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Three-dimensional inversion for Network-Magnetotelluric data
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Three-dimensional inversion of Network-Magnetotelluric (MT) data has been implemented. The program is
based on a conventional 3-D MT inversion code (Siripunvaraporn et al., 2004), which is a data space variant of the
OCCAM approach. In addition to modifications required for computing Network-MT responses and sensitivities,
the program makes use of Massage Passing Interface (MPI) software, with allowing computations for each period
to be run on separate CPU nodes. Here, we consider inversion of synthetic data generated from simple models
consisting of a 1 
-m conductive block buried at varying depths in a 100 
-m background. We focus in particular
on inversion of long period (320–40,960 seconds) data, because Network-MT data usually have high coherency in
these period ranges. Even with only long period data the inversion recovers shallow and deep structures, as long as
these are large enough to affect the data significantly. However, resolution of the inversion depends greatly on the
geometry of the dipole network, the range of periods used, and the horizontal size of the conductive anomaly.
Key words: Network-Magnetotelluric, data space method, 3-D inversion, Occam’s inversion.

1. Introduction
The Network-Magnetotelluric (MT) method was first used

in central and eastern Hokkaido, in northeastern Japan, in
1989 (Uyeshima et al., 2001). Networks are now widely
operated throughout Japan (Uyeshima et al., 2002; Satoh
et al., 2001; Yamaguchi et al., 1999), and at some loca-
tions in China (Ichiki et al., 2001; Tang et al., 2003a, b).
The goal of these observations is to determine the deep and
large-scale 3-D electrical conductivity structure of the Earth,
and also to monitor electric field variations that may coin-
cide with volcanic activities (e.g., at Miyake-jima volcanic
island; Sasai et al., 2002). The method employs a commer-
cial telephone network to measure voltage differences over
long dipole lengths, ranging from ten to several tens of kilo-
meters. Three-component reference magnetic fields are usu-
ally obtained from a nearby geomagnetic observatory. A
typical Network-MT configuration is shown in Fig. 1. As
in conventional MT, Network-MT response functions, Yx (ω)

and Yy(ω), can be estimated in the frequency domain using
the voltage difference V (ω) for each dipole and the reference
magnetic field, H x

r (ω) and H y
r (ω)

V (ω) = Yx (ω)H x
r (ω) + Yy(ω)H y

r (ω). (1)

Because the electrode spacing between each dipole is quite
large, signal-to-noise ratios are generally high. In addition,
Network-MT response functions are much less affected by
galvanic effects due to small-scale near-surface lateral het-
erogeneity of electrical conductivity (Uyeshima et al., 2001).
Network-MT response functions can be related to the con-

ventional MT impedance tensor elements, Zxx (ω), Zxy(ω),
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Z yx (ω) and Z yy(ω), as described in Uyeshima et al. (2001).
Forward modeling for both methods is basically identical,
except for computation of predicted responses from the mod-
eled electric and magnetic fields. Previous efforts to directly
interpret Network-MT response data sets have been limited
to 2-D and 3-D forward modeling (Uyeshima et al., 2001,
2002). An indirect interpretation approach is to transform
the Network-MT data into conventional MT tensor and then
use the available 2-D or 3-D MT inversion schemes to solve
for the conductivity distribution (Yamaguchi et al., 1999).
The transformation (Uyeshima et al., 2001) is accomplished
by dividing the target region into a set of triangular sections
(e.g., as shown by the dashed lines of Fig. 1), and then esti-
mating the average impedance tensor at the center of each
triangle by fitting the transfer functions for the bounding
dipoles. The transformed data itself can be used alone, or
together with conventional MT data sets from separate sur-
veys (Satoh et al., 2001).
Transformation of Network-MT responses into conven-

tional MT impedance responses inevitably introduces some
errors. For example, for conventional MT the magnetic fields
are assumed co-located with the electric fields, while in re-
ality for Network-MT, the magnetic fields are obtained from
the regional geomagnetic observatory. Thus one implicitly
assumes no regional variation in induced magnetic fields.
Here, we describe tests with a 3-D inversion scheme that

works directly with the Network-MT response functions,
taking account of the actual geometry of the observing sys-
tem. The inversion scheme is a straightforward generaliza-
tion of the MT inversion scheme described by Siripunvara-
porn et al. (2004) and Siripunvaraporn and Egbert (2000).
The goal of the inversion is to find the smoothest model sub-
ject to an appropriate fit to the data. The inversion algorithm
is based on the Occam scheme introduced by Constable et al.
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Fig. 1. A sketch of field experiment for Network-MT method (after Uyeshima et al., 2001). Each dipole is connecting via telephone lines (dashed lines
for local lines and thick lines for the Network trunk connection line). The base sites are indicated by the telemetry tower. Usually, magnetic fields are
obtained from a geomagnetic observatory in the region.

(1987), but with all computations transformed into the data
space. With this data space approach, the size of the system
of equations that must be solved is reduced to the number
of independent data, N , instead of the number of model pa-
rameters, M . With this scheme it is possible to invert modest
3-DMT data sets on a personal computer in a relatively short
time (Siripunvaraporn et al., 2004). Here, we apply this in-
version to synthetic 3-D Network-MT data, to test sensitivity
and resolution of these data. In addition, the inversion is cur-
rently applied to investigate the 3-D conductivity structure
beneath the Hokkaido area and the Miyake-jima volcanic is-
land, Japan, and will appear in separated papers.

2. Data Space Inversion Algorithm
For completeness we briefly summarize the data space

inversion algorithm, and then give some details peculiar to
inversion of Network-MT data. Further details about the
general inversion approach can be found in Siripunvaraporn
et al. (2004) and Siripunvaraporn and Egbert (2000).
The goal of the inversion is to find the “smoothest”, or

minimum norm, model subject to an appropriate fit to the
data. Mathematically this is expressed as:

minimize: (m − m0)
T C−1

m (m − m0)

subject to: (d − F[m])T Cd
−1(d − F[m]) − X∗2. (2)

In (2), m is the resistivity model, m0 the prior model, Cm

the model covariance matrix, d the observed data, F[m]
the model response, Cd the data covariance matrix, and X∗

the desired level of misfit. The Occam approach to this
constrained minimization (Constable et al., 1987; see also
Parker, 1994) involves linearizing the model response F[mk]
to find a series of approximate solutions

mk+1(λ) = [λC−1
m + 
m

k ]−1JT
k C−1

d d̄k + m0, (3)

where d̄k = d − F[mk] + Jk(mk − m0), and the “model
space cross-product” matrix 
m

k = JT
k C−1

d Jk is an M × M

positive semi-definite symmetric matrix. The subscript k
denotes iteration number, and Jk = (∂F/∂m)k is the N × M
sensitivity matrix calculated at mk . This approach is a model
space method, since the system of Eqs. (3) is solved in the
model space, of dimension M .
It is not difficult to show that for iteration k the solution

(3) can be expressed as a linear combination of rows of the
smoothed sensitivity matrix CmJT (Parker, 1994; Siripun-
varaporn et al., 2004), i.e.,

mk+1 − m0 = CmJT
k βk+1, (4)

with the coefficient vector βk+1 given by

βk+1 = [λCd + JkCmJT
k ]

−1d̄k . (5)

This variant of Occam is a data space method, since the sys-
tem of Eq. (5) is now solved in the data space, of dimension
N . The main difference between (3) and (5) is that the size
of the system of equations to be solved can be dramatically
reduced, from M × M in the model space, to N × N in the
data space. Since in general N will be much less than M ,
especially for the 3-D MT case, this reorganization of the
computations can lead to a great saving on computational
costs, both in terms of memory and CPU time.
Whether in the data or model space, a key to the Occam

approach (Parker, 1994) is to solve for the updated model
mk+1 for a series of trial values of the damping parameter
(or Lagrange multiplier) λ, and compare predictions of the
resulting model solution to the data. Initially λ is adjusted to
find the minimum misfit (Phase I). Then, when the misfit has
achieved the desired level, λ is varied to seek the model of
smallest norm with misfit equal the target misfit (Phase II).
2.1 Three-Dimensional Network-MT Forward Model-

ing
The electric and magnetic fields on the Earth’s surface can

be computed using a conventional MT code. We use a 3-
D forward modeling code based on solving the 2nd order
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Fig. 2. Sketch showing how to compute Network-MT responses from a
staggered-grid numerical solution for electric fields. In this figure, the
voltage V (i, j), is computed as a sum over electric components defined
on cell edges and vertical magnetic fields. Notation: dx (i) and dy( j)
are grid cell dimensions, while lx (i) and ly( j) are distance projected
from sub-dipole (thick line) onto the x- and y-directions. Ex and Ey are
electric fields in x- and y-directions on the cell edge and Hz is the vertical
magnetic field. Hr

x and Hr
y are horizontal magnetic field components at

the remote observatory.

Maxwell’s equation, defined in terms of the electric fields,
with a staggered grid finite difference approximation (Smith,
1996; Siripunvaraporn et al., 2002). This scheme has proven
to be accurate and robust.
In order to obtain Network-MT responses, Yx (ω) and

Yy(ω), from (1), we must compute voltage differences V (ω)
between the ends of the dipoles, i.e., the integral of electric
fields along the dipole lines at the surface. Together with
the magnetic fields computed at the actual observatory lo-
cation, we can then obtain the predicted Network-MT re-
sponses for any given model solutions. Computation of the
required dipole line integrals is outlined in Fig. 2. First,
the Network-MT dipole line is subdivided into many seg-
ments, where each segment lies within a single grid cell (de-
noted by the dashed lines in Fig. 2). The voltage difference
along each dipole segment (the thicker line in Fig. 2) can
be estimated using the horizontal electric fields Ex (i, j) and
Ey(i, j) defined on the edges of the staggered grid cells, and
the vertical magnetic field Hz(i, j) computed in the usual
way from the electric field solution. According to Faraday’s
law, the induced EMF around the closed triangular loop is
Vz(i, j) = 1

2 iωμHz(i, j)lx ly . Hence, the voltage difference
V (i, j) along the diagonal segment can be estimated as:

V (i, j) = Vx (i, j) + Vy(i, j) − Vz(i, j)

= Ex (i, j)lx + Ey(i, j)ly − 1

2
iωμHz(i, j)lx ly . (6)

The total voltage difference can then be computed as the
sum of the voltage differences V (i, j) of all segments along
the full dipole.
For forward computations the problem must be solved

for external magnetic sources in both the x and y direc-
tions (x-polarization or y-polarization). Each polarization
results in magnetic field vectors, (Hr

x,x−pol , Hr
y,x−pol) or

(Hr
x,y−pol , Hr

y,y−pol) at the location of the observatory, and
also voltage differences, Vx−pol and Vy−pol . The Network-
MT response (Yx , Yy) of each frequency in (1) can then be

computed as

[
Y x
Y y

]
=

[
Hr

x,x−pol Hr
y,x−pol

Hr
x,y−pol Hr

y,y−pol

]−1 [
Vx−pol

Vy−pol

]
, (7)

and then directly compared to the observed Network-MT
responses to invert for conductivity (Uyeshima et al., 2001).
2.2 Sensitivity Matrix for Network-MT responses
To compute the gradient of the model responses with re-

spect to the model, Jk = (∂F/∂m), we use the reciprocity ap-
proach described in Rodi (1976), which we summarize here.
From (7) the responses are Y = [Yx Yy]T = H−1V. To

simplify the sensitivity calculations, we assume that the mag-
netic fields are only weakly affected by changes in the model
relatively to the perturbation of electric fields. Note that we
only make this approximation for sensitivity calculations,
not for comparison of predicted and observed data. This
small approximation should not cause any problems for the
convergence of the inversion. Many studies have confirmed
that approximate sensitivities can be effectively used in the
inversion (Smith and Booker, 1988; Farquharson and Old-
enburg, 1996; Siripunvaraporn and Egbert, 2000). This ap-
proximation leads to ∂Y/∂m = H−1∂V/∂m. From (6), V in
turn can be written as a linear function of the electric fields
e defined on the staggered grid, i.e., V = gT e, where g con-
tains all coefficients used to estimate V as outlined above.
Since g does not depend upon m

∂V/∂m = gT ∂e/∂m. (8)

With the staggered grid finite difference approximation, e is
obtained by solving the system of equation Ae = b, where
A is the coefficient matrix of the second order Maxwell
equations, and b defines boundary conditions. Perturbations
to the model parameters δm result in perturbations to the
coefficient matrix, and to the electric field solution satisfying
(A + δA)(e + δe) = b. Using Ae = b and dropping
second order terms we thus have δe = −A−1δAe. It is
straightforward to write the vector δAe = Eδm, where the
matrix E depends on the unperturbed electric field solution
e, and the details of the model parameterization. Thus we
have for the perturbation to the computed potentials: δV =
−gT A−1Eδm, so that

∂V/∂m = −gT A−1E. (9)

Rather than compute the derivative terms in (9) by solving
M forward problems, the reciprocity approach computes the
derivatives as

∂V/∂mT = ET (AT )−1g = ET A−1g. (10)

The last equality holds because for the frequency domain
Maxwell’s equations, the coefficient matrix can be scaled to
be symmetric. Calculation of sensitivities for all data can
thus be reduced to solving Nd (= number of dipoles) forward
problems, rather than the M forward problems suggested by
a direct implementation of (9)
As in Siripunvaraporn et al. (2004), we adopt a “re-

laxed convergence” approach for sensitivity computations,
i.e., when solving the system of equations (10) with QMR,
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Fig. 3. Dipole configuration used to generate synthetic data sets used to test the inversion code. The data were generated for 12 dipole lines from 3
base sites. The site for the magnetic field is located at the base site marked with the star. The dashed line indicates the boundary of the buried 1 
-m
conductor buried. Network-MT responses for the dipoles denoted by the dashed line (dipole #3) and dash-dot line (dipole #11) are shown in Fig. 9.

the iterative solver is terminated when the normalized resid-
ual reaches 10−4, instead of 10−8 as is used when comput-
ing responses for comparison with data. Siripunvaraporn
et al. (2004) show that this early termination strategy re-
duces computational time by more than 70 percent, with-
out affecting inversion results. Curiously, however we have
found that Network-MT sensitivity calculations require sig-
nificantly more iterations than MT sensitivities to achieve
the same level of misfit. The program therefore requires a
lot more computational time than for the conventional MT
case. The reason for this slower convergence is not com-
pletely clear, but this may result from the more complicated
form for the vector g, with many more non-zero components
than in the MT case.
Other parts of the inversion, such as implementation of

the model covariance and the optimization algorithm are ba-
sically the same as in Siripunvaraporn et al. (2004).
2.3 Computational Details: MPI Implementation
All inversions are performed on SGI LX3700 parallel

computers with MPI (Massage Passing Interface) implemen-
tation. With MPI, the forward modeling and the sensitivity
calculation for each period are assigned to run separately on
each CPU node. The results are then combined to solve (5)
on one CPU node. In theory, the CPU time per iteration is
equal to the computational time of just one period, plus some
overhead time when solving (5).

3. Synthetic Data Examples and Discussions
To test the algorithm and explore the sensitivity and reso-

lution of network MT data, we ran the inversion program on
a series of synthetic data sets generated from simple models
of buried conductive prisms. The model consists of a 1 
-m
conductive block with a dimension of 32 km × 32 km × 10

km in a 100 
-m homogeneous background (Fig. 3). The
conductor is buried at three different depths: 6, 10 and 20
km, referred to respectively as cases I, II and III. The basic
dipole configuration used for initial tests is shown on top of
Fig. 3. These 12 dipoles mimic data collected in field ex-
periments (Uyeshima et al., 2001). There are 3 main base
stations, with a single magnetic station located at the base
station near the middle (shown as a star in Fig. 3). In general,
Network-MT data have been collected at low sampling rates,
typically 1 Hz or less. However, in practice, real field data
sets often exhibit high coherency for periods between 300
and 40,000 seconds, with significantly reduced coherency at
shorter (and longer) periods, due primarily to cultural noise
and other factors, such as telephone line noise. To maintain
relevance to real Network-MT field data, we thus generated
synthetic data at 8 periods, evenly spaced on a logarithmic
scale from 320 to 40,960 seconds for our base case. To ex-
plore the value of higher frequency data, some tests were
also done with additional periods, between 3 and 100 sec-
onds. The synthetic responses were then contaminated with
Gaussian noise, with variance 5% of |Yx Yy | 1

2 . The total num-
ber of data for our base case is N = 384 (4 real responses for
each of 12 dipoles at 8 periods). The model mesh used for
the inversion is 36 × 36 × 31 (plus 7 air layers) resulting in
M = 40, 176 model parameters. All inversions were started
from a 30 
-m half space.
For case I the inversion reaches the target RMS misfit of

1 (Occam Phase I) within 4 iterations. One additional iter-
ative step is required for smoothing (Occam Phase II). The
total runtime is about 6 hours, or approximately 1.5 hours
per iteration. Approximately 80% of the computational time
is devoted to computing the sensitivity matrix. The resulting
inverted model is shown in Fig. 4, with the dashed lines in-



W. SIRIPUNVARAPORN et al.: THREE-DIMENSIONAL INVERSION FOR NETWORK-MAGNETOTELLURIC DATA 897

Fig. 4. Inverted model for synthetic data case I obtained with only 8 long periods. The conductor is buried at 6 km depth. Dashed lines indicate the
boundary of the conductor. Panels a)–d) are horizontal slices at the 0, 10, 20 and 30 km depth, respectively. Panels e) and f) are cross section at X = 0
km, and Y = 0 km, respectively.

Fig. 5. Inverted model for synthetic case I (conductor buried at 6 km depth), obtained using both short and long period data. Inverse solution sections are
as in Fig. 4.

dicating the outline of the buried conductor. In this case, the
inversion has no trouble in retrieving the conductor buried at
6 km depth. However, the conductivity contrast, lateral ex-
tent, and depth of the conductor are not completely accurate.
Including the additional 4 shorter period data (3–100 sec-
onds) improves the result, with the conductivity contrast and
depth now quite reasonable (Fig. 5). However, the conduc-
tive anomaly in the inverse solution is still somewhat reduced
in size.

For the long period data we have used, skin depths in
the 100 
-m background range from about 90 km to 1000
km. Nonetheless, as case I demonstrates, inversion of this
long period data can actually recover a shallow (relative to
the host skin depth) conductive structure, although the actual
depth extent of the conductor may not be well-constrained.
Arguments based on simple considerations of skin depth can
clearly be misleading with regard to resolution of shallow
conductive features. Certainly resolution of shallow struc-
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Fig. 6. Inverted model for synthetic case II (10 km deep conductor) with only 8 long periods. Inverse solution sections are as in Fig. 4.

Fig. 7. Inverted model for synthetic case II (10 km deep conductor) with both short and long periods. Inverse solution sections are as in Fig. 4.

ture can be improved by addition of shorter period data. But
many other factors must also be taken into account, includ-
ing data noise levels, the configuration of dipoles, and the
nature of the shallow anomaly itself.
As for case I, in both cases II and III the inversion requires

only about 4–5 iterations for both Phases I and II. The result-
ing inverse solutions are shown in Figs. 6 and 8 for cases II
and III, respectively. Although in both cases the calculated
responses fit the observed responses to within a RMS mis-
fit of 1 (i.e., within 5% relative error), the inverse solution

shows no conductor in case III, where the conductor is actu-
ally buried at 20 km depth (Fig. 8). For case II, the conductor
is recovered, but in the inversion result the anomaly is signif-
icantly less conductive than it should be, and is also placed
shallower than the actual depth (Fig. 6). As in case I, with
the addition of data for 4 shorter periods, both the depth and
the conductivity of the anomaly are more accurately imaged
(Fig. 7). However, the size of the conductor is still underesti-
mated. For case III, even with the help of shorter period data
the inversion does not recover the deep conductor. The result
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Fig. 8. Inverted model for synthetic case III (20 km deep conductor) with only 8 long periods. Inverse solution sections are as in Fig. 4.

Fig. 9. Network-MT responses, Yx and Yy , both real and imaginary parts for dipole #3 (dashed line in Fig. 3) and dipole #11 (dash-dot line in Fig. 3).
Stars are for case I, squares for case II, diamonds for case III, and solid lines give the response of a 100 
-m half-space. Crosses are for the deeply (20
km) buried conductor similar to case III, but with the root extended to 80 km depth. Circles are for a conductor buried at 20 km depth, but horizontally
extended to cover a larger area. For clarity, no noise is added to this figure.

of the inversion (not shown) remains essentially as in Fig. 8.
As case I demonstrates, long period data can be used to

probe shallow structure, if the anomaly is presented in the
data. However, if the conductor is buried more deeply, as in
case III, the inversion does not recover the correct structure,
but instead finds a simpler model that still fits the data at
the target level. The failure in recovering the conductor

does not imply a failure of the inversion scheme, but rather
reflects the fact that the Network-MT responses for the array
configuration shown in Fig. 3 are only minimally affected by
this deep conductor. Figure 9 shows selected network-MT
responses for cases I-III. For case III (diamonds) both Yx

and Yy deviate very little from the response of a 100 
-m
half-space (solid lines), compared to the effect on responses
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Fig. 10. Inverted model for synthetic case III, with the dipole configuration shown in a), obtained using only 8 long periods. The conductor is buried at 20
km. Inverse solution sections are as in Fig. 4.

Fig. 11. Inverted model using only 8 long periods. In this case, the conductor is buried at 20 km depth, but its size is increased horizontally to 56 km ×
56 km. Labels are the same as in Fig. 4.

for shallower burial of the conductor as in cases I (stars) and
II (squares). Because responses for a deep conductor differ
little from those of a homogeneous model, the inversion can
fit the data by making the middle part of the model slightly
less resistive than the surrounding area.
One way to increase the sensitivity of the data to the con-

ductor and thus improve resolution is to increase the number
of dipoles to cover a larger area. We test the effect of this
modification for the deep conductor of Case III, using an ar-

ray consisting of 24 dipoles spread over the region contain-
ing the anomaly, again with 8 long period (T > 320 second)
synthetic data contaminated by 5% Gaussian noise. For this
case the dipoles are on average shorter, about 16 km com-
pared to the 28 km average length for the previous configu-
ration. The result of the inversion, fit to a normalized RMS
of 1, is shown in Fig. 10. In this case the deep conductor is
recovered, but both depth and magnitude of the anomaly are
still rather poorly determined. Possibly adding short period
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data to the inversion may improve this situation somewhat.
As the above experiment shows, resolution of model fea-

tures may depend to some extent on the number and con-
figuration of dipoles. The geometry of the target anomalies
also plays a role. Two additional tests demonstrate that the
dipole configuration of Fig. 3 can still be sensitive to a deep
(20 km) conductor, if the anomaly is larger in size. For both
cases we used only the 8 long periods, comparable to the real
field data. Again 5% Gaussian noise was added to the syn-
thetic responses before inversion. In both cases, the conduc-
tor is buried at 20 km depth. First, we expand the thickness
of the conductor from 10 km to 60 km, while keeping hori-
zontal dimensions the same. The inversion again converges
in 4 iterations to fit the data within a RMS misfit of 1. The
resulting conductivity model is essentially the same as that
shown in Fig. 8, with no evidence of the conductor. This
is not surprising, since extending the root of the conductor
deeper has little effect on the data. The Netwpork-MT re-
sponses (crosses in Fig. 9) are almost identical to those for
the standard array configuration for case III (diamonds).
As a second test, the 20 km deep conductor is expanded

horizontally to 56 km × 56 km, while keeping the same 10
km thickness. The inverted model is shown in Fig. 11 af-
ter 5 iterations required to reduce the RMS misfit to 1. Ex-
tending the conductor horizontally increases the sensitivity
of the data to deep conductive structure, as shown by the cir-
cles in Fig. 9. However the effect is still less significant than
in the case where the conductor is shallow. Similar to other
cases, the depth and size of the conductor were still not well-
estimated. Resolution of depth can be improved if shorter
periods are included, but the horizontal scale of the conduc-
tor is still underestimated as in Figs. 5 and 7.

4. Conclusions
We have developed a 3-D inversion for Network-MT data,

based on the data space Occam’s inversion for conventional
MT data of Siripunvaraporn et al. (2004). With the imple-
mentation of MPI, computations for many periods can be
done simultaneously, leading to significantly reduced run
times. By running forward modeling and sensitivity calcula-
tions for one period on one CPU, the total run time is compa-
rable to that required for just one period, plus some overhead
for solving Eq. (5).
As discussed by Uyeshima et al. (2001), one important ad-

vantage of the Network-MT method is that short scale near
surface galvanic distortion in the data is reduced with long
dipole lines. In addition, the quality of long period data can
be much better than what is obtained from conventional MT,
since the longer dipole line significantly reduce the effects
of electrode noise. However, telephone line noise may re-
duce data quality at shorter periods, and the lack of short
period data may limit the ability of the inversion to constrain
anomaly depth.
Our results show that the long period data by itself can be

used to recover the anomaly whether it is shallow or deep,
if it is adequately presented in the data. The sensitivity
of the data to an anomaly will depend on the number and
configuration of dipoles, which must be considered carefully
in assessing whether a feature could in principal be resolved.
One consistent feature in the examples above is that the

lateral extent of the conductor in the inverted model is always
smaller than it should be. This can be explained by the
sampling characteristics of the Network-MT method. Near
the boundary of a conductor or resistor, electric fields are
high on one side and low on the other. The Network-MT
response of a dipole that crosses the anomaly boundary is
essentially an average of the electric fields over both sides
of the anomaly, resulting in loss of information about the
location of the sharp horizontal boundary. This makes it
difficult for the inversion to properly locate the edge of the
buried conductive feature in these synthetic data examples.
Particularly if short period data is not available, the ability

of Network MT to correctly image both depths and lateral
boundaries of conductive features may be limited. In many
cases higher quality short period data may be obtained with
a conventional MT approach. This data would also allow
better resolution of lateral boundaries of shallow conductive
features. The methods described here can be easily extended
to allow joint inversion of both data types, which may well
provide the best resolution of both shallow and deep struc-
tures. Another possibility is to run the inversion with prior
information in m0. This will help improve the lateral and ver-
tical resolution of the inverted model. This prior information
can come from other geophysical studies, such as gravity or
seismic methods, in real field data set.
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