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Modification of a proto-lunar disk by hydrodynamic escape of silicate vapor
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We have estimated a criterion for escape of silicate vapor from the disk formed by a giant impact. Escape from
the disk affects the mass distribution and specific angular momentum of the disk. We applied the results to the
disk formed by the Moon-forming impact. In the case of a hot (>6000 K) and highly vaporized (>63%) disk, the
material outside of the Roche radius escapes. This indicates that the formation of the Moon is influenced by the
thermal state of the disk just after the giant impact.

1. Introduction
According to the giant impact hypothesis, a circumterres-

trial disk is generated by an oblique impact of a Mars-sized
protoplanet onto the proto-Earth (e.g., Benz et al., 1989;
Cameron and Benz, 1991; Cameron, 1997; Canup and As-
phaug, 2001). The disk just after the Moon-forming impact
is very hot and partially vaporized. Release of latent heat
due to condensation of vaporized silicate results in a nearly
isothermal disk. Since an isothermal gas is not bounded by
the gravity of the Earth, silicate vapor possibly escapes from
the disk through a hydrodynamic outflow. Escape from the
disk affects the formation of the Moon by changing the mass
and shape of the disk. In addition, if the vaporized gas com-
ponent of the disk is selectively lost, for example, due to the
sedimentation of the condensate liquid drops toward the cen-
tral plane of the disk (Machida and Abe, 2002), the disk is
enriched in refractory components. This will affect not only
the Moon’s composition, but also the Earth’s composition.

In this paper, we discuss the effect of disk escape on the
mass distribution in the disk rather than the chemical effect.
First, we show that the adiabat of partially vaporized silicate
is very close to isothermal (Section 2). Then we analytically
estimate a criterion for the disk escape and its dependence on
the physical parameters of the disk (Section 3). Finally, we
discuss the effect on Moon formation.

2. Thermal Structure of an Impact-Generated
Disk

We assume the proto-lunar disk is isentropic. If the disk
is well-mixed in its formation and/or every disk’s material
experiences the uniform level of the shock compression by
the impact, the disk’s structure becomes isentropic. Accord-
ing to the recent SPH simulations (e.g., Canup and Asphaug,
2001; Cameron, 1997), since the major part of the disk ma-
terial derives from the impactor’s hemisphere against the im-
pact point and the vicinity of its surface, it is thought that
the disk material experiences the nearly uniform level of the
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shock compression. Here, we calculate the thermal structure
of a proto-lunar disk, that is, the adiabat of the disk material.
We shows the adiabat of the disk material is very close to
isothermal due to the very large latent heat for condensation
of silicate vapor, and is nicely approximated by a polytrope
with exponent 1.05.

For simplicity, we assume that the disk material is one
component and two phases. When X is defined as the mass
fraction of vapor in the disk, the pressure in the disk is given
by the ideal gas law;

pV = X
RT

Mm
(1)

where p, V , T , R and Mm are the pressure, the specific
volume, the temperature, the gas constant, and the molec-
ular weight of vapor, respectively. The assumption of the
ideal gas law is valid, because the disk’s density of sili-
cate vapor (typically, <10 kg/m3) is much less than the den-
sity of silicate melt (∼3500 kg/m3). The equations of en-
tropy change and vapor-condensate equilibrium (Clausius-
Clapeyron equation) are given as follows:

c′
p

dT

T
− R

Mm

dp

p
− d

[
L(1 − X)

T

]
= d S, (2)

dp

dT
= Mm Lp

RT 2
, (3)

where c′
p is the isopiestic specific heat of vapor-condensate

mixture, which is given by c′
p = Xcp + (1 − X)C p with

the isopiestic specific heats of vapor, cp, and condensate
(liquid), C p. L and d S are the latent heat for vaporization,
and entropy change, respectively.

When we assume constant Mm , the total differentiation of
Eq. (1) is written as

V dp + pdV = R

Mm
(XdT + T d X). (4)

Using the specific heat ratio of the vapor phase, γg , we have
R/Mm = cp(γg − 1)/γg . Hence,

V dp + pdV = cpγ
′
g(XdT + T d X), (5)
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Fig. 1. Adiabatic change for one component and two phases. The solid
curve represents adiabatic change of partially vaporized silicate for a typ-
ical value (L = 2.0 × 107 J/kg, e.g., Hashimoto (1983), cp = 103 J/kgK
and γg = 1.4). The mass fraction of vapor (X0) and the temperature at
the standard volume (V0) are 0.5 and 5000 K, respectively. Both axes are
normalized by the reference physical value. Dashed curves represent adi-
abatic change of polytropic gas in the cases of γ = 1 (isothermal), 1.05,
1.10 and 1.40.

where γ ′
g = (γg − 1)/γg . When we assume an adiabatic

process (d S = 0) and the constant latent heat (d L = 0), Eq.
(2) is written as[

c′
p + L(1 − X)

T

]
dT

T
− R

Mm

dp

p
+ L

T
d X = 0. (6)

From Eqs. (3), (5), and (6), we can obtain d X/dV , dp/dV
and dT/dV as follows:

d X

dV
= γ ′

g · X

V

( L
cp T − γ ′

g

c′
p T

L X − 1
+ γ ′

g

)−1

, (7)

dp

dV
= − p

V

[
1 − γ ′

g
cpT

L

(
2 − c′

pT

L X

)]−1

, (8)

dT

dV
= −γ ′

g
cpT

L
× T

V

[
1 − γ ′

g
cpT

L

(
2 − c′

pT

L X

)]−1

. (9)

In reality, the molecular weight is not constant in high tem-
perature silicate vapor. However, owing to very large latent
heat, the resulted adiabat is not sensitive to the change of
molecular weight. Hence, we assumed a constant molecular
weight here.

We can numerically obtain a relation between p and V
from Eq. (7) to (9). Figure 1 shows the resulting adiabat
for a typical value of partially vaporized silicate (see figure
caption). The adiabat can be approximated by a polytrope
(p ∝ V −γ ) with polytropic exponent γ nearly 1.05. Since
γ = 1 means isothermal, the adiabat of partially vaporized
silicate is likely very close to isothermal. This isothermal
characteristic is due to very large latent heat for condensation
of silicate vapor.

3. A Criterion for the Escape
First of all, we derive a criterion for the break down of

hydrostatic equilibrium in the case of the one-dimensional
spherical polytropic atmosphere. When such a criterion is

satisfied, it is known that the hydrodynamic escape occurs
just like solar wind (Parker, 1963). Next, we derive a gen-
eral criterion for the break down of hydrostatic equilibrium
in the case of an arbitrary two-dimensional axisymmetric
polytropic disk, and compare with the case of the spherical
atmosphere. Next, we assume the disk with a power law dis-
tribution of the pressure at the central plane of the disk, and
derive the criterion for the escape.

When we take the distance from the planetary center as x ,
the hydrostatic equation of the spherically symmetric atmo-
sphere is written as

1

ρ

dp

dx
+ G M

x2
= 0, (10)

where ρ, G and M are the density of the atmosphere, the
gravitational constant, and the mass of the Earth, respec-
tively. We assume the polytropic atmosphere. Using the
polytropic exponent, γ , we get the following relation be-
tween the pressure and the density:

p

p0
=

(
ρ

ρ0

)γ

, (11)

where p0 and ρ0 are the pressure and density at the reference
point. Here, we take the reference point as the planetary
surface. Using Eq. (11) we can solve Eq. (10) and get the
distribution of the atmospheric pressure as follows:

p

p0
=

[
γ − 1

γ
λ0

(r0

x
− 1

)
+ 1

] γ

γ−1

, (12)

where r0 is the planetary radius and λ0 is the escape parame-
ter, which is defined by

λ0 = G Mρ0

r0 p0
. (13)

Using the ideal gas law, Eq. (1), we obtain λ0 =
G M Mm/(X0 RT0r0) from Eq. (13). Therefore, the escape
parameter turns out to be the ratio of the gravitational energy
required for escape from the Earth to the thermal energy of
the atmosphere.

For the atmosphere bounded by the Earth’s gravity, the
atmospheric pressure should be zero at a certain distance.
An atmosphere with finite pressure at infinite distance can
be hydrostatically equilibrated, only when the finite pressure
is balanced with the ambient pressure in the distant space.
Otherwise, it expands toward the space and lost. This is the
break down of the hydrostatic equilibrium and the onset of
the hydrodynamic escape. The criterion of the onset of the
hydrodynamic escape is given by the case when the pressure
is zero at x → ∞ in Eq. (12);

λ0 <
γ

γ − 1
. (14)

It is noted that both near-isothermal and hot atmospheres are
difficult to be in hydrostatic equilibrium.

Next, we derive a general criterion for the break down of
hydrostatic equilibrium in the case of the two-dimensional
axisymmetric disk. When we take the radial direction of the
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disk as r , and the vertical direction as z, the equations for the
hydrostatic equilibrium of the disk are written as

1

ρ

dp

dr
+ G M

r

(r2 + z2)
3
2

− rω2 = 0, (15)

1

ρ

dp

dz
+ G M

z

(r2 + z2)
3
2

= 0, (16)

where ω is the angular velocity of disk material. Let’s con-
sider the force balance in r -direction first. Eq. (15) can be
rewritten as,

ω2 = 1

r

[
G M

r

(r2 + z2)
3
2

+ 1

ρ

dp

dr

]
. (17)

If the pressure decreases so steeply with distance, the right
side of Eq. (17) gets negative. However, the left side of Eq.
(17) must be positive. Therefore, there is a constraint for the
pressure gradient, that is,

dp

dr
> − G Mρr

(r2 + z2)
3
2

. (18)

This is a necessary condition for the existence of a rotating
disk. As far as this condition is satisfied, we can satisfy the
force balance in r -direction (Eq. (15)) for arbitrarily given
radial distribution of pressure by choosing the angular veloc-
ity.

On the other hand, Eq. (16), which gives us the disk’s
structure of z-direction, gives the condition for the onset
of hydrodynamic outflow. We assume the polytropic struc-
ture of z-direction and take the reference point as the central
plane of the disk. Thus, we get the following relation be-
tween the pressure and the density:

p

pr,0
=

(
ρ

ρr,0

)γ

, (19)

where ρr,0 and pr,0 are the density and pressure at the central
plane of the disk, respectively, at the distance r . Using
Eq. (19), we can solve Eq. (16), and the distribution of the
pressure and density are given by

p

pr,0
=

[
γ − 1

γ
λr,0

(
r√

r2 + z2
− 1

)
+ 1

] γ

γ−1

, (20)

ρ

ρr,0
=

[
γ − 1

γ
λr,0

(
r√

r2 + z2
− 1

)
+ 1

] 1
γ−1

, (21)

where λr,0 is the local escape parameter at the central plane,
and defined by

λr,0 = G Mρr,0

r pr,0
. (22)

Like a spherically symmetric atmosphere, the pressure of the
bounded disk is expected to be zero at a certain distance from
the Earth. Therefore, the criterion for the break down of
the hydrostatic equilibrium is obtained from Eq. (20) or (21)
with z → ∞:

λr,0 <
γ

γ − 1
. (23)

This criterion very closely resembles the one for the spheri-
cal atmosphere (Eq. (14)). If the local escape parameter de-
creases with radial distance, we will find the critical radial
distance over which the disk is not in a hydrostatic equilib-
rium. As can be shown from Eq. (23), an isothermal disk
(i.e., γ = 1) cannot be in hydrostatic equilibrium at any dis-
tance from the planet.

Even if we consider an adiabatic disk, the radial distri-
bution of the local escape parameter is not uniquely de-
termined, because the radial distribution of pressure is not
uniquely constrained by the hydrostatic equilibrium as noted
before. In the following we consider a specific case in which
the radial distribution of pressure at the central plane of the
disk (pr,0) is proportional to a power law of the radial dis-
tance:

pr,0 = p0,0

(
r

r0

)−ζ

, (24)

where ζ is the parameter that represents a radial distribution
of pressure, and p0,0 is the pressure at the disk’s central
plane and the planetary surface. We newly take the reference
point on the planetary surface at the central plane. The disk
becomes more compact with increasing ζ value. In reality,
the value of ζ is determined through the impact process,
which depends on the impact parameter and the equation of
state of the silicate, and so on. Here, we put ζ as a parameter.

Since we consider an isentropic disk, the density distribu-
tion of the central plane is given from Eq. (24);

ρr,0 = ρ0,0

(
r

r0

)− ζ

γ

, (25)

where ρ0,0 is the density at the reference point. Using Eqs.
(20), (22), (24) and (25), we obtain the pressure distribution
of the disk as follows;

p

p0,0
=

[
γ − 1

γ
λ0,0

(
r0√

r2 + z2
− r0

r

)
+

(r0

r

)ζ
γ−1
γ

] γ

γ−1

,

(26)

and in similar way, the density distribution of the disk is
obtained by

ρ

ρ0,0
=

[
γ − 1

γ
λ0,0

(
r0√

r2 + z2
− r0

r

)
+

(r0

r

)ζ
γ−1
γ

] 1
γ−1

,

(27)

where λ0,0 is the escape parameter at the reference point and
defined by

λ0,0 = G Mρ0,0

r0 p0,0
. (28)

Using the ideal gas law, Eq. (1), we also obtain λ0,0 =
G M Mm/(X0,0 RT0,0r0), where X0,0 and T0,0 are the mass
fraction of vapor and the temperature at the reference point,
respectively. Substituting Eqs. (26) and (27) into Eq. (17),
we also obtain the angular velocity distribution as follows;

ω2 = G M

r3

[
1 − ζ

λ0,0

(r0

r

)ζ
γ−1
γ

−1
]

. (29)
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Fig. 2. Density distribution in a disk that cannot keep at hydrostatic
equilibrium (ζ = 4, γ = 1.05, λ0,0 = 50). It should be noted that the
disk material is close to isothermal. Density is normalized by the value at
r = r0, z = 0, that is ρ0,0. The ‘boundary’ in the figure indicates surface
of the zero density. Outside of a certain radius, the disk has finite density
at z → ∞, that is, the disk material outside of the disk is not bounded by
the gravity of the Earth.
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Fig. 3. Density distribution in a disk at hydrostatic equilibrium (ζ = 4,
γ = 1.4, λ0,0 = 50). Density is normalized by the value at r = r0,
z = 0, that is ρ0,0. The ‘boundary’ in the figure indicates surface of
the zero density. The disk has zero density at z → ∞, that is, the disk
material is tightly bounded by the gravity of the Earth.

Since the right side of this equation must be positive, we
obtain the relation of ζ ≤ λ0,0. Thus, the rotating power law
disk exists only when ζ ≤ λ0,0 is satisfied. This means the
maximum ζ is limited depending on the disk’s temperature.
In other words, a hot disk cannot be compact.

Substituting Eqs. (24) and (25) into Eq. (22), we can ob-
tain the local escape parameter, λr,0, as follows;

λr,0 = λ0,0

(
r

r0

) γ−1
γ

ζ−1

. (30)

From Eq. (30), λr,0 decreases with increasing the radial dis-
tance, when the following condition is satisfied;
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Fig. 4. Dependence of critical radius (rc) on λ0,0, and ζ for γ = 1.05.
Since rc ≤ r0 in the region of λ0,0 ≤ 21, escape occurs directly from the
planetary surface.

ζ <
γ

γ − 1
. (31)

Such a disk has a certain critical radius over which Eq. (23)
is satisfied, and cannot keep in a hydrostatic equilibrium.
Eq. (31) indicates both near-isothermal and broad disk has
a portion of escaping region. We define the critical radius as
rc. From Eq. (23) and (30), the critical radius is given by

rc

r0
=

(
γ − 1

γ
λ0,0

)− γ

ζ(γ−1)−γ

. (32)

Figure 2 shows the density distribution for the disk with
ζ = 4, γ = 1.05 and λ0,0 = 50, that is, the disk is
satisfying Eq. (31). The disk has finite density at z → ∞
outside of about 3r0. Therefore, the disk cannot remain in
hydrostatic equilibrium and escape from the outer part of the
disk is expected. On the other hand, Fig. 3 shows the density
distribution for the disk with ζ = 4, γ = 1.4 and λ0,0 =
50, that is, the disk is not satisfying Eq. (31), and the disk
has zero density boundary everywhere in the z-direction.
Therefore, the disk can keep in hydrostatic equilibrium and
be tightly bounded by the gravity of the Earth. Figure 4
shows the dependence of the critical radius, rc, on ζ and
λ0,0 for γ = 1.05. The critical radius becomes small with
decreasing λ0,0 value, that is, escape from inner part of the
disk occurs. It can be seen that rc decreases slightly with
decreasing ζ value. When λ0,0 < γ/(γ − 1), rc is less than
r0, and escape occurs from the planetary surface.

4. Discussion and Implication
We have analytically derived the criterion for the break

down of hydrostatic equilibrium, and shown that a nearly
isothermal disk cannot keep a state in the hydrostatic equi-
librium. In the case of an isentropic disk, the disk material
outside of the critical radius (rc) is lost by hydrodynamic out-
flow. In reality, cooling of the disk will retard the escape, be-
cause rc becomes large due to decreasing temperature. How-
ever, we ignored the radiative cooling and assumed adiabatic
expansion, because the radiative cooling of the disk is inef-
ficient as the disk is massive (∼the present lunar mass) and
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Fig. 5. The mass outside the Roche radius for γ = 1.05, on the assumption
that the mass outside of critical radius is lost by escape. The mass is
normalized by the mass inside the Roche radius.

is optically thick due to dust particles produced by conden-
sation of silicate vapor. Therefore, material outside of the
critical radius will expand adiabatically. Thus, we assume
disk material outside of the critical radius is lost.

We apply the obtained results to the proto-lunar disk.
When we assume that the disk material outside of the crit-
ical radius is completely lost, the mass outside of the Roche
radius (rRoche ∼ 2.9r0) is shown in Fig. 5 for γ = 1.05.
When λ0,0 ≤ 60, almost no material remains outside of the
Roche radius irrespective of initial mass distribution. From
Eq. (28), we obtain X0,0 ≥ 0.63 to satisfy λ0,0 ≤ 60, us-
ing M = 6.0 × 1024 kg (the present Earth’s mass), r0 =
6.4 × 106 m (the present Earth’s radius), Mm = 30 × 10−3

kg/mol and T0,0 = 6000 K (e.g., Cameron, 1997). There-
fore, in the case of the highly vaporized disk (X0,0 ≥ 0.63),
even if the Moon-forming impact scatters sufficiently a large
amount of disk materials beyond the Roche radius, almost all
the material outside of the Roche radius is lost by escape.

Moon accretion cannot occur within the Roche radius,
because the tidal force exceeds the self-gravity of the disk
materials. If the Moon-forming impact scatters a sufficiently
large amount of disk materials beyond the Roche radius,
direct accretion of a Moon from such materials is possible.
Cameron and Benz (1991) exploit this possibility. However,
our results rule out such possibility for X0,0 ≥ 0.63. An
alternative view is more likely, that is, accretion of the Moon
after spreading of an initially compact disk owing to angular
momentum transfer following the occurrence of gravitational
instability in the disk (Ida et al., 1997).

The specific angular momentum of the disk is very impor-
tant parameter in determining the mass of the finally formed
Moon (Mmoon). According to Ida et al. (1997), its relation is
numerically obtained as follows;

Mmoon

Mdisk
≈ 1.9√

G MrRoche

Jdisk

Mdisk
− 1.15, (33)

where Mdisk and Jdisk are the mass and angular momentum
of the disk, and rRoche is the Roche radius. When no escape
occurs, that is, λ0,0 → ∞, Jdisk/Mdisk strongly depends on
the disk’s initial mass distribution (corresponding to ζ ) and
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Fig. 6. Dependence of λ0,0 on the specific angular momentum of the disk
for γ = 1.05, on the assumption that the mass outside of the critical
radius is lost by escape.

the position of the disk’s outer edge (redge), which are deter-
mined by the physical process of the impact. For example,
when redge = 9r0, Jdisk/Mdisk is 1.36, 0.99 and 0.74 (nor-
malized by

√
G MrRoche) for ζ = 2.0, 4.0 and 6.0, respec-

tively. On the other hand, when escape occurs, Jdisk/Mdisk

decreases, because the outer part of the disk, which is lost
by escape, has larger specific angular momentum than the
inner part. Figure 6 shows the specific angular momentum
(Jdisk/Mdisk) of the disk, whose mass outside of the criti-
cal radius is lost by escape. Jdisk/Mdisk is insensitive to ζ

for small λ0,0 values and is smaller than 0.8
√

G MrRoche at
λ0,0 < 60. This implies Mmoon/Mdisk < 0.37. Thus, the
Moon formation process is significantly affected by the tem-
perature and vapor mass fraction of the disk as well as the
dynamic parameters ζ and redge.
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