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A paleointensity study using the Thellier’s method was made on Tertiary basaltic rocks in Inner Mongolia
and Hebei Province, northeastern China. K-Ar ages were previously reported for all the rocks, which range
around 6-8 Ma and 28-32 Ma. Sample selection was based on total quality of remanence behavior and rock
magnetism. High stability to AF and thermal demagnetization, small difference between the heating and cooling
curves of magnetic susceptibility vs. temperature measurements, and PSD to SD characteristics in the Day
plot of the hysteresis parameters were required. Experiments in vacuum using Coe’s procedure were applied
to 54 specimens from nine flows. Experiments were successful for 34 specimens, giving seven flow mean
paleointensities. Excluding two flow means (in one flow, only two specimens from the same sample survived
and in the other, the within-site error amounts to 42%) the final success rate was 29 out of 54 (54%), which is not
low. The obtained results range from 54 to 65 uT, except for one lava which gave 23 uT. These results indicate
that although the paleointensity in the Tertiary was generally smaller than the present-day value, there were large
fluctuations in the dipole moment, and paleointensities of the present-day level were often attained.
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1. Introduction

Recent comprehensive focus by the research community
to paleointensity studies on volcanic rocks has resulted in
a remarkable increase in the database, which now has 3128
data from 215 references in the most updated version of
Pint03 by Perrin and Schnepp (2004) compared to 1123
data from 83 references in the first version by Tanaka et al.
(1995). Nevertheless, controversy still continues on some
of the most important questions, such as was the paleoin-
tensity during the Cretaceous normal superchron small or
large?, and is the present-day dipole moment typical of the
past or much larger than the average? Paleointensity data
filtered with recent stringent criteria indicate that the pale-
ointensity was much weaker than the present-day value for
most of geological time (Selkin and Tauxe, 2000). How-
ever, this is still a matter of debate, and the research com-
munity is far from attaining a consensus (e.g., Biggin and
Thomas, 2003; Heller et al., 2003). Obviously more data
are necessary from various sources for a wide range of time.
This paper aims to contribute to Tertiary paleointensity data
by reporting results from basalt lavas of Inner Mongolia and
Hebei Province, northeastern China. Samples were taken
from the collection of Zheng et al. (1991). K-Ar ages of
the samples were reported by Zheng et al. (2002) and range
around 6—8 Ma and 28-32 Ma.
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2. Samples

Basalt platforms are sporadically found over eastern
China as shown in Fig. 1, which are mostly in Cenozoic
age (re-drawn from Cheng et al. (1990)). Some of the
basaltic rocks in Inner Mongolia and Hebei Province were
paleomagnetically studied by Zheng et al. (1991). These
samples were later dated using the K-Ar method (Zheng et
al., 2002), giving ages which are mostly Tertiary, except for
one platform of Cretaceous age. The 92 Ma Cretaceous
samples were used for Thellier’s paleointensity study by
two groups (Tanaka and Kono, 2002; Zhao et al., 2004),
both giving small paleointensities for the Cretaceous nor-
mal superchron. Our study takes the Tertiary samples
from Zheng’s collection for Thellier’s paleointensity ex-
periments. Most samples used are taken from Weickang
basalts near Chifeng, except for one which is from Hann-
uoba basalts near Zhangjiakou, and site localities are indi-
cated by open circles in Fig. 1. Pan et al. (2005) reported
a paleomagnetic and paleointensity study for an Oligocene-
Miocene lava sequence from the Hannuoba basalts. The
site locality of their study is indicated by an open triangle
in Fig. 1. The ages of the samples used in this study are
in two groups of 6-8 Ma and 28-32 Ma, which are differ-
ent from the age range of 15-24 Ma covered by the lava
sequence of Pan et al. (2005).

Samples were selected based on high stability of rema-
nence to AF and thermal demagnetization and the quality
of other rock magnetic properties, including the small dif-
ference between the heating and cooling curves of magnetic
susceptibility vs. temperature (x-T) and saturation magne-
tization vs. temperature (Jg-T). The nature of the domain
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Table 1. Site mean paleodirections and paleointensities.

Site Slat Slon Age Np 1 D aos k Np(N/Np) F VDM VADM
CN)  (°B) (Ma) (uT) (1022A m?)

CJO1-02  42.36 118.62 6.51£0.07 10 54.5 355.0 2.4 405.2 4(5/9) 53.9+£8.9 9.9+1.6 9.1+1.5
CSZ01 42.35 118.63 6.81+0.22 8 554 7.0 3.3 279.9 6(6/6) 57.1£10.7 10.4+1.9 9.6+1.8
CXO05 42.20 118.72 6.90+0.15 8 57.8 3579 2.4 554.2 3(3/5) 72.1£30.0

CX03 42.33 118.71 7.54+0.09 7 559 3552 2.4 640.9 1(2/5) 101.445.6

CS01 42.24 119.25  28.68+0.40 8 —56.3 231.1 1.7 1067.1 5(6/6) 64.9+4.7 11.6+0.9 10.9+0.8
7Y02 41.16 114.66  29.974+0.41 8 —47.3 186.0 7.1 63.4 4(4/9) 22.842.5 4.5+0.5 3.9+0.4
CDO1 42.22 119.08 31.534+0.79 7(8/8) 55.249.7 9.3%+1.6

Note: Slat, Slon; latitude and longitude of the site location, Age; all data are from Zheng et al. (2002), Np; number of samples used for the
site mean paleodirection, I, D, aos, k; all data are from Zheng et al. (1991) except for CJ01-02 which are combined from the original sample
paleodirections, N p (N/Np); number of samples used for the site mean paleointensity (numbers of successful/total specimens in the experiment),
F, VDM, VADM,; site means which are simple averages and the errors are standard deviations.

Site means of CX05 and CX03 were finally rejected because a large standard deviation of 42% was resulted in the former and only two specimens

from the same sample were successful in the latter.

Paleodirection was not obtained from CDO1 due to block rotation in the outcrop.
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Fig. 1. Distribution of basaltic rocks in eastern China, which are mostly in
Cenozoic age (re-drawn from Chen et al. (1990)). Grey thick lines are
major tectonic boundaries, and a fine black line is a major fault (Tan-Lu
Fault). Site localities in this study are shown by open circles, while the
open triangle indicates the site of the lava sequence by Pan et al. (2005).

state of the magnetic minerals, determined from the mag-
netic hysteresis parameters, was also considered for sample
selection. Those samples with SD (single domain) to PSD
(pseudo-SD) nature were given higher priority.
Measurements of x-T were made in air by a
susceptibility-temperature system MS2 of Bartington In-
struments Ltd. and those of Jg-T were made in helium

atmosphere by a vibration sample magnetometer Micro-
mag 3900 of Princeton Measurements Corp. x-T and Jg-
T curves are roughly categorized into three classes based
on the repeatability of the heating and cooling curves. The
curves with the maximum difference of x (J) of less than
15%, 15%-30%, and more than 30% of the starting value
are classified as class A, B, and C, respectively. Represen-
tative x-T and Jg-T curves are shown in Fig. 2 in which
solid red and dotted blue lines indicate heating and cooling
curves, respectively, and the rows of the figure are arranged
by class. From this figure, it is recognized that the dif-
ference between the heating and cooling curves are larger
in x-T curves than Jg-T curves for the samples from the
same core. x-T curves from CSOI and CDO1 are in Class
B, while Jg-T curves from both lavas are in Class A. The
x-T curve from ZLO01 is Class C, while J¢-T curve from
the same lava is Class B. Except for those from CJO1, Js-
T curves show in general a better repeatability between the
heating and cooling curves than x-T curves. Solely with
this fact it is difficult to conclude that x is more susceptible
than Jg to chemical alteration during heating because the
former measurements were made in air while helium atmo-
sphere was used for the latter measurements. Nevertheless,
x-T curves were generally better indicators for sample se-
lection in the paleointensity experiments.

Of 17 flows examined, only five were categorized into
Class A in both Jg and x-T measurements. Including other
five flows which were in Class A in either Jg or x-T mea-
surements, samples from a total of ten flows were used for
the paleointensity experiments.

Figure 3 shows representative magnetic hysteresis curves
(a—e) and the Day plot (Day et al., 1977) of the hystere-
sis parameters in log-log scale (f) in which small letters a—¢
correspond to those of the hysteresis curves (a)—(e). Crosses
indicate those samples which were not used for paleointen-
sity experiments. Circles are the results for the samples
used in the experiments, where white, grey, and black cir-
cles show 100%, 60-40%, and 0% flow success rate respec-
tively (details are given in the next section). It is recognized
that the success rate of the paleointensity experiments is not
necessarily higher for the samples closer to the SD nature.
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Fig. 2. Representative x-T and Js-T curves in which solid red and dotted blue lines indicate heating and cooling curves, respectively, and the rows of

the figure are arranged by the class of the curves.

H (mT) H (mT) H (mT)
-400 0 400 -400 0 400 -400 0 400
147y iy - ‘ 1
@ | — [b @ ] =
(2] (2]
1 Ms =0.17[ 1 Ms =0.48[ | Ms =0.16[
// Mrs=0.10 Mrs=0.21 Mrs=0.05
Hc =32.6 Hc =46.4 Hc =26.5
-1 A Hcr=46.3| — Hcr=83.4| — Hcr=63.7} -1
1 1 1 1 L L 1
sD (d)
] 4A |
0.5 (%)
100 P | 0=
® . ¢ =
- | =0.58[
o i
» 02 +p0d F Hor=53.1| -1
2 e
14
s . .
| L L
o1 1 (e)
] PSD o,
0.05 02
MD =
| Ms =1.03[
(f) Mrs=0.15
el
— cr=44.2} -
0.02 T T T T T T T T T
1 2 3 4 5 6 7 8 910 -400 0 400
Hcr/He H (mT)

Fig. 3. Representative magnetic hysteresis curves in which the slope is corrected for the effect of paramagnetism (a—e) and the Day plot of the hysteresis
parameters in log-log scale (f). Hysteresis parameters are tabled in each figure of (a)—(e) where the units are A m?/kg for saturation magnetization
(Ms) and saturation remanence (Mrs) and mT for coercivity (Hc) and coercivity of remanence (Her). In the Day plot (f), lowercase letters a—e
correspond to those of the hysteresis curves (a)—(e). Crosses indicate those of the samples which were not used in the paleointensity experiments.
Circles are the results for the samples used in the experiments, where white, grey, and black circles show 100%, 60-40%, and 0% flow success rate,

respectively.

3. Paleointensity Experiments

Coe’s modification (Coe et al., 1978) of the Thellier’s
method (Thellier and Thellier, 1959) was used for all ex-
periments, which were carried out under a vacuum of about
5 Pa (~ 5 x 1072 Torr). To detect any alteration occur-

ring during the experiments, pTRM checks were made at
every other step. The reason that the pTRM check was not
made for all steps is to subdue any oxidation which might
occur during heating. For the same reason, checks for mul-
tidomain (MD) tails of the pTRM (Riisager and Riisager,
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Fig. 4. Representative Arai plots of the Thellier’s experiments. Solid symbols in the Arai plots are the data points included to the linear analysis.
Triangles are data points of pTRM checks. Some samples were AF demagnetized at 10 mT or 20 mT after every step, which is indicated in the figure.
An orthogonal diagram in each figure shows the NRM vectors for the zero-field steps in the sample frame, in which the laboratory field was induced

along +Z direction.

2001) were omitted. Results of the Thellier’s experiments
were analyzed on the Arai plot (Nagata et al., 1963). Ac-
ceptance criteria are basically after those by Kissel and Laj
(2004); (1) the linear segment should include at least four
points with a correlation coefficient —r larger than 0.99 and
a NRM fraction f larger than 0.35; (2) pTRM test is posi-
tive, which is judged by a PTRM difference normalized by
the length of the linear segment (DRAT) smaller than 7%
and its accumulation over the selected temperature interval
(CDRAT) smaller than 10%; (3) maximum angular devia-
tion (MAD) of the NRM vector component corresponding
to the selected linear segment is less than 7° and reasonably
decreases toward the origin on the orthogonal plot, which
is judged by a difference angle o smaller than 10°. For the
last criterion, less than 10% is also imposed to a deviation

dev of Tanaka and Kobayashi (2003), which is a minimum
distance of the fitted line of the NRM vector from the origin
normalized by the NRM intensity.

Two series of experiments were made on a total of 54
specimens. First experiments included 28 specimens which
were selected based on the rock magnetic evaluation men-
tioned before. In the second experiments, those flows which
were unsuccessful in the first run were not used. In this way,
34 specimens were successful, giving a specimen level suc-
cess rate of 63%, but the final success rate was reduced to
54% by application of site level acceptance criteria. Rea-
sons for the failure of experiments varied from specimen to
specimen, but a low correlation coefficient less than 0.99
is the most frequent. Some results were not analyzed due
to a two-segments Arai plot with a large initial decay of
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Fig. 5. VDM versus age and their histograms for the last 30 m.y. Upper and lower histograms show VDM distributions during the polarity states of
normal/reverse and transition, respectively. Two histograms for each of polarity states show those for the time periods of 0.1-5 Ma and 5-30 Ma. In
the central figure of VDM vs. age, blue and red crosses indicate those in normal/reverse and transition, respectively. Green open circles are new data
from this study (one result of 55 T from 31.5 Ma lava is not included due to unavailability of paleodirection).

NRM intensity. All specimen level results are summarized
in the Appendix where those of rejected are shown in re-
duced font.

Eight representative results from four flows are shown in
Fig. 4 in which two examples from each flow with differ-
ent experimental conditions are compared. In the figure,
orthogonal plots of NRM direction for zero-field steps are
also shown in the sample frame, in which the +Z axis is the
direction of the laboratory field.

Figure 4(a) and (b) compare two results from the 31.5 Ma
basalt in which all of the eight specimens were successful.
CDO1-1-1 using a laboratory field of 40 uT gave a result

of 57.2 uT, which agrees well with the 53.6 uT obtained
from CDO1-5-B with a laboratory field of 60 uT. A mod-
erately large flow mean paleointensity of 55.2+9.7 uT was
obtained.

AF demagnetization (AFD) at 10 mT or 20 mT for every
step was applied to 16 samples to see its effect in the Thel-
lier’s experiment, and two examples from the same core
are shown in Fig. 4(c) and (d) from flow CJO2 (6.540.1
Ma). Arai plot of CJ02-3-2 with AFD (Fig. 4(d)) is com-
pared to the result of CJ02-3-1 from the ordinary experi-
ment (Fig. 4(c)). Results from the two experiments are in
good agreement. However, the effectiveness of involving
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AFD is not conclusive because there were no results res-
cued by AFD which were otherwise rejected. The range of
the decay rate of the original NRM was 0.87-0.96 after 10
mT and 0.83-1.00 after 20 mT, but no correlation was ob-
served between the decay rate and the experimental results.

Figure 4(e) and (f) show two examples which gave low
paleointensities from the 30.0+0.4 Ma flow. Experimental
results using a laboratory field of 50 uT were not very
good except for sample ZY02-5-1 which passed the criteria.
When using a small laboratory field of 20 T, however, the
Arai diagram was much more reliable. It is noted that the
small value of 25.8 4T from ZY02-5-1 is concordant with
the more reliable results when using a small laboratory field.

Two examples from the 7.5+0.1 Ma flow in which very
large paleointensities were obtained are shown in Fig. 4(g)
and (h). These two results, which were obtained using
different laboratory fields, are in good agreement. Unfor-
tunately, only these two results out of the five specimens
passed the acceptance criteria. As these two successful
specimens are from the same sample, these high paleoin-
tensities were finally rejected.

As mentioned before, in this study 28 specimens were se-
lected for the first experiments based on the total evaluation
which combines all of the qualities of the remanence stabil-
ity and rock magnetism. In this sample selection, the qual-
ity of x-T curve was the most useful, as suggested in Fig. 2.
After completion of the first experiments, those flows which
revealed bad behavior were omitted from the sample selec-
tion for the second set of another 26 specimens, thereby
concentrating more on those which were promising. Al-
though 34 specimens out of 54 were successful in the ex-
periments, two flow means were finally rejected, because in
one flow the standard deviation amounted to a large value
of 42% and in another flow only two specimens from the
same sample survived. Nevertheless, the final success rate
of 54% (29/54) attained in this study is reasonable, which
is probably due to the above-mentioned scheme of sample
selection.

4. Discussion

Site mean paleointensities are summarized in Table 1 in
which the paleodirectional data are reproduced from Zheng
et al. (1991), except for sites CJO1, CJO2, and CDO1. Sam-
ple directions were combined for CJO1 and CJ02, which
are only 50 m apart and considered to be from the same
flow. Although the statistical test by McFadden and Lowes
(1981) indicates that the two site means are significantly
different, we believe that these are still the same flow be-
cause the negative statistical test is due to too small ag5 ob-
served at each site. The difference angle of 4.7° between the
mean directions, which is almost all in declination, could
easily arise from an orientation error because at these sites
the sun azimuth was not available (e.g., Tanaka et al., 2004).

An anomalous paleodirection of [=—44.2°, D=95.3°,
a95=11.6° is obtained from CDO1, which was not reported
in Zheng et al. (1991). This is interpreted as an error in
the sampling rather than a geomagnetic transition. Zheng
et al. (1991) reported that samples were collected from an
inclined block at some sites and that the block rotation was
successfully corrected by the attitude of the columnar joint.
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The anomalous paleodirection of CDO1 is probably due to
a similar block rotation, but it is impossible to restore the
remanence directions because the attitude is not available.
Hence, only a virtual axial dipole moment (VADM) was
calculated from CDO1.

The mean paleointensity of 72.1£30.0 T from CX05
was finally rejected due to a large standard deviation of
42%. The site mean of 101.4+5.6 uT from CX03 was
also rejected because this is based on the results of two
specimens which were taken from the same sample. The
site mean data from these two sites are listed in smaller font
in Table 1.

The five paleointensities obtained in this study are mod-
erately large, ranging from 54 uT to 65 uT except for the
30 Ma flow which has a small value of 23 uT. These new
data have been compared with the Pint03 database. Data
retrieved from Pint03 are only those that used the Thellier’s
method with pTRM checks (so-called T+ data) and those
obtained from at least two samples with a maximum flow
mean standard deviation of 25%. Data were also accepted
that used the Shaw method which incorporates the double
heating methodology of Tsunakawa and Shaw (1994). For
data retrieved with these conditions, there are no entries in
the age range between 30 and 50 Ma. Considering also
the high data density for the time range younger than 0.1
Ma, only those in the age range of 0.1-30 Ma were con-
sidered for comparison. New or missing data in Pint03 for
this age range were added from the data in the literature
(Bogue, 2001; Goguitchaichvili et al., 2002; Glen et al.,
2003; Leonhardt et al., 2003; Carvallo et al., 2004; Tauxe
et al., 2004a, b; Thomas et al., 2004; Chauvin et al., 2005;
Herrero-Bervera and Valet, 2005; Hill ez al., 2005; Pan et
al., 2005; Yamamoto and Tsunakawa, 2005).

The virtual dipole moments (VDM) for 0.1-30 Ma
are summarized in Fig. 5 in which blue and red sym-
bols/histograms represent for those from the polarity states
of normal/reverse and transitional respectively. The his-
tograms are shown separately for each of the time periods
of 0.1-5 Ma and 5-30 Ma. The polarity state of each data
was based on the polarity entries in the database which basi-
cally follow the author’s statement in the original literature.
Small VDMs dominate in the lower histograms of Fig. 5,
and this simply ascertains the well-established smallness of
the dipole moment during a transition (e.g., Merrill et al.,
1996). The upper histograms in Fig. 5 indicate that there
is a significant difference in the mean VDM between the
two time periods of 0.1-5 Ma and 5-30 Ma. The mean
VDM for the former of 7.543.2 (1022Am?) is quite close
to the present-day value while that for the latter is much
smaller. Pan et al. (2005) suggested that the mean VDM
for the Pliocene and late Miocene (2—15 Ma) is larger than
that for the early Miocene and late Oligocene (15— 30 Ma).
Considering the rather large VDM for the 29 Ma lava in
this study (together with the VADM from the 31.5 Ma lava
which is not included in the figure), it is probably too early
to conclude such a difference of the dipole moment. It is
suggested that although the dipole moment was generally
smaller than the present-day value in the time period of 5—
30 Ma, it still showed large fluctuations.
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Appendix. Specimen results of paleointensity experiments
Specimen T T, n —r —b op o dev f g q Fr F+ AF Remark
6 O ) R (T (uT)
CJO1-2-1 Two segments with initial large NRM decay AFD with 10 mT
CJO1-4-1 400 500 5 0.981 0.783 0.088 8.5 11.0 021 070 1.33 60 470+£5.3
CJO1-5 400 500 5 0.996 0.814 0.040 5.5 6.3 025 0.73 3.73 60 48.8+24
CJ01-6-1 400 540 7 0997 1.097 0.040 20 23 047 080 104 60 65.8 £24  AFD with 10 mT
CJO1-8-1 400 500 5 0.999 0.838 0.020 2.5 3.4 0.27  0.68 7.69 60 503 +1.2 CDRAT=11%
CJ02-3-1 400 540 7 0998 0.839 0.024 25 26 049 080 139 60 503+14
CJ02-3-2 400 540 7 0999 0877 0.021 23 23 055 079 178 60 526 £1.3  AFD with 10 mT
Sample mean of CJ02-3 515+ 1.6
CJ02-5-1 150 540 13 0994 1343 0044 13 19 065 081 163 40 53.7+1.38
CJ02-7-1 400 540 6 0990 1.112 0.077 15 23 040 079 45 40 445 £3.1
CSz01-1-1 400 540 7 0991 1.131 0070 36 59 037 082 49 60 67.8 4.2
CSZ01-2-1 400 520 5 0995 1729 0.105 39 87 035 072 42 40 69.2+£42  AFD with 20 mT
CSZ01-3-1 400 520 6 0997 0930 0037 43 57 036 077 7.0 60 55.8+£2.2
CSZ01-4-1 400 540 6 0997 1320 0050 31 52 037 078 7.6 40 52.8 £2.0
CSZ01-5-1 430 560 6 0.997 0997 0.039 1.1 1.2 048 071 87 40 399+1.6
CSZ01-6-1 400 540 7 0997 0950 0033 25 26 050 080 113 60 570£2.0 AFD with 10 mT
CX05-2-1 20 520 15 0.987 1.777 0.080 1.9 2.8 0.69 0.86 13.27 50 88.8 £4.0 AFD with 20 mT
CX05-3-1 20 300 4 1.000 0.656 0.010 4.8 4.0 0.81 048 2529 80 52.5+0.8 DRAT=17.3%
CX05-3-2 150 300 6 0997 0.757 0028 75 6.8 055 077 114 50 378+ 1.4 (%)
CX05-5-1 20 460 13 0990 1.709 0.073 6.1 82 058 090 12.2 50 85437 (¥
CX05-7-1 20 490 9 0998 1.165 0.028 43 63 055 085 19.6 80 932+£22 (%)
CX03-3-1 20 490 14 0992 2.107 0.078 1.1 1.9 065 087 154 50 105.3 £3.9 AFD with 20 mT (*)
CX03-3-2 200 490 8 0997 1219 0.040 2.7 41 057 082 142 80 97.5£32  AFD with 10 mT (*)
Sample mean of CX03-3 1014 +56 (%)
CX03-6-1 400 520 5 0.996 0.932 0.048 43 43 034  0.72 4.76 80 746 +3.8 DRAT=10.4%
CX03-6-2 20 520 15 0.985 2.051 0.099 35 4.5 0.66 0.90 12.32 50 102.5 £ 49
CX03-7-1 20 520 15 0983 2.082 0.108 3.7 4.8 0.66 090 11.56 50 104.1+54 CDRAT=16.4%
71.04-2 20 490 11 0.969 0.901 0.074 5.6 8.5 0.43 0.86 4.42 40 36.0 3.0 CDRAT=10.1%
Z104-7-2 Two segments with initial large NRM decay
CS01-2-1 300 540 8 0995 0.709 0.029 36 28 065 0.82 13.0 80 56.7+£2.3  AFD with 10 mT
CS01-4-1 320 540 9 0995 1.696 0.061 1.1 1.5 059 083 13.6 40 67.8 £2.5  AFD with 20 mT
CS01-5-1 350 540 7 0994 0855 0041 17 19 052 080 88 80 68.4£3.2
CS01-6-2 350 560 9 0994 1.649 0069 05 06 062 0.83 123 40 66.0 £2.8
CS01-7-1 360 560 8 0991 1560 008 15 19 060 083 93 40 624 +34
CS01-7-2 350 540 7 0997 0857 0.031 22 21 055 081 122 80 68.5+25
Sample mean of CS01-7 65.5+43
7Y02-2 20 300 5 0.981 10.047 1.13 1.8 2.3 0.43 0.73 2.80 20 2009 +£22.6  AFD with 10 mT
7Y02-3-1 20 280 7 0.996 0.399 0.017 79 126 019 0.79 3.67 50 199+ 0.8 AFD with 20 mT
7Y02-3-2 20 400 7 0999 1.183 0.022 1.6 24 055 082 237 20 23.7£04  AFD with 10 mT
7Y02-4-1 150 400 6 0998 099% 0036 20 35 047 079 104 20 19.9 £ 0.7
7Y02-4-2 20 340 9 0.985 0.333 0.022 3.8 5.4 0.41 0.86 5.34 50 16.7 £ 1.1
7Y02-5-1 20 420 12 0992 0516 0.021 63 48 062 090 13.7 50 25.8+1.0 AFD with 20 mT
7Y02-6-1 150 500 8 0996 1.095 0040 36 41 057 082 127 20 21.9+£0.8
7Y02-6-2 100 300 7 0.986 0.108 0.008 337 50.6 0.12 0.80 1.25 50 54+04
ZY02-8-1 20 300 5 1.000 0.304 0.005 13.0 202 0.19 072 8.57 20 6.1 +0.1
CDO1-1-1 400 560 7 0997 1430 0.049 1.8 19 0.67 079 156 40 572+19
CDO1-1-1B 400 540 7 0999 0988 0.022 28 30 058 079 20.7 60 593£13
Sample mean of CDO1-1 582+ 14
CDO1-2-1 400 620 10 0994 1870 0.072 25 2.0 0.84 086 1838 40 748 £29
CDO01-4-B 400 540 7 0997 0.742 0.026 4.1 38 050 083 118 60 445+ 1.6
CDO1-5-B 400 540 7 0999 0893 0015 01 01 052 079 247 60 53.6 £0.9
CDO01-6-2 400 520 6 0998 0.810 0.027 22 26 048 0.77 11.1 60 48.6 £ 1.6
CDO01-7-1 375 540 7 1.000 1343 0012 14 1.8 051 076 452 40 53.7£05
CDO1-8-1 375 540 7 1.000 1331 0.017 09 12 054 074 318 40 53.2+0.7
CHO1-1-2 Two segments with initial large NRM decay
CHO1-4-1 ditto
CHO1-5-2 ditto
CHO1-7-1 ditto

Note: Ty, T, lower and upper temperatures for the linear segment; n, number of data point included in the linear regression; r, correlation
coefficient of the linear segment; b, slope of the segment; o}, standard error of b; «, dev, difference angle and deviation of the selected NRM
component from the origin on the orthogonal plot; f, g, q, quality parameters after Coe et al. (1978); Fy, laboratory field strength; F, AF,

paleointensity and its standard error.
Results shown in reduced font are those rejected, where underlined values are the parameters lower than the minimum criterion.
(*) Results from CX05 and CX03 were finally rejected by application of site level acceptance criteria.
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S. Conclusion

Thellier’s experiments were carried out on to Tertiary
basalts in Inner Mongolia and Hebei Province, northeast-
ern China. A sample selection scheme based on the to-
tal evaluation of the qualities of remanence stability and
rock magnetism was effective giving the final success rate
of 54%. It was suggested that x-T curves are a better in-
dicator for sample selection than Jg-T curves because the
effect of chemical alteration is more pronounced in the for-
mer although this might be due to the difference of furnace
atmospheres. Among five flow mean paleointensities ob-
tained, four range from 54 to 65 uT and one is 23 uT.
These results, combined with the Pint03 database updated
with data from recent literature, indicate that there was a
large fluctuation in the paleointensity which often attained
the present-day level, although the Tertiary dipole moment
was generally smaller.
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