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Alfven wave modulation of the auroral acceleration region
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We consider the interaction of Alfven waves with the auroral acceleration region (AAR). The AAR is character-
ized by an electric potential drop that supports a field-aligned upward current and the acceleration of precipitating
electrons. An Alfven wave incident on the AAR from the magnetosphere partially reflects back and partially pen-
etrates into the AAR. The rate of wave reflection/transmission is estimated to be critically dependent on the wave
transverse scale. Magnetospheric Alfven waves penetrating into the AAR can produce oscillatory variations of the
field-aligned potential drop, thus constituting a new mechanism of ULF modulation of electron acceleration. Esti-
mates of the potential drop modulation by Alfven waves are provided within the “thin” AAR approximation, which
is valid for a wide range of wave and plasma parameters. The proposed mechanism will produce nearly simulta-
neous ULF magnetic and riometric variations at auroral latitudes. Occurrence of the AAR-associated resonator in
the auroral topside ionosphere between the bottom boundary of the AAR and the E-layer may cause oscillatory
frequency dependence of electron acceleration modulations in the range around fractions of a Hz. Another feature
of the mechanism considered is the critical dependence of the ratio between the magnetic and riometric signals on
the transverse scale of the disturbance. The predicted effects are to be searched for in the simultaneous data of IRIS
multi-beam riometers and magnetometers.
Key words: Pulsating aurora, ULF waves, riometers, electron acceleration.

1. Introduction
The dynamics of ULF waves in Earth’s magnetosphere are

closely related to that of particles, and various kinds of inter-
relationships can take place. Magnetospheric MHD waves
can modulate effectively the particle distribution function
near the magnetospheric equator (Southwood and Kivelson,
1981). Moreover, the interaction of ULF waves with trapped
particles can lead to modulated precipitation into the iono-
sphere. In ground-based studies modulated electron precipi-
tation is commonly revealed with ionospheric riometer ob-
servations or pulsating aurora observations. Most current
notions about modulation of electron precipitation by ULF
waves are based on the mechanism suggested by Coroniti
and Kennel (1970), in which the compressional component
b‖ of the wave magnetic field modulates the growth rate of
the electron-cyclotron instability, which causes pitch-angle
diffusion of electrons into the loss-cone. The idea of quasi-
periodic precipitation owing to the interactions of electrons
with VLF turbulence was further developed by Davidson
(1990) and Demekhov and Trakhtengerts (1994). However,
quite often investigation of electron precipitation associated
with ULF pulsations did not reveal either compressional pul-
sations (Nose et al., 1998) or background VLF turbulence
(Paquette et al., 1994). Moreover, taking into consideration
the ULF wave and electron transit times from an interaction
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region near the magnetic equator to the ground leads to an ex-
pectation that the onset times in the magnetometer data will
lag the onset of pulsations in the riometer data by several
minutes. An extensive examination of 7 years of simulta-
neous riometer and magnetometer data from South Pole sta-
tion by Paquette et al. (1994) showed that only about a third
of Pc4–5 events fit the predictions of Coroniti and Kennel,
while in other events the onset of magnetic and precipitation
pulsations was nearly simultaneous, and possible alternative
generation mechanisms are to be explored.

Small-scale dispersive Alfvenic waves (DAW) can effec-
tively accelerate and precipitate electrons due to their par-
allel electric field E‖. However, this E‖ becomes substan-
tial only in DAW with very small transverse scale com-
parable with the dispersive radius ρd , because |Ez| =
(k⊥ρd)

2(kz/k⊥)|E⊥| (Borovsky, 1993; Stasiewicz et al.,
2000). Rankin et al. (1999) estimated that the E‖ field that
can occur in typical Alfvenic structures may cause addi-
tional acceleration by only about 100 eV, which is not suf-
ficient for initiation of significant auroral optical emission or
ionospheric plasma ionization. Therefore other mechanisms
should be invoked.

An important feature of the auroral magnetosphere-
ionosphere system is the occurrence of the auroral accelera-
tion region (AAR)—a localized region with a substantial po-
tential drop along the field lines. The AAR is assumed to pro-
duce an electron acceleration, necessary for auroral excita-
tion. The AAR was recently shown to be an effective reflec-
tor of small-scale Alfven waves (Vogt and Haerendel, 1998;
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Fig. 1. A sketch of the model of the interaction of Alfven waves (shown by wavy lines) with the AAR in the topside ionosphere.

Fedorov et al., 2001). Thus, a resonator for Alfven waves
can be formed between the bottom boundary of the AAR
and the E-layer of the ionosphere (Pilipenko et al., 2002).
This AAR-associated resonator (further named for brevity
the RAAR) may be responsible for the trapping of small-
scale Alfvenic structures in the topside auroral ionosphere,
and formation of the ULF emission spectrum in the range
around 0.1 Hz. The spectral features in this frequency range,
noted by Arnoldy et al. (1998), cannot be interpreted with
the mechanism of the ionospheric Alfven resonator (IAR).
The IAR is formed in the upper ionosphere due to a partial
reflection of Alfven waves from steep gradient of Alfven ve-
locity at altitude ∼103 km and has typical frequencies ∼1 Hz
(Lysak, 1988; Belyaev et al., 1990).

Modulation of the field-aligned potential drop during
ULF Alfven wave interactions with the AAR may be
another mechanism, not examined so far, for modulat-
ing electron acceleration/precipitation. Additionally, the
occurrence of the RAAR can produce fine spectral fea-
tures in magnetic/particle variations in the frequency range
around the RAAR eigenfrequency. In this paper we

consider the interaction of magnetospheric Alfven waves
with the auroral topside ionosphere, comprising the AAR
and an AAR-associated resonator, and estimate the effi-
ciency of this mechanism in modulating electron accelera-
tion/precipitation.

2. Electrodynamic Model of the Auroral Region
and Basic Equations

A field-aligned potential drop immersed into a warm
plasma is typically located in the auroral topside ionosphere
at an altitude ∼1 RE , and this potential drop is concentrated
within a layer with thickness of about a few thousands of km
(Reiff et al., 1993), much less than the length of an auroral
field line. From below, the topside ionosphere is bounded by
a thin ionospheric E-layer. Magnetospheric Alfven waves
impinge on the topside auroral ionosphere from above and
may partially reflect back, be absorbed, excite the RAAR
modes, and penetrate to the ground, as schematically shown
in Fig. 1.

To describe theoretically these complicated wave patterns,
we use a simplified multi-layer model of the auroral topside
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ionosphere (Fedorov et al., 2001; Pilipenko et al., 2002), as-
suming that the transition between layers is narrow as com-
pared with the Alfven wave length. Each layer is labeled by
index m, where m = M refers to the magnetosphere above
the AAR, m = Q refers to the layer with a potential drop
(AAR), m = R refers to the RAAR, and m = I refers to
the E-layer of the ionosphere with the height-integrated con-
ductivities �P and �H . The plane z = zI corresponds to the
E-layer of the ionosphere, the plane z = zR to the lower
boundary of the AAR, and z = zQ to the upper boundary of
the AAR. Above the AAR, z ≥ zQ , is the magnetosphere.
The vertical scale of the AAR is dQ = zQ − zR , and that of
the AAR-associated resonator is dR = zR − zI . The width
of each layer is much less than the Alfven wave length, so it
is reasonable in order to avoid unnecessary complications to
replace in the theoretical model each realistic layer by a ho-
mogeneous layer with the altitude-averaged characteristics.
Thus, each layer is assumed to be homogeneous with con-
stant plasma density Nm , Alfven velocity VAm , and Alfven
wave conductance �Am = (μ0VAm)−1. The neglected al-
titude dependence of the transverse cross-section of a flux
tube would modify numerical estimates, but introduce no
substantial modification of physical effects. Therefore, we
use a simplified model with Cartesian geometry with the x
and y axes parallel to the ionosphere, and the homogeneous
straight geomagnetic field B0 = B0ẑ is along the vertical axis
z.

A self-consistent kinetic distribution of particles and field-
aligned electric field in a mirror-confined plasma can be
modeled, following Knight (1973), Vogt and Haerendel
(1998), and Janhunen (1999), on the MHD level by the non-
local current-voltage (CV) relationship between the upward
current j‖ and the potential drop �� across the AAR as fol-
lows

�� = −Q j‖ (1)

where Q is the height-integrated resistance of the flux tube.
Observations with sounding rockets and satellites have veri-
fied that the linearization of the full Knight formulation holds
even for very high potential drops (1–102 kV) and tempera-
tures found above auroral arcs (Weimer et al., 1987; Lu et al.,
1991) and in substorm onsets and westward-traveling surges
(Olsson et al., 1996). The validity of the linear CV relation-
ship (1) does not say anything about the origin of the poten-
tial drop, only its effect on precipitating particles. Such a
relationship can arise from magnetic mirroring.

In the derivation of the full self-consistent CV relationship
in a mirror-confined plasma (the “Knight formula”) it was
implicitly assumed that the potential and current across the
AAR do not change in time considerably during the electron
transit through the AAR, t1 � dQ/Ve, and time t2 � 2dR/Ve

for the accelerated electrons to be mirrored back to the AAR.
The transit time for 10-keV electrons is estimated to be t1 ∼
0.1 s, whereas the mirroring time is t2 ∼ 1 s. In general,
temporal variations of the AAR with time scale T may be
considered as quasi-stationary when

T � max (t1, t2) � 2dR(2e��/m)−1/2. (2)

For low frequency ULF disturbances (Pc3–5/Pi2 range) the
condition (2) is clearly valid, but in the high-frequency range

(Pc2/Pi1), comparable with the RAAR eigenfrequencies, this
condition may become questionable. Nevertheless, as fol-
lows from (2) if the potential drop is larger than a certain,
quite reasonable, value, namely 70 V, the quasi-steady con-
dition remains valid even for periods comparable with the
RAAR eigen periods. Additionally it was supposed that the
upward current is carried by magnetospheric electrons, un-
dergoing adiabatic motions. The time scale of the ULF pro-
cesses is long enough to guarantee the validity of the adia-
batic approximation. This consideration justifies the use of
the CV relationship in the form of a non-local Ohm’s law (1)
for the treatment of Alfven wave interactions with the AAR
in other studies (e.g., Vogt et al., 1999; Kinney et al., 1999;
Nakamura, 2000).

The parallel electric field Ez in an Alfven wave can be pro-
duced by dispersive effects: electron inertia (Ez = μ0λ

2
e∂t jz ,

where λe = c/ωp is the electron inertial scale, and ωp is the
plasma frequency) or the mirror force (Ez ∝ Q). Pilipenko
et al. (2002) indicated that the mirror force dispersion dom-
inates the electron inertia dispersion in the topside iono-
sphere for disturbances with transverse scales larger than
λe � 0.1 km. Therefore in what follows the electron inertial
effects will be neglected to make the relationships simpler.

The spatial field-aligned distribution of potential � de-
pends in a complicated way on the electron and ion distri-
bution functions in the AAR. Here and further we consider
the altitude-averaged value of an Alfven wave Ez . This field
is assumed to be totally determined by the mirror resistance
Q

Ez = (Q/dQ) jz (3)

The relationship (3) does not imply that the AAR is just
replaced by a resistor. In fact, the mirror force is non-
dissipative, and electrons transport the energy acquired in-
side the AAR to the ionosphere.

The electromagnetic Alfven-type disturbances in a
laterally-homogeneous medium can be described by the vec-
tor potential A = Aẑ and the scalar potential ϕ. Assuming a
harmonic solution ∝ exp(−iωt + ik⊥r⊥) we obtain for these
wave potentials the following system of equations

∂z A − i(ω/V 2
A)ϕ = 0 (4)

[−iω + (Q/μodQ)k2
⊥]A + ∂zϕ = 0.

The field-aligned current jz , and magnetic and electric fields
B, E in an Alfven wave are related to its potentials ϕ and A
as follows

B = −i(ẑ × k⊥)A E⊥ = −ik⊥ϕ (5)

Ez = −∂zϕ + iωA jz = μ−1
0 k2

⊥ A.

From (5) it follows that a shear Alfven wave propagating
along the geomagnetic field in the positive (negative) direc-
tion transports the current jz = ∓�Ak2

⊥ϕ.
At the interfaces between layers the wave potentials are

to be continuous. At the upper boundary of the AAR
(z = zQ) the radiation condition for Alfven waves can be
adopted, ϕ = VAM A. At the E-layer of the ionosphere
(z = zI ) the boundary condition for Alfven wave potentials
holds ϕ = −(μ0�P)−1 A. This boundary condition assumes
that the reverse influence on Alfven waves of compressional
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modes excited in the Hall layer of the ionosphere can be ne-
glected. This effect may produce additional Alfven wave
dispersion (Yoshikawa and Itonaga, 1996; Pokhotelov et al.,
2000) which is too small for our consideration.

For the multi-layer model considered here, as follows
from (4), in each homogeneous layer the dispersion equation
for the Alfven mode holds (Lysak and Dum, 1983)

(
k(m)

z

)2 ≡ k2
m = k2

Am(1 + i
λ2

Amk2
⊥

kAmdm
) (6)

where kAm = ω/VAm is the Alfven wave number. The
Alfven damping scale λA in (6), introduced by Vogt and
Haerendel (1998) and Fedorov et al. (2001), characterizes
the interaction of a shear Alfven wave with a region with
an electric potential drop and occurrence of wave disper-
sion related to the mirror force resistance. Physically, the
parameter λA ≡ λAQ = (Q�AQ)1/2 is a scale at which
the field-aligned specific resistance matches the Alfven wave
impedance, Z A = �−1

A . It was accounted for in (6) that
mirror force dispersion dominates the electron inertia dis-
persion, that is λA � λe. Further, we use the dimensionless
wave vector k⊥ = k⊥λA.

Each m-th layer in the model under consideration is char-

acterized by its characteristic impedance, Zm = Z A
km

kAm
,

so Z M = Z AM = �−1
AM , Z Q = Z AQ

kQ

kAQ
, and Z R =

Z AR . In each layer the wave field can be presented as
a sum of up-going ∝ exp[ikm(z − zm)] and down-going
∝ exp[−ikm(z − zm)] inhomogeneous plane waves. For the
waves incident from a layer m onto the boundary between the
layers m and m ′, the impedance condition holds μ0ϕ(zm) =
∓Zmm ′ A(zm), where Zmm ′ is the input (surface) impedance,
and the sign is −(+) if the layer m is above (below) the layer
m ′. Further on, we denote the surface impedance of the iono-
sphere as Z I , that is Z RI ≡ Z I = �−1

P . Under the radiation
condition the surface impedance for Alfven waves incident
on the magnetosphere from inside the AAR coincides with
the characteristic impedance of an Alfven wave in the mag-
netosphere, Z QM = Z M .

In a multi-layer medium, the impedance Zm ′ and input
impedance Zmm ′ determine the reflection coefficient Rmm ′ of
a wave propagating from a layer m to a layer m ′ as follows

Rmm ′ = Zm − Zmm ′

Zm + Zmm ′
. (7)

An input impedance Zmm ′ above a multi-layered medium
can be derived via the layer’s characteristic impedances from
standard waveguide theory or magnetotelluric sounding the-
ory. This relationship for the model considered here can be
found in Pilipenko et al. (2002).

3. Reflection Properties of an Alfven Wave
For better insight into the physics of Alfven wave in-

teraction with the combined magnetosphere-AAR-RAAR-
ionosphere system, we consider first the features of the
Alfven wave reflection from interfaces between media with
different parameters. An excellent review of the Alfven wave
reflection properties of the auroral current circuit is given by
Vogt (2002).

As follows from (7) the reflection from the thin iono-
spheric E-layer is described by the coefficient

RI = �̃P − 1

�̃P + 1
(8)

where �̃P = �P/�AR is the dimensionless Pedersen con-
ductance. When �̃P � 1, which is commonly the case in a
sunlit or precipitation-modified ionosphere, the reflection of
Alfven waves occurs as from a conductor, that is RI → 1.
In this case the electric fields of down-coming and up-going
waves tend to cancel each other, whereas magnetic compo-
nents are summed up.

The input impedance of the combined AAR + magneto-
sphere system for Alfven waves incident on the AAR from
below is to be determined from the general relationship for
a multi-layered system (7). For common ULF wave param-
eters the “optical” thickness of the AAR is small, and the
AAR can be considered mathematically as a thin layer for
Alfven waves. This means that when

kA 
 min{1, (k⊥λA)−2} (9)

phase change and amplitude damping upon the wave propa-
gation across the layer may be neglected. When additionally
the parameter δ = (μoωdQ/2Q)−1/2 is larger than the trans-
verse wave length (formally δ looks like a “skin depth” scale,
though the actual damping scale is different), that is

1 
 k⊥δ 
 (kAdQ)−1 (10)

the relationship for the input impedance of a system com-
prising a thin AAR can be simplified. In this approxima-
tion, valid for a wide range of AAR parameters for distur-
bances with transverse scales less than several tens of km,
the impedance of the Q-M interface is reduced to

Z RQ � Z M k
2
⊥ + Z M (11)

where the term Z M k
2
⊥ = k2

⊥ Q is the integrated resistance
of the thin AAR. Then, the reflection coefficient from the
Q-M interface of an Alfven wave incident from the AAR
simplifies and reduces to the following

RRQ = Z AR − Z AM − Z AQk
2
⊥

Z AR + Z AM + Z AQk
2
⊥

. (12)

When mirror effects are neglected, the relationship (12) de-
scribes the partial reflection of Alfven waves from the VA(z)
jumps at the interfaces between layers

RRQ = VAR − VAM

VAR + VAM
. (13)

In the realistic topside ionosphere the altitude dependence of
VA(z) can be rather inhomogeneous, causing an additional
reflection of Alfven waves at steep gradients. However,
to reveal more clearly the dominating effect in the auroral
ionosphere—the wave reflection/absorption in the AAR, the
altitude dependence of VA(z) will be neglected (this assump-
tion will be considered in the Discussion section). Thus, to
exclude this reflection and avoid unnecessary complications,
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here and further we suppose that VAR = VAQ = VAM . Then
(12) is further reduced to

RRQ = − k
2
⊥

2 + k
2
⊥

. (14)

The relationship (14) shows that small-scale disturbances,

k
2
⊥ > 1, reflect from the AAR as from an insulator, RRQ <

0. This means that the electric fields of downcoming and
upgoing Alfven waves are summed up, whereas the magnetic
components tend to cancel each other.

4. Spectral Features of the AAR-associated Res-
onator

Alfven wave reflections from the E-layer and the bottom
boundary of the AAR provide conditions for the occurrence
of an AAR-associated resonator (RAAR) in the topside iono-
sphere. The eigenfrequency of the RAAR can be found from

the dispersion equation D(ω, k
2
⊥, RI , RRQ) = 0 (Pilipenko

et al., 2002), depending on ω = ω/ωA, the dimensionless
frequency, where ωA = πVAR/dR is a characteristic fre-
quency of the resonator. For a thin AAR, the reflection coef-
ficient (12) is frequency-independent, and the eigenfrequen-
cies ωn , damping rates γn , and the Q-factor of the n-th har-
monic in the resonator can be easily found from the disper-
sion equation

ωn = kARdR = ωn

ωA
=

{
n + 1

2 for �̃P > 1
n for �̃P < 1

γn

ωA
= 1

2π
log

∣∣∣∣∣
�̃P − 1

�̃P + 1
· k

2
⊥

k
2
⊥ + 2

∣∣∣∣∣ , Qn = ωn

2 | γn | . (15)

The quality of the resonator is determined by the wave dis-
sipation rate in the ionosphere and by the reflection features
of the AAR. Alfven disturbances in the resonator will expe-
rience severe damping for large scales, k⊥ < 1, but damping
becomes much less significant for small scales, k⊥ > 1.

As (15) shows, for a highly conductive ionosphere (�̃P >

1) the resonant oscillations are quarter-wave harmonics.
Upon reflection from the AAR the phase of an Alfven wave
changes by 180◦ (RRQ < 0), whereas upon reflection from
the ionosphere the phase does not change (RI > 0). Un-
der low-conductivity ionospheric conditions (�̃P < 1) res-
onant oscillations are half-wave harmonics, because in this
case the phase jump upon reflection from the AAR is still
180◦, whereas reflection from the ionosphere produces an
additional phase jump of 180◦ (RI < 0).

For the AAR of finite thickness the spectral properties
of the RAAR were found numerically by Pilipenko et al.
(2002). The finite AAR width does not violate the main
properties of the resonator, though somewhat reduces the
reflection from the upper boundary and decreases the Q-
factor.

5. Interaction of Magnetospheric Alfven Waves
with the AAR

Here we consider different, but mutually related, aspects
of the Alfven wave interaction with the auroral ionosphere:

1) backward reflection into the magnetosphere; 2) penetra-
tion inside the AAR and modulation of the field-aligned po-
tential drop; 3) excitation of the AAR-associated resonator;
and 4) the ground magnetic response. In the subsequent
sections we combine the results for two distinct frequency
ranges of ULF Alfven waves: low-frequency waves (ω 

ωA) and high-frequency waves with frequencies comparable
to the RAAR eigenfrequencies (ω � ωA).
5.1 Reflection of Alfven waves from the topside auroral

ionosphere
The interaction of a magnetospheric Alfven wave, ∝

exp[−ikA(z − zQ)], with the topside auroral ionosphere
can be described with the help of the input impedances
of the multi-layer system under consideration. The input
impedance of the combined system AAR + RAAR + iono-
sphere can be found for the thin AAR using the same ap-
proach as Pilipenko et al. (2002)

Z M Q = Z Ak
2
⊥ + Z Q R = Z A

(
k

2
⊥ − 1 + κ2(ω)

)
(16)

where Z Ak
2
⊥ = �−1

Q is an integrated resistance of the thin
AAR. The function

κ2(ω) = 2[1 + RI exp(2iπω)]−1 (17)

where Re(κ) > 0, accounts for the occurrence of the RAAR.
The above impedance Z M Q determines the coefficient of

the magnetospheric Alfven wave reflection from the com-
bined auroral system, that is

RM Q(ω, k⊥)=−1+ 2Z A

Z A + Z M Q
= −1+ 2

k
2
⊥+κ2(ω)

. (18)

The occurrence of the resonator beneath the AAR influ-
ences significantly the reflection of Alfven waves. For low-
frequency (ω 
 ωA) magnetospheric Alfven waves, as
well as for waves with frequency matching the frequency
of the RAAR integer harmonics, that is ω = n (n =
0, ±1, ±2, ...), the coefficient of reflection (18) is reduced
to the following

RM Q(n) = R(0)
M Q = �̃P − 1 − �̃P k

2
⊥

�̃P + 1 + �̃P k
2
⊥

. (19)

The relationship (19) coincides with the one obtained and ex-
amined in detail by Vogt and Haerendel (1998) and Fedorov
et al. (2001) for low-frequency Alfven waves, ω 
 ωA,
when the phase change inside the RAAR can be neglected.

For a magnetospheric Alfven wave with frequency match-
ing the frequency of the semi-integer RAAR harmonics,
ω = n + 1/2, the relationship (18) reduces to

RM Q(n + 1

2
) = R(1)

M Q = �̃−1
P − 1 − �̃−1

P k
2
⊥

�̃−1
P + 1 + �̃−1

P k
2
⊥

. (20)

The difference between the relationships (19) and (20) is due
to the fact than an Alfven wave acquires in the RAAR the
additional phase shift multiple of 2π in the first case, and
multiple of π in the second case.

The reflection coefficient RM Q depends on the transverse
wave vector k⊥. The dependences of the absolute value (up-
per panel) and phase (lower panel) of RM Q(k⊥) are shown
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Fig. 2. The dependence of the absolute value (upper panel) and phase (lower panel) of the reflection coefficient RM Q for �̃P = 10 on the dimensionless
transverse wave vector k⊥ for the following fixed frequencies: ω = nωA , (solid), ω = (n + 1/8)ωA (dashed), and ω = (n + 1/2)ωA (dotted), where
n = 0, ±1, ±2, .... The dashed-dotted line corresponds to �̃P = 0.1, and ω = (n + 1/8)ωA .

in Fig. 2 for several fixed frequencies: ω = nωA (solid line),
ω = (n + 1/8)ωA (dashed), and ω = (n + 1/2)ωA (dot-
ted), where n = 0, ±1, ±2, ... ; �̃P = 10. The dashed-
dotted line corresponds to an ionosphere with low conductiv-
ity (�̃P = 0.1), and ω = (n+1/8)ωA. According to this plot,
Alfven waves are effectively reflected back (|RM Q | � 1) into
the magnetosphere from the combined AAR + RAAR +
ionosphere system for all the transverse wave scales except
for a range around λA.

However, the phases of the reflected waves are different
for small and large scales. For a highly conductive iono-
sphere, when �̃P > 1, the phase of the reflection coefficient
jumps from 0 to 180◦ at k⊥ = 1, whereas for �̃P < 1, the
phase of RM Q is −180◦ for all wave vectors. This phase be-
havior is due to the fact that the reflection of magnetospheric
Alfven waves with large scales occurs predominantly from
the ionospheric E-layer, whereas reflection of waves with
small scales does so from the AAR.

Other properties of the reflection coefficient RM Q are sum-
marized in the Appendix. From these properties (A1) it
follows that the dotted line in Fig. 2 also corresponds to
the case ω = nωA, and the solid line corresponds also to
ω = (n + 1/2)ωA, but for the parameter �̃P = 0.1.

The dependence of the reflection coefficient RM Q on fre-

quency in the band around ωA has an oscillatory charac-
ter, but the depth of the modulation depends on the wave
scales. Examination of analytical properties of the function
in the right-hand part of (18) in the Appendix shows that the
magnitude of RM Q varies between extreme values | R(0)

M Q |
and | R(1)

M Q |, which are reached at frequencies ω = n and
ω = n + 1/2, respectively. Figure 3 shows the frequency
dependences of the modulus and phase of RM Q for a highly
conductive ionosphere, �̃P = 10. The solid line corresponds
to k⊥ = (1 − 1/�̃P)1/2, when the frequency modulation is
greatest, and the dashed line corresponds to k⊥ = 2. As is
evident from Fig. 3(a), the reflection of the magnetospheric
Alfven wave from the topside auroral ionosphere is highest
at frequencies ωn = ωA(n + 1/2), which coincide with the
RAAR resonant frequencies (15). The reflection is lowest at
the “semi-resonant” frequencies

ω = ωn + ωn+1

2
=

{
n for �̃P < 1

n + 1
2 for �̃P > 1

. (21)

The effectively reflected waves are nearly in-phase with in-
cident waves (Fig. 3(b)).
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Fig. 3. The frequency dependence of the modulus (upper panel) and phase (lower panel) of the reflection coefficient RM Q at �̃P = 10 for the critical
wave vector k⊥ = k∗ (solid), and k⊥ = 2 (dashed) on the dimensionless frequency ω/ωA .

5.2 Modulation of the potential drop by magneto-
spheric Alfven waves

The reflection coefficient RM Q determines the part of the
oscillatory field-aligned current, jz(zQ), transported by mag-
netospheric Alfven waves, which penetrates into the AAR

jz(zQ) = j (i)
zM(1 + RM Q). (22)

Here the factor 1 + RM Q(ω, k⊥) is determined by (18), and
j (i)
zM is the amplitude of field-aligned current in an Alfven

wave incident from the magnetosphere.
The magnetospheric Alfven wave penetrating inside the

AAR induces oscillations of the field-aligned potential drop
��. Variations of the potential drop �� by an Alfven wave
can be found by multiplying the magnitude of the oscillatory
current (22) by the AAR resistance Q. Thus, the amplitude
of these oscillations normalized to the amplitude of the inci-
dent Alfven wave potential ϕ

(i)
M is as follows

��

ϕ
(i)
M

= − Q jz(zQ)

ϕ
(i)
M

. (23)

We introduce the modulation factor, normalized to the ampli-
tude of a magnetospheric wave magnetic component B(i)

M =
ik⊥μ0�Aϕ

(i)
M , and derive it via the dimensionless coefficient

of the potential modulation T�. From (22, 23) it follows that

��

B(i)
M

= K�T� (24)

T�(ω, k⊥) = −ik⊥(1 + RM Q) = − 2ik⊥

k
2
⊥ + κ2(ω)

.

The coefficient K� = μ−1
0 (Q/�A)1/2 can be visualized

as the amplitude of the oscillating potential when all the
field-aligned current transported by an incident Alfven wave
with unit amplitude and transverse scale matching the Alfven
damping scale λA would penetrate into the AAR.

For low-frequency ULF waves (ω 
 ωA) the amplitude of
the potential drop modulation as follows from (17) and (24)
is

��

B(i)
M

= −i K�

2k⊥

1 + �̃−1
P + k

2
⊥

. (25)

For low-frequency waves the induced oscillations of the
potential drop are largest at the transverse scale k∗ =(

1 + �̃−1
P

)1/2
and are as follows:
∣∣∣∣∣
��

B(i)
M

∣∣∣∣∣
k⊥=k∗

= K�(
1 + �̃−1

P

)1/2 . (26)
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Fig. 4. The frequency dependence of the absolute value (upper panel) and phase (lower panel) of the dimensionless excitation coefficient T�(ω) for
selected values of the ionospheric Pedersen conductivity �̃P : 10 (solid line) 2 (dotted line), and 0.1 (dashed line) for k⊥ = k∗.

The oscillation amplitudes grow upon increase of the iono-
spheric Pedersen conductance and reach maximal value K�

at �̃P → ∞.
The properties of the dimensionless coefficient T� of the

potential drop oscillation excitation are examined in the
Appendix. This coefficient T�(ω) in the frequency range
around ωA has an oscillatory dependence on frequency. It
reaches maximum values

max | T�(ω) |=
{

ρ2 for �̃P > 1
ρ1 for �̃P < 1

(27)

at “mid-resonant” frequencies (ωn +ωn+1)/2 (21), where ρ1

and ρ2 are determined by (A2). At resonant frequencies ωn

(15) the coefficient |T�| has minimal values:

min | T�(ω) |=
{

ρ1 for �̃P > 1
ρ2 for �̃P < 1

. (28)

At �P → 0 or → ∞ the minimal and maximal values of
|T�| are 0 and 1, respectively.

The relationship (A2) shows that the efficiency of the po-
tential drop modulation by an Alfven wave depends on its
transverse scale. Modulation is highest at “mid-resonant”

frequencies when the transverse wave vector k⊥ = k∗, where

k∗ =
{

(1 + �̃−1
P )1/2 for �̃P > 1

(1 + �̃P)1/2 for �̃P < 1
. (29)

These regularities are illustrated by Fig. 4, which shows the
frequency dependence of the absolute values (upper panel)
and phase (lower panel) of the dimensionless modulation
coefficient T�(ω) at k⊥ = k∗ for 3 selected values of �̃P :
10 (solid line), 2 (dotted line), and 0.1 (dashed line). The
most prominent oscillations of the potential drop are excited
in frequency bands between the RAAR resonant frequencies
for a given conductance, whereas at resonant frequencies
oscillations of �� are minimal.
5.3 Excitation of the RAAR modes

An incident Alfven wave burst with a wide spectrum,
penetrating through the AAR, can further excite the RAAR
modes and penetrate through the E-layer to the ground. Let
us estimate the amplitude of oscillations generated inside the
AAR-associated resonator and on the ground by an Alfven
wave incident from the magnetosphere. The structure of an
Alfven wave in the resonator can be presented as follows

BR(z) = B(i)
R {exp[−ikA(z − zI )] + RI exp[ikA(z − zI )]}
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Fig. 5. The frequency dependence of the transmission coefficient TR(ω) for the same values of k⊥ and �̃P as in Fig. 4.

where B(i)
R is the amplitude of the Alfven wave incident

on the lower boundary of the resonator (E-layer) from the
RAAR.

We introduce the coefficient TR of the resonator excitation
as the ratio of the amplitude of the wave incident on the iono-
sphere, B(i)

R exp(−iπω), to the amplitude of an Alfven wave
B(i)

M , incident from the magnetosphere upon the AAR. The
factor exp(−iπω) = exp(−ikARdR) has been introduced to
account for the phase increase upon the Alfven wave prop-
agation from the AAR towards the ionosphere. As a result,
we obtain

TR(ω, k⊥) = B(i)
R exp(−iπω)

B(i)
M

= 1 + RM Q

1 + RI exp(2iπω)
. (30)

Substituting 1 + RM Q from (18) into (30), the coefficient TR

can be expressed as follows

TR = κ2

k
2
⊥ + κ2

. (31)

If the AAR resistance is neglected, that is Q = 0, then in
(31) k⊥ = 0 and evidently TR = 1.

The frequency dependence of TR(ω) is shown in Fig. 5 for
the same values of k⊥ and �̃P as in Fig. 4. In contrast to the
T�(ω) frequency dependence, the coefficient TR(ω) achieves

maximal values at resonant frequencies of the RAAR and
minimal values at “mid-resonant” frequencies.
5.4 Penetration of magnetospheric Alfven waves to the

ground
Now we estimate the expected frequency-dependence of

the magnetic signal observed on the ground. This signal is
produced by the height-integrated current induced in the E-
layer (z = zI ) by the electric field, E, of an Alfven wave:
I = �̂E (here �̂ is the 2D tensor of the ionospheric height-
integrated conductivity). This current can be derived via the
amplitude of the magnetic component B(i)

M of the incident
Alfven wave and coefficient TR (30) as follows

I = 2μ−1
0

�̃P + 1

(
�̃P

k⊥
|k⊥| + �̃H

ẑ × k⊥
|k⊥|

)
TR exp(iπω)B(i)

M .

(32)
The ground magnetic field Bg is produced by the Hall part
IH of the ionospheric current (the second term in the right-
hand part of (32)). For an ideally conducting Earth, it can be
estimated from the following relation

Bg = μ0ẑ × IH exp(−k⊥zI ).

Substituting IH in the latter relationship we find

Bg = −2�̃H exp(−k⊥zI )

�̃P + 1

k⊥
|k⊥|TR exp(iπω)B(i)

M . (33)
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This expression (33) coincides with known formulae for
the ground magnetic field given by Hughes and Southwood
(1976) and Pilipenko et al. (2000) if the AAR is absent,
Q = 0 and TR = 1, and the amplitude of the incident Alfven
wave B(i)

M would be replaced by the total amplitude of the
magnetic field above the ionosphere BM (z = zI ) according
to B(i)

M exp(iπω) = BM(�̃P + 1)/2�̃P . Thus, the relation-
ship (33) shows that the frequency dependence of the mag-
netic variations penetrating to the ground is determined by
the coefficient TR(ω) (Fig. 5).

For comparison with ground observations it is interesting
to estimate the expected ratio between an additional iono-
spheric ionization �J/J � ��/� and a ground magnetic
signal. For that it is important to know the relationship be-
tween the coefficients TR and T�. From equations (31) and
(24) it follows that they are related as follows

T�

TR
= −ik⊥

[
1 + RI exp(2iπω)

]
. (34)

At low frequencies (ω 
 ωA) a relation between the mod-
ulation depth and ground magnetic signal is determined by
the following relationship resulting from (33, 24):

∣∣∣∣��

Bg

∣∣∣∣ = k⊥K�

�̃P + 1

2�̃H

exp(k⊥zI )
[
1 + RI exp(2iπω)

]
.

(35)

6. Ground Magnetic Response to Modulated Pre-
cipitation

Alfven wave modulation of the electron acceleration in the
auroral region will cause periodic variations of precipitating
electron fluxes. Relationships between the variations of elec-
tron energy and variations of the electron ionization rate and
conductance of the ionosphere can be reliably found only
with the help of a numerical ionospheric model. Here we
make simple estimates valid only within an order of magni-
tude.

We suppose that variations of the field-aligned current in
the AAR, jz(t) = Q−1��, modulate the ionospheric den-
sity, conductances, and currents, and, thus, can be a gener-
ation mechanism for an additional ground magnetic signal.
Small variations of the plasma density in the ionosphere, that
is N = Ne + n(t), can be described with the linearized bal-
ance equation

∂t n = q jz − n/τ (36)

where q = γ /e�z is the ionization source, derived via the
ion production rate γ , and the thickness of the ionospheric
conductive layer �z. The recombination time τ in (36) is re-
lated to the recombination coefficient αR and the ionospheric
electron density Ne at the altitude of the absorption layer as
follows: τ−1 = 2αR Ne. This time constant varies in the
range 10–100 s, depending on the characteristic energy of
precipitating electrons and altitude of the absorption layer
(Rees, 1963). Periodic oscillations of jz(t) produce periodic
plasma density variations in the E-layer ionosphere with am-
plitude

n(t) = γ jz(t)

e�z(−iω + τ−1)
. (37)

Let us assume that ground magnetic signals are produced
only by the modulation of the ionospheric current by periodic

variations of electron fluxes. The ionospheric electric field
E0 inside a disturbed area may be somewhat decreased by the
polarization electric field E′, that is E = E0 − E′. The exact
calculations of this polarization decrease can be found else-
where (e.g., Grant and Burns, 1995). As an order of magni-
tude approximation, the ground magnetic response Bg to the
periodic variations of ionospheric conductance ��H with
the electric field E can be estimated as B(g) � μ0��H E .
Taking into account that variations of the ionospheric con-
ductance are caused by additional ionization by precipitating
electrons, that is ��H/�H � n/N , �H � σH�z, and the
local conductivity in the E-layer σH � eN/B, we arrive at

B(�)
g � μ0

γ VE

(−iω + τ−1)
jz . (38)

Here VE = E/B is the convection velocity in the ionosphere
produced by electric field E.

Now let us assume that the field-aligned current trans-
ported by Alfven waves is due to variations of the flux of
precipitating energetic particles. The ground response to this
current can be estimated from (33). Estimating the mag-
netic component of an Alfven wave with the transverse scale
l � k−1

⊥ as B(i) � μ0 jzk
−1
⊥ , and assuming that �H/�P � 1,

and k⊥zI < 1, we arrive at

B(AW )
g � μ0l jz . (39)

In the low-frequency range ω 
 τ−1, the comparison of
these two mechanisms, described by (38) and (39), gives that

B(�)
g

B(AW )
g

� γ VEτ

l
. (40)

For average parameters, τ � 10 s, γ � 102, l � 2 ×
102 km, and VE � 102 m/s, the ratio (40) is about unity,
indicating that both mechanisms may give comparable input
to a ground magnetic signal.

This consideration shows that periodic precipitation pro-
duced by an Alfven wave cannot substantially increase the
total ground response, even for values of γ as high as 102.
However, depending on actual parameters in different situa-
tions this relationship may vary noticeably, especially in the
range around resonant frequencies of the RAAR.

7. Discussion
In this paper a new mechanism of modulation of elec-

tron acceleration by Alfven waves has been proposed, which
could be identified in riometer observations. This mecha-
nism is closely associated with the occurrence of the AAR
and can operate at auroral latitudes only.

We estimate characteristic parameters of the model con-
sidered. Typical values of the field-aligned resistance Q
are about 107–109 �·m2. For this value of resistance a
field-aligned potential drop �� � 0.01–10 kV is neces-
sary to support the current j‖ ∼ 10−6–10−5A/m2. Assuming
that in the auroral topside ionosphere the Alfven velocity is
VA � 5 × 103 km/s, the corresponding Alfven wave con-
ductance is �A � 0.2 �−1. The height-integrated Pedersen
conductance due to the diffusive auroral precipitation varies
in the range �P � 1–10 �−1. Therefore, the condition of a
highly conductive ionosphere, �̃P > 1 prevails.
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It was also assumed that the non-local CV relationship
(1) remains valid for a system on ULF time scales. The
quasi-steady condition (2) is amply satisfied on the time
scales corresponding to low-frequency ULF waves (Pc3–5
and Pi2 range), but it is near the quasi-stationary limit in
the high-frequency (Pc2/Pi1) range. As commonly assumed
(e.g. Wright et al., 2002) the predominant portion of the
field-aligned current is carried by electrons accelerated in the
AAR. We also assume that possible deviations �� and j‖
from their background values ��(0) and j (0)

‖ do not shift the
CV relationship (1) from its linear range.

The realistic finite-width AAR may be considered math-
ematically as a thin layer when the wavelength and “skin-
depth” of the Alfven wave are much larger than the layer
width. In our formalism the AAR has been considered as a
thin layer, whereas variations of fields and currents within
the layer have been neglected. The relevant condition of this
approximation is given by (9, 10). For a mean value of field-
aligned resistance ∼108 �·m2 and wave period T � 100 s
the corresponding value of δ ∼ 7 km. Thus, the approx-
imation of a thin AAR is valid for wave disturbances with
transverse scales about a few tens of km and less, and the
finite-width AAR indeed may be replaced by a thin layer.

Concurrent variations of ULF pulsations and cosmic
noise absorption (CNA) are a ubiquitous element of
magnetosphere-ionosphere interactions at auroral latitudes
(Olson et al., 1980). These concurrent pulsations embrace an
interval of periods from Pi1 (∼10 s) to Pc5 and Pi2 (∼several
minutes). Pi1 band limited emissions are observed in the
night-morning sector of the auroral oval and near noon at
latitudes of the dayside cleft (Engebretson et al., 1983, 1984,
1986; Borovkova et al., 1992). The generation mechanism
of morning Pi1c is probably related to the precipitation of
energetic electrons within the Region 2 currents, whereas for
daytime Pi1c it is in the region of cleft-related field-aligned
currents. The intensity of dayside broad-band Pc5 waves also
was shown to correlate with precipitation of energetic parti-
cles at cusp/cleft latitudes. Moreover, quantitative estimates
based on riometer and photometer observations indicate that
variations in electron precipitation are sufficient to drive the
ground broadband pulsations (Posch et al., 1999).

The extensive examination of simultaneous broad beam
riometer, magnetometer and VLF data from South Pole sta-
tion by Paquette et al. (1994) revealed nearly 200 pulsation
events with long periods (100–1000 s) with consistent fre-
quency in both electron precipitation and ground geomag-
netic field variations. However, only about a third of these
fit the predictions of the Coroniti and Kennel (1970) model:
a disparity in onset times, together with modulation of an
elevated level of VLF emissions. In other events the onset
of magnetic and precipitation pulsations was nearly simulta-
neous, and the levels of VLF activity were not higher than
those of a randomly selected test set. It may be suggested
that these simultaneous events are probably attributable to
the mechanism of AAR modulation.

If we assume that riometric variations �R ∝ ��, from
(35) it follows that the ratio between the riometer signal
and the ground magnetic signal in the Pc3–5 and Pi2 bands
weakly depends on the ionospheric conductance, but is very
sensitive to the transverse scale of the disturbance. The mod-

ulation of the potential drop is most significant for wave
scales of about the Alfven damping scale, λA, which is ∼10
km. From (33) it follows that spatially periodic waves with
these scales will be nearly totally screened from the ground,
e.g., for k⊥ � 10−1 km−1 the ground magnetic field will be
decreased 2 × 104 times as compared with the ionospheric
field. However, the situation may be different for a spatially
localized Alfvenic structure, when the spatial spectrum of an
incident Alfven wave beam contains a wide set of scales. In
this case the spatial spectrum of an incident Alfven struc-
ture comprises both small-scale harmonics which effectively
excite potential drop variations and large-scale harmonics
which penetrate to the ground without substantial attenua-
tion. Specific quantitative estimates require numerical mod-
eling that we plan to perform elsewhere.

The amplitude of the oscillations of the potential drop
across the AAR is determined by the parameter K� =
μ−1

0

√
Q/�A = λAVA (24). The relevant parameters vary

over a wide range: Q � 107–109 �·m2, �A � 0.2–1.0 �−1,
hence K� � (3–50)V/nT. The additional electron energy
gain e�� induced by an Alfven wave with magnetic com-
ponent B(0)

M = 100 nT as follows from (24) for λA = 10 km,
VA = 5 × 103 km/s, and T� = 1, can reach up to 5 keV.

More complicated spectral features of precipitation and
magnetic pulsations are to be observed in the frequency band
around the eigenfrequencies of the AAR-associated res-
onator. The Alfven frequency of the RAAR f A � VA/2dR �
0.4 Hz for the given values of VA and dR . Thus, the lowest
eigen frequency of the resonator is expected to be �0.2 Hz.
These estimates have been made assuming a homogeneous
altitude profile VA(z) inside layers. In a realistic magneto-
sphere, the height-distribution VA(z) can be very inhomoge-
neous. Steep variations of VA may produce a partial reflec-
tion of Alfven waves, as stems from (13). This reflection
in the upper ionosphere enables the formation of the iono-
spheric Alfven resonator (IAR) (Lysak, 1988; Belyaev et al.,
1990; Pokhotelov et al., 2000). Though our model neglects
these features, assuming that the frequencies under consid-
eration are lower than typical IAR frequencies, ∼1 Hz, in
a realistic auroral region more complicated wave structures
may occur combining the IAR and RAAR.

In the high-frequency range riometric and magnetic oscil-
lations are difficult to reveal. Moreover, many approxima-
tions used in our analysis (e.g. conditions (2), (9)) reach the
limits of their range of validity. Nevertheless, it would be
worthwhile to validate the theoretical predictions based on a
simplified model. In the frequency range around fractions of
a Hz an oscillatory frequency dependence of the absorption
and magnetic spectra is to be observed. The maxima of the
coefficient of Alfven wave transmission into the AAR, T�,
and modulation of the field-aligned potential, ��, are to oc-
cur at mid-resonant frequencies. At the same time, the max-
ima of the magnetospheric Alfven wave reflection, RM Q , the
excitation rate of the RAAR, TR , and the ground magnetic
signal, ∝ TR , are to be observed at resonant frequencies
of the RAAR. Thus, quasi-periodic variations detected by
ground-based magnetometers and riometers are to be shifted
by ∼ f A/2 in frequency.

Some indications of the predicted behavior can be found
analyzing the ground, satellite and rocket observations.
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Thus, Hargreaves et al. (2001) reported the presence of fine
structure within an auroral absorption spike event. In addi-
tion to significant modulations with periodicities in the Pi2
band, considerably weaker 5–10 s pulsations appeared in
both the absorption and the magnetic records, but with no
obvious connection between them. Sato et al. (2002) carried
out a direct comparison of pulsating auroras observed from
the ground and onboard the FAST satellite (∼3·103 km alti-
tude). The aurora appeared as east-west-aligned bands oscil-
lating with a period of ∼5 sec, observed in the region of the
upward field-aligned current. The anti-correlation of ion flux
modulation with the down-going high-energy electron flux
modulation suggested that the pulsating aurora was caused
by a modulation of the field-aligned electric field located
above FAST, but far from the equatorial plane. Ivchenko
et al. (1999) observed quasi-periodic ( f � 0.6 Hz) struc-
ture by magnetic, electric, and particle instruments on sound-
ing rocket (apogee of over 500 km) at the border of an au-
roral arc. The Alfven-type oscillations were accompanied
by modulations of field-aligned electron precipitation of the
same frequency, indicating acceleration by the wave-related
E‖. The scale of these waves in the transverse direction
(�7 km) was much higher than the electron inertial length
(�0.16 km) for the observed density, which made the possi-
bility of electron acceleration by DAW doubtful. The modu-
lation effects observed in the above experiments fit well the
mechanism of the AAR modulation by Alfven waves. The
highlighting of the detected wave period could be related to
the occurrence of the AAR-associated resonator.

An Alfven wave incident on the AAR from the magneto-
sphere partially reflects back and partially penetrates into the
AAR. Our consideration has shown that the rate of wave re-
flection/transmission and modulation of the field-aligned po-
tential drop were estimated to be critically dependent on the
wave transverse scale. New possibilities provided by multi-
beam imaging riometers (IRIS) have to be exploited for a
study of this new mechanism of ULF modulation of parti-
cle acceleration in the auroral region. More study with the
use of IRIS riometers is necessary to determine the 2D struc-
ture of precipitation patterns and compare it with the scales
predicted by the AAR modulation theory.

8. Conclusion
The interaction of magnetospheric Alfven waves with the

AAR produces a number of interesting effects that may be
observed on the ground and in space. Alfven wave structures
with transverse scales about 10 km can penetrate into the
AAR and supply energy to electron acceleration. This mod-
ulated acceleration can be an additional mechanism for ULF
modulated riometer variations, a feature of which is the lack
of time delay between the magnetic and riometer variations.
Another feature of this mechanism is the critical dependence
of the ratio between the magnetic and riometric signals on
the transverse scale of the disturbance. Additionally, in the
frequency range around fractions of a Hz, the occurrence of
the AAR-associated resonator in the topside ionosphere will
induce an oscillatory frequency dependence of modulation.
The maximal amplitudes of riometer variations and ground
magnetic variations are to be observed at different frequen-
cies, shifted from each other by about the RAAR eigenfre-

quency. The predicted effects are to be searched for in simul-
taneous data from IRIS riometers and magnetometers.
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Appendix. Analytical Properties of the Reflection
and Modulation Coefficients

The reflection coefficient RM Q(ω) as a complex function
has interesting features. The function in the right-hand part
of (18) is a fractional-linear transform of the variable u =
exp(2iπω). It transforms the axis of real frequencies ω into
a circle, symmetrical with respect to the real axis, onto a
complex plane of RM Q . The absolute value, |RM Q | should
vary between extreme values | R(0)

M Q | and | R(1)
M Q |, which are

reached at frequencies ω = n and ω = n +1/2, respectively,
whereas |R(0)

M Q | > |R(1)
M Q | for �̃P < 1, and |R(0)

M Q | < |R(1)
M Q |

for �̃P > 1. The function RM Q has other properties, namely

RM Q(ω + n) = RM Q(ω)

ImRM Q(n) = ImRM Q(n + 1/2) = 0

RM Q(−ω) = R∗
M Q(ω) (A.1)

RM Q(n + 1/2 + δω) = R∗
M Q(n + 1/2 − δω)

RM Q(ω, �̃P) = R∗
M Q(ω + 1/2, �̃−1

P ).

Similar to RM Q(ω), the dimensionless coefficient T�(ω) is a
periodic function of ω with a unit period. The properties
(A.1) of the function RM Q are valid for this function as
well. We denote T�(n + 1/2) = −iρ1 and T�(n) = −iρ2,
where the real parameters ρ1 and ρ2 are determined by the
relationships

ρ1 = 2k⊥

1 + k
2
⊥ + �̃P

ρ2 = 2k⊥

1 + k
2
⊥ + �̃−1

P

. (A.2)

The function T�(ω) transforms a unit interval 0 ≤ ω < 1
onto a circle in a complex plane T�, with origin in the point
−i(ρ1 +ρ2)/2 and radius |ρ1 −ρ2|/2. Therefore the absolute
value |T�| has extreme values ρ1 at ω = n + 1/2 or ρ2 at
ω = n.

From (A.2) it follows that for �̃P < 1 the parameter
ρ1 > ρ2, and when �̃P > 1 the reverse inequality is valid,
that is ρ2 > ρ1. When �̃P = 1, these parameters coincide,
that is ρ1 = ρ2, and the coefficient |T�| does not depend
on frequency. The function |T�(k⊥)| is largest at a critical
wave scale k∗ determined by (29). Substituting this value
into (A.2) we obtain the maximum possible values of ρ1 =
(1 + �̃P)−1/2 for �̃P < 1, and ρ2 = (1 + �̃−1

P )−1/2 for
�̃P > 1.

The coefficient T� is related to the TR from (31, 24) by the
following

TR = 1 − i

2
k⊥T�.
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