
LETTER Earth Planets Space, 61, 643–648, 2009

Aeronomic effects of the solar flares in the topside ionosphere
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We obtained that according to the GPS data at altitudes of the topside ionosphere (h > 300 km) a flare is able to
cause a decrease of the electron content. Using the theoretical model it is shown that the intense transport of O+
ions into the above-situated plasma caused by a sharp increase in the ion production rate and thermal expansion
of the ionospheric plasma is a cause of the formation of the negative disturbance in the electron concentration in
the topside ionosphere.
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1. Observations of the TEC Variations during a
Powerful Flare on 14 July 2000

Phase measurements of GPS signals make it possible
to obtain variations of TEC along the receiver-satellite
path, Fitzgerald (1997), Hoffmann-Wellenhof et al. (1992),
Klobuchar (1986). Knowing variations in TEC, one is able
to evaluate the changes in the total electron content above
some given level, using the method based on the effects
of partial “shadowing” of the atmosphere by the globe,
Leonovich et al. (2002).

Now we consider the results of application of the method
fore-quoted to studies of the ionospheric effects of the pow-
erful solar flare X5.7/3B registered on 14 July 2000 at
1024 UT (N22W07) on the background of quiet geomag-
netic situation (Dst = −10 nT). Figure 1(a) shows the
time behavior of the energy flux of the soft X rays in the
0.1–0.8 nm range (the data from the GOES 10 satellite)
for the flare in consideration. Vertical dashed lines show
the beginning of the flare and the time when the X-ray flux
was maximal. The corresponding variations in TEC along
rays directed to the GPS satellites and crossing the shadow
boundary at various heights h0 during the flare are shown in
Figs. 1(b)–1(f).

One can see in Fig. 1(b) that the total electron content
within the entire ionosphere (h0 = 0) for the IRKT sta-
tion located in the sunlit hemisphere starts to grow from
the moment of the flare beginning (1012 UT) and lasts till
1036 UT. At the ray crossing the shadow region at a height
of 240 km (Fig. 1(c)), the TEC grow begins some time after
the flare beginning in the soft X-ray range. Similar picture is
seen at other rays satisfying the condition h0 < 380 km. At
the same time, for the rays with h0 ≥ 380 km (Figs. 1(d)–
1(e)) a decrease in the electron content above the h0 level
occurs after the flare beginning (1012 UT) and lasts till
1024 UT, i.e., till the moment of the flare maximum in the
soft X-ray range.
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Similar decrease in the electron content after the begin-
ning of a solar flare was detected in ionospheric observa-
tions using the incoherent scatter radar at Arecibo, Thome
and Wagner (1981). During two solar flares on 21 and 23
May 1967, negative disturbances of the electron concen-
tration with an amplitude from 3% to 10% were registered
within the height interval 280–600 km. The goal of this pa-
per is studying mechanism of electron concentration nega-
tive disturbances in the topside ionosphere caused by solar
flares.

2. Results of the Model Calculations of the Iono-
sphere Behavior during a Solar Flare

For studying physical processes governing ionospheric
effects of solar flares, we used the model of the ionosphere-
plasmasphere interaction, Krinberg and Taschilin (1984).
The model makes it possible to calculate time variations of
the ion composition, temperature, and also of the fluxes of
particles and heat in the conjugated ionospheres. The model
is based on numerical solution of the nonstationary equa-
tions of the balance of particles and energy of the thermal
plasma within closed magnetic field tubes, their bases lying
at a height h = 100 km. It is assumed that the ionospheric
plasma consists of electrons and atomic ions H+ and O+,
and also of molecular ions NO+, N+

2 , and O+
2 . The UV-

radiation spectrum by Richards et al. (1994) and the X-ray
radiation spectrum by Nusinov (1992) were used for the cal-
culation of the photoionization rates of the thermospheric
constituents O, O2, and N2 and energetic spectra of the pri-
mary photoelectrons in undisturbed conditions (without a
flare). The MSIS 86, Hedin et al. (1991), global empirical
model of the thermosphere was used for the description of
the spatial-time variations of the atmospheric temperature
and concentrations of the neutral components O, O2, N2,
and H.

For studying the flare effects, a disturbed model of the
solar radiation spectrum in the X-ray and UV ranges was
created. According to the existence of the pulse and slow
phases of a flare, we assumed that the spectrum within the
wavelength interval 0.1–10 nm stays disturbed during 36
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Fig. 1. Results of the TEC response according to the GPS measurements.
Time profiles of the soft X-ray radiation within the 1–8 Å range (the
data of the GOES 10 satellite) during the solar flare on 14 July 2000
(a). Examples of the TEC responses to the solar flare measured at
the rays (between ground-based stations and GPS satellite) crossing the
boundary of the Earth’s shadow cone at different altitudes h0 (b–f).

minutes (the slow phase), whereas the pulse phase (for the
10–105 nm interval) lasts during 15 minutes. We also as-
sumed that the spectrum is disturbed instantly and stays
constant during the above indicated time intervals, switch-
ing off instantly after that. To give the value of the dis-
turbance of the solar energy flux, the entire wavelength in-

Table 1. Increase in the solar radiation intensity for particular spectral
intervals during the flare.

Intervals, nm 0.1–0.8 0.8–2 2–4 4–6 6–10 10–105

Intensity factor 1000 100 50 20 4 1.3

terval was split to 6 parts. For each part the most typical
value of the intensity factor, Avakyan et al. (1994), Horan
and Kreplin (1981), Korenkov and Namgaladze (1977), was
found. The value was determined as the ratio of the energy
flux during the flare to the radiation flux of the quiet Sun.
Table 1 shows values of the flare intensity factors for each
spectral interval.

The reaction of the midlatitude ionosphere to a consid-
ered solar flare was simulated by calculating the variations
of plasma parameters within the geomagnetic field tube.
The calculation was performed for the period 10–15 July
2000, using arbitrary initial conditions corresponding to low
content of the thermal plasma in the tube. The considered
time period was characterized by high level of solar activity
(F10.7 ≈ 210). The model calculation results of height-time
variations of the electron concentration for different con-
ditions of solar irradiating intensity are shown in Figs. 2,
(2(a)–2(f))—for the terminator area and (2(g)–2(l))—for
the local noon. The moment of a solar flare beginning is
shown by vertical dashed lines.

The character of the time behavior of Ne changes prin-
cipally above the F2 layer. One can see in Figs. 2(d)–2(f)
and 2(j)–2(l) that within the height interval 380–600 km in-
stead of the electron concentration increase after the flare
beginning, a trough is formed in the time behavior of Ne.
The value of the Ne decrease amplitude lies within 1–5%.
It should be noted that the obtained in the calculations neg-
ative disturbance of the electron concentration in the top-
side ionosphere agrees well to the presented above TEC
variations obtained as a result of processing of GPS sig-
nals and in observations at the Arecibo incoherent scatter
radar Thome and Wagner (1981). Thus, one can conclude
that the conditions during a solar flare could be such that an
increase of the electron concentration occurs in the lower
ionosphere, but in the topside ionosphere Ne decreases.

3. Discussion of the Modeling Results
In order to find the causes of formation of the elec-

tron concentration negative disturbance in the topside iono-
sphere, we assumed that the Ne decrease is related to inho-
mogeneous variations of the ultraviolet radiation in various
parts of the spectrum during a flare. On the basis of this as-
sumption, the UV-radiation spectrum within the 10–105 nm
range was split to 19 equal intervals. Then, for each inter-
val in turn, the factor of flare radiation intensity was var-
ied from 1.3 to 10, whereas for the other intervals it stayed
equal to 1.3. The calculations showed that the effect of Ne

decrease after the beginning of a flare is pronounced best at
the increase of the intensity factor in three following spec-
tral intervals: 15–20 nm, 30–35 nm, and 35–40 nm.

In order to understand the physical causes of the elec-
tron concentration depletion at altitudes of the topside iono-
sphere, we consider the continuity equation for the iono-
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Fig. 2. The model calculation results of the height-time variations of the electron concentration for different conditions of solar irradiating intensity,
(2(a)–2(f))—for the terminator area and (2(g)–2(l))—for the local noon. The dashed lines show variations of the electron concentration when solar
flare misses. The moment of a solar flare beginning is shown by vertical dashed lines.

spheric plasma written in the form:

∂ Ne

∂t
= q − ln − div(W), (1)

where q is the ion production rate; ln is the loss rate of
electron-ion pairs in chemical reactions; and W is the total
ion flux along a geomagnetic field line. It follows from
(1) that the sign of the Ne changes is determined by the

total balance of the terms in the right-hand side and that
a negative disturbance to be formed the right-hand side
of (1) should be negative during the flare. The results of
the modeling make it possible to determine the processes
providing realization of such situation.

Figure 3 shows the time variations of the electron concen-
tration and particular terms of the right-hand side of Eq. (1)
at a height of the F2 layer (300 km) and in the topside iono-



646 L. A. LEONOVICH AND A. V. TASCHILIN: EFFECTS OF THE SOLAR FLARES IN THE TOPSIDE IONOSPHERE

Fig. 3. Analysis of the effect of the decrease in the electron concentration during the solar flare. Thick lines show the time variations of the electron
concentration during a solar flare at heights of 300 km (a) and 500 km (c), diamonds show the time variations of the electron concentration in the
absence of the flare. The time variations of the terms in the continuity equation calculated for height 300 km (b) where the effect of the electron
concentration depletion during the flare is not observed and 500 km (d) where the effect is clearly pronounced are also shown in the bottom panels.

sphere (500 km). It should be noted that within this height
interval ions of the atomic oxygen prevail and so Eq. (1)
actually describe the balance of O+ ions. It follows from
Fig. 3(b) that at a level of 300 km the value of ion pro-
duction rate exceeds considerably the loss of charged par-
ticles due to the recombination ln and transport of O+ ions
along the field lines (divW > 0). As a result, there occurs
a monotonous increase in Ne during a flare. After the end
of the flare, the photoionization rate decreases sharply. Due
to that, the electron concentration at first decreases sharply
and then is stabilized at some level, the latter being deter-
mined by the balance between the photoionization, input
of the O+ ions from the above-located plasmasphere, and
chemical loss.

At altitudes of the topside ionosphere (500 km), the rela-
tion between particular terms of the right-hand side of (1)
changes. First, a decrease with height in the absolute val-
ues of the ion production rates and recombination occurs,
and, second, the role of the diffuse transport of ions in the
ionization balance grows. Figure 3(d) shows that the values
of the divergence of ion flux rapidly increases on an abso-
lute value with the beginning of the flare and becomes a

predominating term in the right-hand side of Eq. (1). This
happens due to the reformation of the vertical profile of the
ion flux above the F2-layer maximum with the beginning
of the flare. After the sharp increase in the initial moment
of the flare, the absolute value of the flux divergence de-
creases reaching the pre-flare value at the end of the pulse
phase (Fig. 3(d)). Then a reversal of the flux divergence
sign to the opposite one occurs accompanied by an increase
of the electron concentration.

Figure 4 shows the vertical profiles of the ion flux before
the flare and in the maximal phase of the flare. One can see
that under undisturbed conditions ions O+ are transported
from the topside ionosphere through the F2 layer into the
lower ionosphere. During the maximal phase of the flare,
the plasma pressure in the F2 layer increases sharply and
above ∼380 km an intense upward flux of O+ ions into
the plasmasphere is formed. As a result, at altitudes above
∼380 km the divergence of the ion flux is positive and
considerable on quantity, that specifies on essential upward
of plasma from the ionosphere to the plasmasphere.

Thus, one can conclude that the decrease of the electron
concentration in the topside ionosphere is due to the bring-
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Fig. 4. Vertical profile of the flux W. Thin line shows the flux behavior
before the flare. Thick line shows the flux behavior during the flare.

ing out to the plasmasphere of O+ ions. After “switching
off” the flare, the plasma pressure in the F2 layer decreases
quickly down to the level at which the difference in the pres-
sure between the upper and lower parts of the ionosphere

can not any more support the upward flux of O+ ions, and
the ionosphere relaxes to the undisturbed state.

Now we consider the problem of length of the height in-
terval in which the conditions needed to formation of the
negative disturbance in Ne are fulfilled. Figure 5 shows
the vertical profiles of the particular terms in the right-hand
side of Eq. (1) before a flare (Fig. 5(a)) and during the flare
(Fig. 5(b)). In the same figures, the summated profile of all
terms in the right-hand side of Eq. (1) is shown by trian-
gles. One can see that in the absence of a solar flare in the
daytime the resulting curve is positive at h < 400 km and
is close to zero above 400 km, that is, in the topside iono-
sphere the condition ∂ Ne/∂t ≥ 0 is fulfilled everywhere.
During a flare the right-hand side of Eq. (1) takes negative
values in the 380–600 km altitude range (is shown by hori-
zontal dashed lines in Fig. 5). So it follows that a negative
disturbance of the electron concentration during a flare can
cover almost the entire topside ionosphere.

4. Conclusions
The response of the ionosphere to a solar flare is studied

on the basis of the observational data and results of theoret-
ical modeling. The analysis of the results obtained made it
possible to draw the following conclusions:

1. According to the observations of the variations in TEC
and electron concentration at the GPS receivers net-
work and at the IS installation at Arecibo, negative dis-
turbances of the electron concentration can be formed
in the topside ionosphere during solar flares.

2. It is found in the model simulations that the most
significant effect of the Ne depletion is seen during
the flares with a strong increase in the solar radiation
within the following spectral intervals: 15–20 nm and
30–40 nm.

3. The intense transporting of O+ ions up into the above-
located plasmasphere is a cause of the formation of the

Fig. 5. Analysis of the continuity equation. Vertical profiles of the terms of the continuity equation before the flare (a) and during the flare (b). Thin
curves show the electron formation rate q; dashed curves show the electron loss rate ln; thick lines show the flux divergence div(W). The data for the
loss rate and flux divergence are shown with negative signs as they enter to the considered equation. The curve with triangles is a resulting curve.
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negative disturbance in Ne in the topside ionosphere.
The transporting is caused by the sharp increase in the
ion production rate and in the thermal expansion of the
ionospheric plasma.
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