeneities are confined in a layer having
limited vertical dimension. The thin-sheet approximation
is valid if the thickness of the thin layer containing hetero-
geneities is much smaller than the penetration depth of EM
fields. The model is then represented by lateral variations of
conductance, i.e. integrated conductivity over the thickness
of the thin layer. This approximation significantly simpli-
fies the resolution of the Maxwell’s equations describing the
EM fields in quasi three-dimensional (3-D) media. There
are several working algorithms employing integral equation
method for thin-sheet EM modeling (e.g. Vasseur and Wei-
delt, 1977; McKirdy et al., 1985) and their advanced ver-
sions as reported by Wang and Lilley (1999, and references
therein).

An inversion scheme devised to resolve strongly non-
linear problems, such as those in EM methods, has been re-
cently proposed by Grandis et al. (1999, 2002). The inverse
problem recast in the Bayesian inference approach is solved
by using a stochastic Monte Carlo Markov Chain (MCMC)
algorithm. The method has been successfully applied to 1-D
magnetotelluric (MT) modeling for both synthetic and real
data as well (Grandis, 1997; Grandis et al., 1999). Similar
approach applied to thin-sheet EM modeling also gave en-
couraging results (Jouanne, 1991; Roussignol et al., 1993).
In the latter, Markov chains were used not only to update the
model but also to estimate the electric field as iteration pro-
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gresses. The convergence of the modified (or 2-D) Markov
chain has been proven empirically only for cases in which
a resistive heterogeneity is contained in a more conductive
host layer.

We have incorporated the thin-sheet forward modeling
scheme of Vasseur and Weidelt (1977) in our inversion algo-
rithm for its simplicity in handling variable exchange (input
and output) between forward and inverse part of the algo-
rithm. We will first describe the inversion algorithm and
also outline the approach adopted by Jouanne (1991) and
Roussignol et al. (1993). Then, a modification of the algo-
rithm is proposed in order to overcome difficulties encoun-
tered in the previous approach. The modification consists in
a quasi-complete resolution of the electric field involved in
the forward modeling calculation. The method was tested
to invert synthetic data corresponding to simple resistive (or
conductive) structure in a conductive (or resistive) host. A
special attention has been paid to the resolving capability
of the method faced to particularities of EM data (i.e. MT
impedance tensor and induction vector) and also to different
discretization of prior conductance.

2. MCMC Inversion Algorithm
For completeness, we will describe the non-linear inver-

sion method based on MCMC algorithm focusing mainly
on practical aspects of the method in order to illustrate more
clearly how the algorithm works. The readers are referred
to Grandis et al. (1999, 2002, and references therein) for
theoretical details of the method.

In the Bayesian perspective, resolving an inverse problem
can be stated as updating our a priori beliefs on the model
by using information acquired from observations which re-
sults in a posteriori knowledge on the model sought. The
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Bayesian approach naturally integrates uncertainties of the
information involved by using probability density function
(pdf) representation (Robert, 1992). For discrete (or
discretized) quantities appropriate for our problem, the
Bayesian formula takes the following form

p(m | d) = g(d | m)h(m)
∑

m∈E g(d | m)h(m)
(1)

where d and m denote data and model vector respectively. In
Eq. (1), the posterior probability is represented by the con-
ditional probability for the model given the data p(m | d)

which in fact is the solution to the inverse problem. The con-
ditional probability of the data for a given model g(d | m)

combines both statistics of the data and the resolution of the
forward problem while h(m) is the probability of the prior
model. We are usually more interested in the probability for
each (or for a certain) model parameter regardless of other
model parameters. This marginal posterior probability of a
model parameter mi is obtained from Eq. (1) by taking inte-
gral (or sum in our discrete case) over other model parame-
ters m j �=i such that

p(mi | d) =
∑

m j �=i
g(d | m)h(m)

∑
m∈E g(d | m)h(m)

. (2)

Significance of this marginal posterior probability of a
model parameter will be explained in the subsequent para-
graphs.

The denominator of Eqs. (1) and (2) is in fact a normal-
izing constant and it sums over the entire possible models
in the model space. For a model consisting of M model
parameters, i.e. m = [mi ] (i = 1, 2, . . . , M), and the i-th
model parameter can take Ni discrete possible (prior) values
ρ j ( j = 1, 2, . . . , Ni ) then the number of possible mod-
els in E is the product of N1 × N2 × · · · × NM . For a
homogeneous parameterization used in our case the num-
ber of possible (prior) values is the same for each model
parameter. Then the number of possible models in E is
N M . However in any case, numerical computation of (1)
or (2) is impractical or even impossible for most geophys-
ical problems having a large number of model parameters
and complicated non-linear forward problem. A stochastic
algorithm is then formulated to efficiently sample the model
space. Unlike pure Monte Carlo methods which sample ran-
domly the model space with uniform probabilities, the Gibbs
sampler used in the algorithm employs a certain conditional
probability to bias the sampling process such that regions
having significant contribution to the posterior pdf are sam-
pled efficiently.

Consider a case in which model parameters other than mi

are fixed to their actual (or most recent) value. Then, we
have a conditional posterior probability for model parameter
mi given other model parameters m j �=i fixed, i.e.

p̂(mi = ρk | d) = g(d | mi = ρk)h(mi = ρi )
∑N

l=1 g(d | mi = ρl)h(mi = ρl)
;

k = 1, 2, . . . , N . (3)

In the above equation we explicitly state that mi can take
ρk ; k = 1, 2, . . . , N as its value such that p̂(mi = ρk |

d) ≡ f (ρk), which is also applicable for p(mi | d). The
difference is that in Eq. (2) we have to consider all possible
values for m j �=i and sum the probabilities associated to them,
while in Eq. (3) only probabilities related to actual values
for m j �=i are concerned. The normalizing constant in Eq.
(3) involves a sum over all possible values for the model
parameters such that it can be amenable for a reasonable
number of N .

The importance of the conditional posterior probability
for a model parameter given in Eq. (3) will be evident by
making it more explicit. By establishing d = [di ] i =
1, 2, . . . , N D as observational data, then g(d | m) is com-
monly called likelihood function (Jackson and Matsu’ura,
1985; Sen and Stoffa, 1996). We consider that data errors
are independent and obey a Gaussian distribution with zero
mean and variance σ 2 so that the likelihood function can be
written as

g(d | m) = C exp

(

−1

2

N D∑

j=1

(
d j − [F(m)] j

σ j

)2
)

(4)

where [F(m)] j is the j-th component of a vector resulting
from an application of the forward modeling operator F and
C retains all constants involved. Substituting Eq. (4) to Eq.
(3) by further assuming a homogeneous probability for the
prior model results in a more explicit formula as follows

p̂(mi = ρk | d)

= C exp

(

−1

2

N D∑

j=1

(
d j − [F(mi = ρk)] j

σ j

)2
)

;

k = 1, 2, . . . , N (5)

where C again absorbs all normalizing constants including
the denominator of Eq. (3). For a fixed m j �=i Eq. (5) rep-
resents relative probabilities of ρk (k = 1, 2, . . . , N ) as
possible values for mi . Thus, Eq. (5) can be utilized to
update mi by using a value drawn from ρk weighted by
p̂(mi = ρk | d); k = 1, 2, . . . , N . It’s obvious that ρk cor-
responding to a smaller misfit will have a greater probability
to be selected. However, values with greater misfit still have
a chance to be selected, they are only less probable. The
latter gives the algorithm an ability to escape local minima
frequently encountered in strongly non-linear inverse prob-
lems. Figure 1 illustrates the model parameterization used
in the Markov chain algorithm and how the conditional pos-
terior probability is used to update a model parameter.

Updating model parameters randomly or sequentially
generates a series of states (or models) obeying Markov
chain rules, i.e. probability of a state depends on the past
states only through the previous (or immediate past) state.
The iterative process leads to a Markov chain in a set of fi-
nite possible models E and is commonly termed Gibbs sam-
pler (Robert, 1996). The conditional posterior probability
(5) serves as the transition probability that governs the evo-
lution in time or iterations of the Markov chain. In fact,
the conditional posterior probability is equal to the transi-
tion probability of the Markov chain up to a constant mul-
tiplier (Grandis et al., 2002). Fundamental properties of a
similar Markov chain, especially its asymptotic behaviors,
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Fig. 1. A schematic diagram illustrating (a) model parameterization and
(b) selection of prior values to update a parameter model using the
conditional posterior probability.

have been discussed in detail by Rothman (1986). Here,
we only exploit their practical consequences. After suffi-
ciently a long time the Markov chain exhibits a stationary
state—independent of its initial state—described by its in-
variant probability. It has been shown (see e.g. Grandis et
al., 1999, 2002) that the invariant probability of the con-
structed Markov chain is in fact the posterior probability
defined in Eq. (1). Further theorem on asymptotic behav-
iors of the Markov chain implies that in general empirical
averages tend towards statistical averages (Heerman, 1990;
Robert, 1996). This in turn simplifies the evaluation of pos-
terior quantities, especially the marginal posterior probabil-
ity from which statistical measures for a model parameter
(mean and variance) can be estimated.

3. Thin-Sheet Inversion Algorithm
In the thin-sheet modeling, calculation of the electric field

is performed by discretizing the thin layer containing hetero-
geneities into rectangular uniform cells. The conductance of
each cell is assumed constant. By using the integral equation
method, the computation domain covers only the anomalous
zone where the conductance differs from that of normal host
medium. The electric field is then used to calculate the mag-
netic field to obtain theoretical or calculated EM transfer
functions (i.e. MT impedance tensor and magnetic transfer
function).

The total electric field in the k-th cell located at the hetero-
geneous layer is expressed by (Vasseur and Weidelt, 1977)

E(k) = En(k) − iωμ0

∑

k∈K

τk ′G(k, k ′) · E(k ′), (6)

where En(k) is the normal electric field associated with nor-

mal (stratified or 1-D) conductivity distribution, G(k, k ′) is
the Green kernel representing electric field at k due to a uni-
tary dipole at k ′ and τk denotes anomalous conductance of
the k-th cell, k, k ′ ∈ K . Equation (6) is in fact a system of
N = 2K linear equations associated to orthogonal electric
fields (Ex , Ey) at each cell corresponding to a certain con-
ductance distribution. However, in the subsequent equations
the vector representation of the electric field is retained for
the sake of clarity.

For a large number of cells in the anomalous domain, a
direct matrix inversion to resolve (6) is prone to round-off
errors and instability and may require a considerable com-
puter memory. Additionally, the form of Eq. (6) is such that
it is more suitable to use the iterative Gauss-Seidell method
in which an initial value of the solution is updated iteratively
to obtain the solution (Jain et al., 1987). A particular char-
acteristic of the Gauss-Seidell method is the use of updated
elements of the solution to estimate the remaining elements.
At ( j + 1)-th iteration, the estimated electric field is calcu-
lated by

Ê(k) j+1 = 1

1 + iωμ0τkG(k, k)

×
(

En(k) − iωμ0

[
k−1∑

k ′=1

τk ′G(k, k ′) · E(k ′) j+1

+
K∑

k ′=k+1

τkG(k, k ′) · E(k ′) j

])

(7)

where the normal electric field is constant throughout the
iteration process. To accelerate convergence we use an over-
relaxation parameter w such that

E(k) j+1 = E(k) j + w(Ê(k) j+1 − E(k) j ). (8)

The normal electric field En(k) is commonly used as the
initial value for E(k)0 and in general convergent solution is
obtained after 10 to 20 iterations, as long as the conductivity
contrast is not too high (Vasseur and Weidelt, 1977).

In order to reduce the computation time of the forward
modeling, Jouanne (1991) and Roussignol et al. (1993)
adopted a 2-D Markov chain approach to simultaneously es-
timate the conductance and the electric field of a cell. At
a given step (i.e. conductance change of the k-th cell), the
electric field at k-th cell is computed by performing one
(incomplete) Gauss-Seidell iteration based on previous step
values using Eqs. (7) and (8). The electric field in all other
cells different than k is computed to account for the change
of conductance and electric field in the k-th cell by using

E(k ′) j+1 = E(k ′) j + [(τk) j+1 − (τk) j ]E(k) j+1 (9)

where k ′ �= k. This is an approximation that neglects sec-
ondary effect at cells different than k and k ′ produced by
changes of electric field and conductance in k-th cell. The
pair (m j , E j ) constitutes, in effect, a Markov chain since
it depends on their past states only through (m j−1, E j−1).
The 2-D Markov chain contains mixed variables, i.e. dis-
crete (conductance) and continuous variable (electric field).
Mathematical proof of convergence for such chain has not
been established. However, empirical results using synthetic
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Fig. 2. Convergence curves of the electric field calculation corresponding to two different resistivity contrast between host and anomalous zone: (a) 10:500
Ohm.m and (b) 5:500 Ohm.m. It is shown that convergence is more difficult to attain and is slower for the conductive anomaly.

data showed that the chain is convergent for resistive het-
erogeneities in a conductive thin layer and the true or syn-
thetic models were fairly well resolved. In the case where
the heterogeneity is more conductive than the host medium,
the Markov chain diverges (Jouanne, 1991; Roussignol et
al., 1993). From practical point of view, the above facts ex-
clude the application of inversion method using the Markov
chain algorithm in the majority of interesting real situations
where heterogeneities are mainly conductive in a more resis-
tive environment. From theoretical point of view, empirical
convergence of the Markov chain only for a certain class of
models does not guarantee that it will be the case for every
model in that class due to absence of mathematical proof.
Therefore, convergence of the Markov chain must be estab-
lished empirically for every class of models considered.

The assessment of the convergence of the forward mod-
eling algorithm was performed by using synthetic models in
order to identify possible causes of difficulties in resolving
conductive anomalies in a resistive host. For a given con-
ductance distribution in the thin-sheet and the stratified host
medium, the resolution of the forward modeling is based on
the calculation of the electric field at the thin-sheet. The

convergence is attained when the difference of electric field
estimates at two successive iterations tends to zero. A mea-
sure of convergence is expressed as a quadratic difference
relative to the previous value and it is averaged over all
grid points. In our cases the convergence is obtained in less
than 20 iterations. Figure 2 presents convergence curves of
the electric field computation for two resistivity ratios be-
tween the anomalous zone and the host medium (10:500
and 5:500 Ohm.m). The configuration (resistivity and thick-
ness) of the stratified medium and the form of the anoma-
lous zone is identical to the synthetic model for inversion
described in the next section. It is obvious that other pa-
rameters also play important role in the convergence rate.
However, it is evident from Fig. 2 that more Gauss-Seidell
iterations in the forward modeling are needed to obtain con-
vergence in cases where heterogeneities are conductive. The
convergence curves even exhibit oscillating character in the
first few iterations before monotonically decreasing to at-
tain convergence. These results indicate that one incomplete
Gauss-Seidell iteration and approximate electric field cal-
culation as done by Jouanne (1991) and Roussignol et al.
(1993) are inadequate to obtain accurate transition probabil-
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Fig. 3. Synthetic model: (a) geometry of the anomalous zone in the thin-sheet and (b) stratified or 1-D host medium containing the thin-sheet.
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Fig. 4. Apparent resistivity maps calculated from principal components of the impedance tensor (ρxy and ρyx ) for T = 1000 sec., resistive anomaly (left)
and conductive anomaly (right).

ity for the Markov chain. This in turn leads to convergence
problem of the Markov chain especially in the case of con-
ductive structure in a resistive host.

The Markov chain algorithm relies on the transition prob-
ability (5) such that if its precision is insufficient, it will lead
to difficulty in generating convergent and optimal models.
Therefore, we propose to modify the existing Markov chain
algorithm to overcome the above limitations. The modifica-

tion consists in performing several complete Gauss-Seidell
iterations in the computation of the electric field (i.e. for-
ward modeling) such that the computation of the transition
probability (5) is sufficiently accurate. This will consider-
ably increase the computation time of the algorithm. How-
ever, by using current electric field as the initial value, 2 or
3 Gauss-Seidell iterations were sufficient to obtain accurate
transition probability (Grandis, 1994). This means that in
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Fig. 5. Induction arrow map showing real and imaginary parts for T = 1000 sec. of the resistive anomaly (left) and the conductive anomaly (right).

fact, we need to resolve only partially the system of equa-
tions defining the electric field in the calculation of the tran-
sition probability. The Markov chain is supposed to be con-
vergent in practically all situations (i.e. conductivity config-
uration of the anomalous zone and the host medium) as long
as the forward modeling is also convergent. In this case,
the Markov chain retains its 1-D character as described in
Section 2, i.e. it has only one discrete variable which is the
conductance of the thin-sheet.

4. Inversion of Synthetic Data
4.1 Synthetic model and synthetic data

In this study, synthetic thin-sheet models corresponding
to a regional or large scale environment were used to gen-
erate synthetic data. The typical 1-D model consists of four
layers having resistivities of 10 or 500 Ohm.m, 500 Ohm.m,
1000 Ohm.m and 10 Ohm.m with thickness of 5, 40, 70
km respectively. The thin-sheet is the uppermost or surface
layer and the resistivity contrast between anomalous zone
and the normal host is 500 to 10 Ohm.m which correspond
to a contrast in conductance of 10 to 500 Siemens (i.e. a
resistive structure embedded in a conductive layer). For a
conductive structure embedded in a resistive layer, resistiv-
ities are simply interchanged. In the subsequent paragraphs
we denote the two cases by the anomalous zone, i.e. resistive
anomaly and conductive anomaly. The thin-sheet containing
the anomalous zone is divided into 10×10 cells, each has 30
km wide. Outside that zone the medium is 1-D as described
above (Fig. 3).

At the center of each cell we calculated the electric and
magnetic fields due to conductivity configuration in the syn-
thetic model described above. The EM fields components
are in the orthogonal coordinate system commonly adopted
in the geomagnetic studies, i.e. x positive to the North, y
positive to the East and z positive downwards. The periods
used (300, 1000, 3600 and 7200 seconds) and the layer dis-
cretization are such that the thin-sheet approximation holds.
The complex transfer functions common to EM studies (i.e.
impedance tensor and magnetic transfer function or induc-
tion vector) were then calculated according to the following
well-known relations

(
Ex

Ey

)

=
(

Zxx Zxy

Z yx Z yy

) (
Hx

Hy

)

or E = Z · H, (10)

Hz = Tzx Hx + Tzy Hy . (11)

A 10% Gaussian error was then added independently to real
and imaginary parts of the transfer functions to simulate
noise in the synthetic data. The noise corrupted complex
impedance tensor and induction vector were used in all in-
versions. Apparent resistivity and phase calculated from
components of the impedance tensor are commonly used
for data presentation purposes. The relationship between
the phase and the geometry of the structure is less obvious.
Figure 4 shows only apparent resistivity maps of the princi-
pal components (i.e. ρxy, ρyx ) corresponding to resistive and
conductive anomaly for T = 1000 sec. It is also a common
practice that the magnetic transfer function is presented as
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Table 1. Quasi-linearly discretized prior conductances (50 Siemens interval except for values lower than 50 Siemens) with their corresponding resistivity
values and anomalous conductance relative to normal conductance for resistive and conductive anomalies.

Conductance Resistivity Anomalous conductance (Siemens)

(Siemens) (Ohm.m) Resistive anomaly Conductive anomaly

1.0 5000.0 −499.0 −9.0

10.0 500.0 −490.0 0.0

50.0 100.0 −450.0 40.0

100.0 50.0 −400.0 90.0

150.0 33.3 −350.0 140.0

200.0 25.0 −300.0 190.0

250.0 20.0 −250.0 240.0

300.0 16.7 −200.0 290.0

350.0 14.3 −150.0 340.0

400.0 12.5 −100.0 390.0

450.0 11.1 −50.0 440.0

500.0 10.0 0.0 490.0

550.0 9.1 50.0 540.0

600.0 8.3 100.0 590.0

Table 2. Quasi-logarithmically discretized prior conductances with their corresponding resistivity values and anomalous conductance relative to normal
conductance for resistive and conductive anomalies.

Conductance Resistivity Anomalous conductance (Siemens)

(Siemens) (Ohm.m) Resistive anomaly Conductive anomaly

1.0 5000.0 −499.0 −9.0

2.0 2500.0 −498.0 −8.0

5.0 1000.0 −495.0 −5.0

10.0 500.0 −490.0 0.0

20.0 250.0 −480.0 10.0

50.0 100.0 −450.0 40.0

100.0 50.0 −400.0 90.0

200.0 25.0 −300.0 190.0

500.0 10.0 0.0 490.0

1000.0 5.0 500.0 990.0

2000.0 2.5 1500.0 1990.0

5000.0 1.0 4500.0 4990.0

real and imaginary induction arrows according to the fol-
lowing convention

V̄Re = −Re(Tzx )x̂ − Re(Tzy)ŷ, (12a)

V̄Im = Im(Tzx )x̂ + Im(Tzy)ŷ. (12b)

where x̂ and ŷ are unitary vector in the x- and y-axes respec-
tively. Note that the direction of the real induction vector is
inverted such that it conforms to the Parkinsons induction ar-
rows. With this convention, the real induction arrows point
towards the conductive medium (Fig. 5). From Figs. 4 and 5
we can observe relative sensitivities of different impedance
tensor components and also different types of data (appar-
ent resistivity or real and imaginary parts of the induction

arrows) related to the form of the anomaly. This may indi-
cate which characteristic feature of the model than can be
inferred from these different type of data in the qualitative
interpretation. For example, it is well known that appar-
ent resistivity map reveals more clearly conductivity con-
trast perpendicular to the electric field direction (TM mode)
and so forth.
4.2 Prior model

To simplify the problem, we consider that model param-
eters defining the stratified or 1-D medium is known and
equal to the model parameters used to create the synthetic
data. In the case of real data inversion we need this in-
formation as a supplementary prior information which may
be predominant in the inversion process. We used a uni-
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Fig. 6. Conductance map obtained from inversion using linear discretization of prior conductance values: inversion of impedance tensor for (a) resistive
and (b) conductive anomaly, inversion of induction vector for (c) resistive and (d) conductive anomaly.

form pdf for prior conductances in a given interval cover-
ing the anomalous and normal conductance values. In this
interval, a set of discrete conductance values were used as
prior or possible values for the model parameter (conduc-
tance of each cell). The discretization interval of possible
conductance values may substantially dictate the inversion
results. Therefore, we used two kinds of discretization, i.e.
quasi-linear and quasi-logarithmic discretizations (see Ta-
bles 1 and 2) to evaluate their influence on the sensitivity of
the inversion algorithm and also on the marginal posterior
probability of the model parameters. Note that in Tables 1
and 2 anomalous conductance signifies conductance differ-
ence of a cell or a block relative to the conductance of the
host or normal thin-layer. In subsequent paragraphs, quasi-
linear and quasi-logarithmic discretization of prior conduc-
tance will be termed simply linear and logarithmic prior con-
ductance values.
4.3 Results

A number of inversions were performed using both lin-
ear and logarithmic prior conductance values with the ten-
sor impedance and induction vector as the data. Prelimi-
nary tests showed that the convergence was obtained after
5 to 10 iterations after which posterior values (marginal pdf
and model parameters) oscillate around their optimum val-
ues. Inversions are systematically effected up to 20 itera-

tions and results of the last 15 iterations were averaged. Fig-
ures 6 and 7 show the inversion results using linear and log-
arithmic prior conductance values respectively. The results
are presented as maps representing conductance distribution
in the thin-sheet. In general, the true structure can be re-
solved fairly well, except in the case of inversion of induc-
tion vector for conductive anomaly (Figs. 6(d) and 7(d)). In
the latter, the result probably stems from the fact that a con-
ductive anomaly confined in a resistive host produces a low
magnitude anomaly, especially in terms of induction vector
(Menvielle et al., 1982). Therefore, poor resolution of this
type of anomaly is mainly related to the type of data since
the same conductive anomaly is more clearly resolved from
inversion of the impedance tensor (Figs. 6(b) and 7(b)).

A detailed observation of the inversion results reveals
characteristics of the inversion method which may be at-
tributed to differences in linear and logarithmic prior con-
ductance values. Resistive zones, whether they are in the
host medium or in the anomalous zone, are well resolved
from inversions using linear prior conductance values. In
these resistive zones, conductance variations are less such
that they appear as a good enitity (Figs. 6(a), (b) and (c)).
In contrast, conductive zones are well resolved from inver-
sion using logarithmic prior conductance values, especially
in Fig. 7(a) and in a lesser extent in Figs. 7(b) and (c). Thus,
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Fig. 7. Conductance map obtained from inversion using logarithmic discretization of prior conductance values: inversion of impedance tensor for (a)
resistive and (b) conductive anomaly, inversion of induction vector for (c) resistive and (d) conductive anomaly.

different discretization of prior conductance leads to dif-
ferent effect on the resolution of resistive and conductive
zones. In case of linear prior conductance values, the in-
version algorithm is able to differentiate 1, 10, 50 and 100
Siemens and to choose the true value (10 Siemens) for re-
sistive zones. For conductive zones, the inversion method
has difficulty to distinguish conductance values between 350
and 600 Siemens in 50 Siemens interval. In case of logarith-
mic prior conductance values, conductive zones appears to
be better resolved due to a large difference in prior conduc-
tance values for the conductive interval (100, 200, 500 and
1000 Siemens).

By assuming that the thickness of the thin-sheet is known,
linear prior conductance values for resistive zones are ob-
viously different expressed in terms of resistivity, i.e. 5000,
500, 100, 50 Ohm.m. For conductive zones, linear prior con-
ductance corresponds to resistivities between 8 to 15 Ohm.m
which are imperceptible in the inversion. In this interval,
a conductive zone can be characterized by any resistivity
value. The same explanations are also valid for logarithmic
prior conductance values (see Table 2).

The transition probability of the Markov chain at the last
(20-th) iteration supports more clearly the facts described in
the above paragraph. The transition probability is theoreti-
cally convergent to the marginal posterior probability of the

model parameters, although the latter is generally better esti-
mated using empirical average of the transition probabilities
(Grandis et al., 1999; Schott et al., 1999). In the following
only results from inversion of the impedance tensor are pre-
sented. Figure 8 presents the transition probability of each
model parameter at the last iteration for linear prior conduc-
tance values. The probability is represented as histogram
plotted at each cell where the horizontal axis is the conduc-
tance scale. A zoom of the transition probability for two
adjacent cells indicated by arrows is also shown in Fig. 8.
The same set of figures for logarithmic prior conductance
values are presented in Fig. 9. A well resolved model pa-
rameter is characterized by a nearly single bar at or around
the true conductance value (i.e. resistive at the left side of
each cell). In contrast, a less well resolved model parame-
ter may be identified from nearly uniform small bars around
the true conductance value (i.e. conductive at the right side
of each cell). Similar results were also obtained from inver-
sion of the induction vector data.

5. Conclusion
In this paper we described the integration of an existing

thin-sheet forward modeling scheme into a stochastic inver-
sion method based on MCMC algorithm. Empirical study
on convergence of the forward modeling has permitted to
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Fig. 8. Histogram representing transition probability at the last (20-th) iteration of each cell for linear discretization of prior conductance values: inversion
of impedance tensor for resistive (left) and conductive anomaly (right). A zoom of the transition probability for two adjacent cells indicated by arrows
is shown below each figure.
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Fig. 9. Same as Fig. 8 but for logarithmic discretization of prior conductance values.
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recognize that approximate estimation in the calculation of
the Markov chain’s transition probability was inadequate,
especially for conductive anomalies. This leads to an idea
of incorporating more Gauss-Seidell iterations in the calcu-
lation of the forward modeling such that more accurate esti-
mate of the transition probability is obtained. The modified
inversion algorithm is thus applicable to invert data corre-
sponding to both resistive and conductive anomaly as well.
From theoretical point of view, the modification also pre-
serves one-dimensional Markov chain for which mathemar-
tical proof of convergence has been established (Grandis,
1994, 2002).

The effectiveness of the algorithm was tested by perform-
ing inversions of synthetic data in the form of impedance
tensor and induction vector. In general, synthetic models
containing resistive and conductive anomalies are fairly well
resolved. Best results were obtained from inversion of the
MT impedance tensor data suggesting that these kind of data
provide more information on the conductivity distribution
in the thin-sheet. Different discretization of prior conduc-
tance values revealed that, for a given thickness of the thin-
sheet, the inversion algorithm is more sensitive to resistivity
value of the thin-sheet. Thus, in discretizing prior conduc-
tance we have to consider the corresponding resistivity val-
ues such that the inversion can resolve both resistive and
conductive anomalies equally well with a reasonable resolu-
tion. This implies that the thickness of the thin-sheet must
be relatively well known a priori. Provided that this a pri-
ori information is known, a possible strategy in applying the
inversion method to real data consists of (i) inversion us-
ing a coarse prior conductance values in a large interval to
identify predominant anomalies, and (ii) inversion using a
finer discretization of prior conductance around these pre-
dominant anomalies. Such strategy is necessary to obtain
a good model resolution while keeping reasonable compu-
tational time by using a relatively limited number of prior
conductance values. Note that the number of prior conduc-
tance values corresponds to the number of forward modeling
in each step of the algorithm, i.e. calculation of the transition
probability used to update a model parameter.

The proposed inversion method belongs to global search
and gradient-free optimization methods which can effec-
tively overcome difficulties of local search or linearized ap-
proach of strongy non-linear problems. The MCMC algo-
rithm is, in general, computer intensive and slow since a
large number of forward modeling has to be effected to re-
solve the inverse problem. However, more informative solu-
tion in terms of marginal posterior pdf of the model parame-
ters represent invaluable information in assessing the uncer-
tainty and, to some extent, the non-uniqueness of the solu-
tion (Sen and Stoffa, 1996). For cases in which the pdf of the
model parameters is not Gaussian nor unimodal (which is
the case for most non-linear problems), standard estimators
(i.e. mean and variance) would be severely biased and even

meaningless in the worst cases (Tarits et al., 1994). It is then
important to base our interpretation of the inverted models
directly using the marginal posterior pdf of the model pa-
rameters.
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