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Analog experiments on magma-filled cracks: Competition between external
stresses and internal pressure
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We have performed two series of analog experiments using gelatin to study the propagation of liquid-filled cracks
in stressed medium. The first series was designed to study the competition between the external stress and the liquid
excess pressure in controlling the propagation direction. We systematically controlled the external stress and the
liquid excess pressure by changing the surface load and the liquid volume. An ascending crack progressively
deflected to be perpendicular to the maximum tensile direction of the external stress. The degree of deflection
depends on the ratio of the shear stress on a crack plane to the average liquid excess pressure. More deflection
was observed for a crack with a larger ratio. No significant deflection was observed for the ratio less than 0.2. The
volcanic activity in a compressional stress field might be understood in the context of this competition. The first
series also demonstrated the importance of the gradient of the crack normal stress as a driving force for propagation.
The vertical gradient of the gravitational stress generated by a mountain load can control the emplacement depth of
magmas, and it might lead to the evolution of eruption style during the lifetime of a volcano. The second series was
designed to study the three-dimensional interaction of two parallel buoyancy-driven cracks. The deflection of the
second crack takes place, when the ratio of the shear stress generated by the first one to the average excess pressure
of the second crack is larger than 0.2. If the second crack reaches the first one, the interaction can lead to the
coalescence of two cracks. It has directivity: the region of coalescence extends more in the direction perpendicular
to the first crack than in the direction parallel to it. It reflects the stress field around the first crack. This directivity
might cause a characteristic spatial variation of magma chemistry through magma mixing.

1. Introduction
Propagation of a magma-filled crack is the dominant

mechanism of magma transport in the Earth’s lithosphere.
Widespread occurrence of dikes is evidence for their im-
portance in volcanism (e.g., Pollard and Muller, 1976), and
crack propagation can transport magma as rapidly (∼1 m/s)
as estimated from xenoliths (e.g., Sparks et al., 1977).
Physics of crack propagation is thus essential for a good un-
derstanding of magma supply to volcanoes.
Earlier works were mainly concerned with an equilib-

rium shape of a stationary magma-filled crack and its sta-
bility (Weertman, 1971; Pollard and Muller, 1976; Pollard
and Holtzhausen, 1979; Maaløe, 1987). Later, dynamic as-
pects of a magma-filled crack were studied by combining
fluid mechanics of magma flow, elastic deformation of coun-
try rock and fracture at a crack tip (Spence and Turcotte,
1985; Emerman et al., 1986; Spence et al., 1987; Lister,
1990, 1991; Lister and Kerr, 1991, Nakashima, 1993). These
studies have shown that the viscous resistance is more im-
portant than the fracture resistance at a crack tip once the
crack length becomes sufficiently large to ascend. In a se-
ries of paper (Lister, 1990; Lister, 1991; Lister and Kerr,
1991), Lister studied the behavior of a magma-filled crack in
a density-stratified medium, and showed that the direction of
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crack propagation changes from vertical to horizontal around
the level of neutral buoyancy (LNB). Although these studies
of a magma-filled crack illustrate basic physical principles,
they are rather too simple for representing natural systems.
They assumed a constant flux from magma sources. Re-
cently, Mériaux and Jaupart (1998) and Ida (1999) extended
the dynamic theory to couple the propagation of a magma-
filled crack and the discharge from a magma source.
Lithospheric stresses strongly affect the crack propagation

in two ways. First, the stress field governs the orientation of
a crack plane. A crack plane tends to become perpendicu-
lar to the maximum tensile stress (e.g., Cotterell and Rice,
1980). Secondly, the gradient of the crack normal stress can
contribute to the driving force for propagation (e.g., Takada,
1989). Many investigations have been done on the influ-
ence of the external stress generated by tectonic forces (e.g.,
Nakamura, 1977), topography (e.g., McGuire and Pullen,
1989) and pre-existing magma bodies (e.g., Takada, 1994a).
Previous studies overlooked the role of magma excess

pressure in controlling the propagation direction of a crack.
The stress around a crack is composed of the stress generated
by magma excess pressure and the external stress generated
by tectonic forces, etc. The crack orientation should be de-
termined by the competition between magma excess pressure
and external stresses. Recently, Muller et al. (2001) studied
this competition by crack experiments in gelatin. However,
since they performed experiments for a fixed liquid pressure,
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the role of liquid excess pressure was not clearly shown.
In order to study the competition between the external

stress and the liquid excess pressure, we first performed ex-
periments of crack propagation in gelatin with systematically
changing the external stress and the liquid excess pressure
(Experiment 1). A part of the experimental result has been
already published (Watanabe et al., 1999). In this paper, we
will present a comprehensive data set and summarize it in
terms of the ratio of the shear stress on a crack plane to
the average excess pressure. Secondly, we performed ex-
periments on the interaction of two parallel buoyancy-driven
cracks with various configurations (Experiment 2). While
previous studies (e.g., Takada, 1994a, b) on crack interaction
were limited to in two-dimension, we observed behaviours
of cracks in three-dimension. Since the numerical approach
is still hard to perform in three-dimension, we interpreted
observations based on two-dimensional analytical stress dis-
tributions. We will discuss implications for ascent and em-
placement of magmas in the Earth’s lithosphere.

2. Working Materials
We employed gelatin and silicon oil as a host medium

and a crack-filling liquid, respectively. Several experi-
mental works have been done on fluid-filled cracks, us-
ing analog materials like gelatin (Fiske and Jackson, 1972;
Maaløe, 1987; Takada, 1990, 1994a; Heimpel and Olson,
1994, Muller et al., 2001) and agar (Lister and Kerr, 1991).
They investigated the three-dimensional shape of a fluid-
filled crack (Pollard and Jackson, 1973; Hyndmann and Alt,
1987; Maaløe, 1987; Takada, 1990), the propagation veloc-
ity (Takada, 1990; Heimpel and Olson, 1994), the influence
of the external stress on the propagation direction (Fiske and
Jackson, 1972; Takada, 1994a, b; Muller et al., 2001), and
the influence of the density structure on the propagation di-
rection (Lister and Kerr, 1991).
Gelatin is a transparent, brittle, viscoelastic solid with

a low rigidity and a Poisson’s ratio of nearly 0.5 (Takada,
1990; Heimpel and Olson, 1994). Its low rigidity allows the
gravity to be significant in laboratory-scale models (Richards
and Mark, 1966). We can easily make a fluid-filled crack in
gelatin, and observe its three-dimensional behavior. How-
ever, when we apply laboratory results to realistic situations,
we have to carefully check their applicability.
The fracture resistance of a crack tip is relatively large in

gelatin (Takada, 1990). It dominates the resistant force to
crack propagation in laboratories. On the other hand, in real-
istic situations, once a magma-filled crack begins to extend,
the fracture resistance plays no significant role in the resis-
tant force. Instead, the viscous drag of magma dominates the
resistant force. Thus, we must take into account the differ-
ence in force balance (Lister and Kerr, 1991).
Gelatin is an isotropic and homogeneous medium, while

real rocks contain numerous cracks. We have to understand
the influence of those preexisting cracks before applying
experimental results to realistic situations. Delaney et al.
(1986) showed that magma can invade into cracks of any
orientation if the magma pressure exceeds the maximum
compressive stress. However, a crack may not be able to
follow such a fracture for long. The crack could hop out of
the existing fracture and into a direction controlled by the

ambient stress (Rubin, 1995). Thus, the crack propagation in
stressed gelatin can be applied to that in the lithosphere.
We prepared gelatin by making 1.0 wt% aqueous solution

of gelatin powder (E-290, Miyagi Chemical Industrial Co.
Ltd., Japan) and solidifying it in an acrylic container at 5◦C
for 2 days. All the experiments were performed at the room
temperature. After an experiment of a couple of hours, the
temperature of gelatin was still 6 ± 1◦C in the middle. We
thus think that the temporal change in material properties of
gelatin was negligible during our experiments.
Gelatin adheres to the container wall. Thus, without any

disturbance (e.g., surface load), the horizontal strains are
nil in the gravitational stress. The horizontal (σx , σy) and
vertical (σz) stresses are thus related as

σx = σy = ν

1 − ν
σz (1)

where ν is Poisson’s ratio. Because Poisson’s ratio is nearly
0.5, the stress condition in gelatin is nearly hydrostatic before
disturbance.
The density of gelatin is 1008 ± 3 kg/m3. Assuming

that Poisson’s ratio is 0.5, we estimated the rigidity to be
about 270 Pa by comparing the theoretical (e.g., Lister and
Kerr, 1991) and experimental shapes of fluid-filled cracks.
Young’s modulus is expected to be about 800 Pa, which
is similar to the values obtained by Takada (1990). The
silicon oil (KF-96L, Shin-Etsu Chemical Co. Ltd., Japan)
has a density of 810 kg/m3 and a viscosity of 1.2 × 10−3

Pa·s. In order to see the shape of a fluid-filled crack clearly,
the silicon oil was dyed red.

3. Experiment 1: Competition between External
Stress and Liquid Excess Pressure

3.1 Method
Gelatin was prepared in a rectangular container (585 mm

in width, 260 mm in depth and 350 mm in height), and a ver-
tical liquid-filled crack was formed by injection of silicon oil
from the bottom. The external stress was generated by a load
(wood block: 90 mm in width and 200 mm in depth, var-
ious height) on the gelatin surface. The liquid excess pres-
sure was controlled by changing the liquid volume in a crack.
Changing the load and the liquid volume, we systematically
studied the competition between the external stress and the
liquid excess pressure in governing the propagation direction
of a crack.
The stress in gelatin is two-dimensional and approximated

to be that in a semi-infinite medium with a surface load ex-
cept for the vicinity of container walls. The stress in a semi-
infinite medium can be analytically evaluated (Appendix A).
The direction of the maximum compressive stress and its
contour is shown in Fig. 1. The hydrostatic stress compo-
nent is omitted. The magnitude of the stress is normalized
by the load per unit area, and the length by the half width
of the load (45 mm). In our experiments, the load per unit
area was of the order of 100 Pa. The direction of maximum
compressive stress diverges radially from just below the cen-
ter of the load. Photoelastic technique showed that the stress
within gelatin is reasonably approximated by the analytic so-
lution (Fig. 2).
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Fig. 1. The direction and contour of the maximum compressive stress generated by a surface load. The analytical solution to make this diagram is shown
in Appendix A. The hydrostatic component of stresses is omitted. The magnitude of the stress is normalized by the load per unit area and the length by
the half width of the load (45 mm).
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Fig. 2. (a) Photoelastic stress field generated by a surface load (140 Pa per unit area). Colors reflect the magnitude of the differential stress within gelatin.
The dark region separating the two bright lobes is an isogyre. It shows where light fails to penetrate the system since the directions of principal stresses
coincide with the orientations of the crossed polarized sheets. (b) The contour of the differential stress (σ1-σ2) generated by a surface load. Stresses are
calculated by using an analytical solution (Appendix A). The stress magnitude is normalized by the load per unit area and the length by the half width
of the load.

The liquid excess pressure at the depth z is defined as

pex (z) = pl(z) − σ(z) (2)

where pl and σ are the liquid pressure and the normal stress
to the crack, respectively. When the vertical gradient of
the deviatoric stress is negligible, the average excess pres-
sure in a vertical crack is approximated to be �ρgL/4 (Ap-
pendix B), where �ρ, g and L are the density difference be-
tween the liquid and gelatin, the gravitational acceleration
and the crack height. Dimensions of a crack are defined in
Fig. 3. When the height L is 100 mm, the average excess
pressure is around 50 Pa. We can control the average excess
pressure by changing the liquid volume, since the height in-
creases with the liquid volume. The approximation is valid
when

∣∣∣∣
dσ ′

xx

dz

∣∣∣∣ � ρgg (3)

where σ ′
xx and ρg are the deviatoric component of the crack

normal stress and the density of gelatin. This condition is

satisfied if the normalized depth of the crack upper tip is
larger than 1 (Appendix B).
In each experiment, we first formed a vertical crack in

gelatin before putting a surface load. The initial orientation
of a crack was controlled by the needle of a syringe. We
checked each time that a crack ascended vertically without
a surface load. When the upper tip of the crack reached the
depth of 120 mm (Z = 2.7 in Fig. 1), we put a surface load
and then observed a crack path.
The load per unit area was varied as 70, 140 and 210 Pa.

The liquid volume was varied as 15, 20 and 25 ml. The mea-
sured height of the crack was 75, 85 and 95 mm, respectively.
The average liquid excess pressure is thus calculated to be
38, 43 and 48 Pa. We also changed the horizontal distance
between the initial crack and the load. The horizontal dis-
tance from the center of a load was varied as 85, 125, 165
mm.
3.2 Results and discussion
3.2.1 Directional change After applying the external

stress, a liquid-filled crack ascended with progressively de-
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Fig. 3. A schematic drawing of two parallel and offset liquid-filled cracks.
The height, width, thickness, horizontal distance and offset are measured
as shown.

flecting from the vertical direction (Fig. 4). The observed
paths of a crack upper tip are summarized in Fig. 5, where
the depth and the distance are normalized by the half width
of the load (45 mm). The contour of the shear stress σzx is
also shown, which is normalized by the load per unit area.
The ratio of the average excess pressure to the load per unit
area was varied from 0.18 to 0.68.
A crack tends to be more deflected for smaller ratio of

the average excess pressure to the load per unit area. Some
exceptions ( p̄ex/pload = 0.53 in (a) and (b)) may be due to
poor control in the initial direction by the needle. For the
normalized initial distance of 1.9 (Fig. 5(a)), where the shear
stress is relatively high, all cracks were deflected. The degree
of deflection increases with decreasing ratio of the average
excess pressure to the load per unit area. For the normalized
initial distance of 3.7 (Fig. 5(c)), cracks with larger ratios
(>0.35) of the average excess pressure to the surface load
per unit area showed little deflection. Cracks with smaller
ratios are more deflected. For a ratio of 0.18, cracks almost
follow trajectories of the most compressive stress generated
by the surface load (Fig. 6).
We summarize the deflection of a crack in terms of the

shear stress acting on a crack plane and the average liquid
excess pressure. Under the hydrostatic condition, no shear
stress acts on a vertical crack plane. The crack ascends
vertically, generating a horizontal tensile stress at the upper
tip by the liquid excess pressure. When the external stress is
applied, the shear imposed on a crack plane deflects the crack
away from plane geometry (Lawn, 1993). No significant
deflection was observed when the ratio of the shear stress
to the average liquid excess pressure was lower than 0.2
(Fig. 5). Though the vertical propagation was also unstable
in these cases, the growth rate of instability must have been

quite low. If the host material is isotropic, the stress field
around a propagating tip controls the propagation direction.
The critical ratio of 0.2 can be used as a criterion for crack
deflection. The degree of deflection must also increase with
the ratio of the shear stress to the average excess pressure
in the lithosphere. The implication to volcanisms will be
discussed in the Subsection 5.1.
3.2.2 Velocity change A drop in the ascent velocity

was observed near the surface load. When a crack upper tip
is sufficiently far from the load (see Fig. 4(a) for example),
the ascent velocity is around 10 mm/min. When its upper tip
approaches the surface load (Fig. 4(b)), the velocity gradu-
ally decreases. In order to clarify the influence of a surface
load on the ascent velocity, we performed additional experi-
ments of vertical ascent with various loads. The center of a
load was just above a crack to keep its vertical ascent. The
liquid volume was 15 ml, and a load was placed when the
crack upper tip reached the depth of 120 mm (Z = 2.7 in
Fig. 1).
The ascent of a crack upper tip is summarized in Fig. 7.

Without a surface load, a crack ascends at a constant rate
(∼6 mm/min.) to the gelatin surface. After a surface load is
placed, a crack slows down its ascent at shallow depths (<50
mm) and then stops. Below the depth of 50 mm (Z = 1.1
in Fig. 1), no significant difference in the ascent velocity is
observed between with and without the surface load. The
gelatin surface deformed downward by 3∼7 mm. The depth
was measured from the bottom of the load. A crack ceases
its ascent at a deeper depth for a larger load.
The surface load generates a vertical gradient of crack nor-

mal stress, which provides negative buoyancy to the crack-
filling liquid. The total negative buoyancy exerted on a crack
comes from the integration of the vertical stress gradient
along the crack height. The depth profile of the crack nor-
mal stress and the total negative buoyancy can be analytically
evaluated (Appendix A) and shown in Fig. 8. For simplicity,
we assume that the width and the thickness of a crack are
constant along its height. Namely, a crack is assumed to be
in the shape of a rectangular plate. Both the crack normal
stress and the total negative buoyancy rapidly decrease their
magnitude with depth over the length scale of the half-width
of a surface load (45 mm).
The balance between the driving force and the resistant

force determines the ascent velocity. If we assume that the
resistant force is proportional to the ascent velocity and that
the proportionality coefficient c is independent of the buoy-
ancy, we calculate the ascent velocity v as

v = (driving force)/c = (buoyancy−negative buoyancy)/c.

The coefficient c can be determined from the result with-
out load. Integrating the velocity, we obtain the ascent of a
crack for various loads (Fig. 8(c)). Our simple calculation
reasonably reproduces general features of experimental re-
sults (Fig. 7). It overestimated the total negative buoyancy
by assuming a simple geometry of a crack. This could ex-
plain more gradual deceleration in our experiments. The ad-
hesion of gelatin to the load (wood blocks) reinforces the
gelatin surface, which results in the termination beneath the
load. We conclude that the vertical stress gradient generated
by a surface load causes the observed velocity change. The



T. WATANABE et al.: ANALOG EXPERIMENTS ON MAGMA-FILLED CRACKS 1251

Fig. 4. Photographs showing the progressive deflection of crack orientation under the effect of a surface load. The surface load and the liquid volume were
210 Pa and 15 ml. The horizontal distance between the crack plane and the center of the load was initially 125 mm. (a) 10 minutes and (b) 90 minutes
after putting the load. As approaching to the surface load, the ascent velocity decreases to zero. Little ascent was observed during the last 60 minutes.

calculation suggests that our assumption about the resistant
force is not unreasonable.
Before closing this section, we discuss the property of

resistant force in our experiments. Without a surface load,
the driving force of crack-filling liquid is given by

fb = �ρgV .

The density difference and the volume are 198 kg/m3 and
1.5 × 10−5 m3, respectively. The driving force is thus cal-
culated to be 2.9 × 10−2 N. The resistant force is composed
of viscous resistance and the fracture resistance. The magni-
tude of the viscous resistance is calculated to be 1.4×10−7 N,
using

fv = η
v

t
wh.

Therefore, the fracture resistance should be dominant in the
resistant force, and be proportional to the velocity. Its pro-
portionality coefficient seems to be insensitive to the driving
force. We should stress that characteristics of resistant forces
are specific to our experiments. The viscous resistance must
dominate the resistant force in the lithosphere. However, the
gradient of the crack normal stress can affect the ascent ve-
locity also in realistic situations.

4. Experiment 2: Coalescence of Two Liquid-
Filled Cracks

4.1 Interaction of two liquid-filled cracks
A liquid-filled crack itself becomes a source of non-

hydrostatic stresses. It can affect the propagation of other
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Fig. 5. The observed paths of a crack upper tip. The depth and the distance are normalized by the half width of the load (45 mm). The contour of the shear
stress σ ′

zx , which is calculated by using an analytical solution (Appendix A), is also shown. The shear stress is normalized by the surface load per unit
area. The initial horizontal distance between the crack plane and the center of a load was varied as 85 mm (a), 125 mm (b), and 165 mm (c). The ratio
of the average liquid excess pressure ( p̄ex ) to the surface load per unit area (pload ) was varied from 0.18 to 0.68.
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Fig. 7. The ascent of a crack upper tip under the influence of a surface
load. A crack containing 15 ml liquid vertically ascended just under a
surface load. The surface load per unit area was varied from 0 to 210 Pa.
Without a surface load, a crack ascended at a nearly constant rate. With
a surface load, a significant decrease in the ascent velocity was observed
at the depth less than 5 cm. The velocity drop is more significant for a
larger surface load.

cracks through the stress around it. The interaction be-
tween open cracks was studied in material science first (e.g.,
Yokobori et al., 1965). Later, the interaction between pres-
sured cracks was studied and applied to geological phe-
nomena such as dikes and spreading ridge segments (e.g.,
Delaney and Pollard, 1981). In a pressured crack, a crack-
filling liquid has higher pressure than the surrounding but
no buoyancy. Takada (1994a, b) studied the interaction be-
tween buoyancy-driven cracks both experimentally and theo-
retically, and applied the results to the interaction of ascend-
ing dikes. He demonstrated that the interaction of buoyancy-
driven cracks can lead to the coalescence of ascending dikes,
and proposed it as a mechanism of magma accumulation.
The style of the interaction between two buoyancy-driven

cracks varies with the arrangement of two cracks: perpendic-
ular, collinear and parallel (Takada, 1994b). Parallel cracks
must be most common arrangement, because they tend to be
perpendicular to the least compressive direction of the re-
gional stress field before approaching other cracks. If the
regional stress is sufficiently large in the intensity, it re-
duces the influence of stresses generated by the preceding
crack and suppresses the crack interaction (Takada, 1994a).
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Fig. 8. (a) The depth profile of the crack normal stress. The normal stress
is generated by a surface load and is analytically evaluated as shown
in Appendix A. The depth is normalized by the half-width of a load,
and the normal stress by the surface load per unit area. (b) The depth
profile of the total negative buoyancy of a crack containing 15 ml liquid.
The negative buoyancy was evaluated by the integration of the vertical
gradient of the crack normal stress along the crack height. For simplicity,
we assumed that the width and the thickness of a crack are constant along
its height. The surface load per unit area is varied as 70, 140 and 210 Pa
as in experiments. (c) The ascent of a crack upper tip under the influence
of a surface load. The ascent velocity was calculated by using the total
negative buoyancy shown in Fig. 8(b), assuming that the resistant force
is proportional to the velocity and that the proportionality coefficient is
independent of the buoyancy.

The crack interaction can play an important role in magma
transport, if the intensity of the regional stress is sufficiently
low. When a following crack approaches the preceding one,
it will change its propagation direction under the influence
of stresses generated by the preceding one. The directional
change reflects characteristics of the stress field around the
preceding crack.
Characteristics of the stress field around a three-

dimensional buoyancy-driven crack can be understood based
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Fig. 9. (a) A schematic drawing of a three-dimensional buoyancy-driven vertical crack. The coordinate used in Figs. 9(b) and (c) is defined as shown.
The half-height and half-width are denoted by h and w, respectively. (b) The direction of the maximum compressive stress and the contour of the shear
stress σ ′

zx around a two-dimensional buoyancy-driven crack. The stress distribution was analytically evaluated by following the stress function method
(Westergaard, 1939). The shear stress is normalized by the average liquid excess pressure. (c) The direction of the maximum compressive stress and
the contour of the stress σ ′

xx around a two-dimensional pressured crack. The liquid pressure is assumed to be uniform. The stress distribution was
analytically evaluated by following the stress function method (Westergaard, 1939). The stress value is normalized by the liquid excess pressure.

on the stress field around two-dimensional cracks. Let us
consider a three-dimensional buoyancy-driven vertical crack
(see Fig. 9(a)). The stress distribution in a vertical plane (z-x
plane) is similar to that around a two-dimensional buoyancy-
driven crack (Fig. 9(b)). The direction of the maximum
compressive stress and the contour of the shear stress σzx ,
which is normalized by the average liquid excess pressure,
are shown. The shear stress will change the orientation of
a following crack from vertical to parallel to the maximum
compressive stress. This results in the bending toward the
preceding crack. The stress distribution in a horizontal plane
(x-y plane) is similar to that around a two-dimensional pres-
sured crack (Fig. 9(c)). The direction of the maximum com-
pressive stress and the contour of the stress σxx , which is nor-
malized by the liquid excess pressure at the depth, are shown.
The stress σxx changes steeply in the direction parallel to the
crack (y-direction). The change in the stress σxx is gradual
in the direction perpendicular to the crack (x-direction). If
there is an offset between two cracks (see Fig. 3), the hor-
izontal gradient of the stress σxx will cause the horizontal
pressure gradient in the following crack. This leads to mi-
gration in the y-direction, which we hereafter call horizon-
tal migration. Reflecting the stress distribution around the
first one (Fig. 9(c)), the liquid pressure in the second crack is
higher at the side near the center of the first crack. The hor-
izontal migration thus occurs in the outward direction from

the first one.
Previous studies (e.g., Takada, 1994a, b) showed that

bending toward the first crack can lead to coalescence of
cracks. If the horizontal distance between cracks is not so
large, the second crack propagates to cut the wall of the first
crack and injects its liquid into the first one. The second
crack then closes and the first one grows. However, those
studies were limited to the two-dimensional interaction (with
zero offset), and the condition for crack coalescence has not
been understood quantitatively.
The purpose of Experiment 2 is to understand the condi-

tion for coalescence quantitatively in the three-dimensional
space. Experiment 1 gives us a clue. It suggests that at least
the ratio of the shear stress on the second crack to the average
excess pressure must be larger than 0.2 for the second crack
to be significantly deflected. Moreover, the stress distribu-
tion in a horizontal plane (Fig. 9(c)) suggests that the crack
coalescence is more sensitive to the offset than the horizontal
distance. The stress change is more gradual in the direction
perpendicular to the crack than in the direction parallel to it.
Experiment 2 was designed to test these considerations.
4.2 Method
Gelatin was prepared in a rectangular container (445 mm

in width, 265 mm in depth and 325 mm in heights). Two
liquid-filled cracks were formed sequentially without load-
ing. The first crack was formed by injection of 7.5 ml sili-
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Fig. 10. Summary of the directional change of the second crack (Experiment 2). The configuration of two parallel cracks is shown in a diagram of
the horizontal distance and the offset. The horizontal distance and the offset are both normalized by the half-width of the preceding crack. For larger
horizontal distance and offset, no directional change of the second crack was observed. Namely, no interaction between two cracks was observed. For
smaller horizontal distance and offset, a significant deflection of the second crack lead to the crack coalescence.

con oil. The height and the width were 60 mm and 50 mm,
respectively. The ascent velocity was 2 mm/min. at the sta-
tionary state. After the first crack ascended about 6 cm, the
second crack was formed parallel to the first one by injection
of 10 ml silicon oil. Its position and orientation were de-
liberately controlled by the syringe needle. The height and
the width were 65 mm and 55 mm, respectively. The second
crack has the average liquid excess pressure of 8% higher
than the first one. At the stationary state, its ascent velocity
was 2.8 mm/min. With above conditions the second crack
could pass the first one during its ascent in gelatin.
The horizontal distance and the offset between two cracks

(see Fig. 3) were measured when the second crack was com-
pletely injected. At that time, both cracks were vertical. We
observed two cracks for various horizontal distance and off-
set. The horizontal distance was varied from 0.5w to 3.5w
(w = 25 mm: the half width of the preceding crack), and the
offset from 0.1w to 2.6w.
4.3 Results and discussion
The behaviour of the second crack is summarized in

Fig. 10. Directional changes were observed for the horizon-
tal distance less than 2.5w and the offset less than 2.0w. The
horizontal distance and offset are defined in Fig. 3. No sig-
nificant directional change was observed outside this region.
The crack coalescence was observed for the horizontal dis-
tance less than 2.0w and the offset less than 1.2w. In the
region between curves of coalescence and no interaction, the
second crack deflected significantly but could not reach the
first one during passing.
Typical examples of the directional change are shown in

Fig. 11. The style of the directional change varies with the
offset. For small offset (<0.2w), the second crack bends its
upper tip uniformly toward the first one (Fig. 11(a): horizon-
tal distance = 1.2w, offset = 0.1w), leading to coalescence.

No significant horizontal migration was observed. A small
offset can generate no significant horizontal pressure gradi-
ent to cause the horizontal motion.
For larger offset (>0.2w), significant horizontal migration

is observed in addition to bending (Fig. 11(b): horizontal
distance = 1.6w, offset = 0.9w). The amount of horizon-
tal migration is maximized at the offset of around w. The
maximum value is 0.2w in our experiments. When the hor-
izontal distance is larger than 1.8, the horizontal migration
was not observed. It should be due to a small horizontal gra-
dient of the crack normal stress at a large horizontal distance
(Fig. 9(c)).
For the offset larger than 1.0w, the amount of upper tip

bending varies significantly along the width of the second
crack. It increases with approaching the center of the first
crack. This might be due to the horizontal gradient of the
shear stress on the second crack. This differential rotation of
the upper tip results in a rotation of the crack plane around
the vertical direction. An example of the differential rotation
is shown in Fig. 11(c) (horizontal distance = 1.0w, offset =
1.3w).
The observed extent of crack interaction can be under-

stood based on the stress distribution around the first crack.
Experiment 1 has shown that a significant deflection occurs
when the ratio of the shear stress to the average excess pres-
sure is larger than 0.2. The distribution of the shear stress
around the first crack is shown in Fig. 9(b), in which the
stress is normalized by the average excess pressure of the
first crack. In our experiments, the height and width of the
first crack are 60 and 50 mm. The average excess pressure
of the second crack is higher than that of the first one by 8%.
First, let us consider the case with zero offset. The ratio of
the shear stress to the average excess pressure of the second
crack can be higher than 0.2, if the horizontal distance is less
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Fig. 11. (a) Photographs showing the bending of the second crack (in a vertical plane perpendicular to the crack plane). The horizontal distance and the
offset are 1.2 and 0.1 in the normalized scale. The upper tip of the second crack uniformly bended toward the first one, and the two cracks coalesced to
one large crack. (b) Photographs showing the horizontal propagation of the second crack (in a vertical plane parallel to the crack plane). The horizontal
distance and the offset are 1.6 and 0.9 in the normalized scale. In addition to the horizontal propagation, the second crack bended its upper tip to the
preceding one, resulting in the crack coalescence. (c) Photographs showing the differential rotation of the upper tip of the second crack (right). They are
taken from the top. The horizontal distance and the offset are 1.0 and 1.3 in the normalized scale. The amount of bending of the upper tip is larger close
to the center of the first crack. This differential rotation of the upper tip results in a rotation of the crack plane around the vertical direction. Although
the second crack changed its orientation, it passed the first one without the coalescence.
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than 2.7w (w: the width of the first crack). When the off-
set is sufficiently small, the second crack deflects from the
vertical direction under the influence of the shear stress gen-
erated by the first crack. As the offset increases, the shear
stress on the second crack steeply decreases. It will diminish
the horizontal extent of crack interaction.
The observed extent of crack interaction must depend on

the volume ratio of cracks. Since the extent of crack inter-
action depends on the ratio of the shear stress to the average
excess pressure of the second crack, it will be smaller as the
second crack has higher excess pressure.
The extent for coalescence must also depend on the vol-

ume ratio of two cracks. The obtained condition (the hori-
zontal distance < 2.0w, the offset < 1.2w) can only be ap-
plied to the case where the volume ratio of the second crack
to the first one is 1.33. As the volume ratio becomes larger,
the ratio of the shear stress to the average excess pressure of
the second crack becomes smaller and the duration time for
passing shorter. The extent of crack coalescence will shrink.
The extent for coalescence must vary with the fluid in the

second crack. If the second crack contains a less dense fluid,
the average excess pressure of the second crack becomes
higher and the duration time for passing shorter. The extent
of coalescence will shrink.
The extent of crack coalescence has directivity, while it

depends on the volume ratio and the content of cracks: the
extent is more sensitive to the offset than the horizontal dis-
tance. The implication will be discussed in the Subsection
5.3.

5. Implication for Magma Ascent and Emplace-
ment

5.1 Volcanism in compressional stress fields
In view of crack propagation, volcanism in a compres-

sional stress field, in which the maximum tensile stress is
nearly in the vertical direction, has been puzzling. Since a
vertical magma-filled crack is not perpendicular to the maxi-
mum tensile stress, it is directionally unstable (e.g., Cotterell
and Rice, 1980). It will deflect its orientation progressively,
and finally become horizontal. The magma will be emplaced
at this level in spite of its buoyancy. Thus, it seems impos-
sible for magmas to ascend to the Earth’s surface through
cracks. However, the degree of crack deflection is expected
to depend on the relationship between the external stress and
the magma excess pressure. A crack with higher magma ex-
cess pressure will ascend to a higher level in the lithosphere.
Our results of Experiment 1 support this idea. When the ra-
tio of the shear stress on a crack plane to the average magma
excess pressure is sufficiently small, no significant deflection
is expected.
A magma-filled crack generates at the deep in the litho-

sphere; probably the uppermost mantle (e.g., Rubin, 1998).
Since the stress state there is nearly hydrostatic, a vertical
crack will gradually deflect its orientation. The compres-
sional stress increases with the ascent of magma, and the
crack accelerates its deflection to be horizontal. The magma
ceases its ascent and is emplaced there. The level of magma
emplacement is thus controlled by the relationship between
the external shear stress and the average magma excess pres-
sure.

If magma cools and becomes too viscous to flow, it ceases
its ascent during the deflection of its crack plane. Significant
S-wave reflection observed beneath active volcanoes (e.g.,
Matsumoto and Hasegawa, 1996) could be caused by such
magma bodies. Observed reflective bodies often have dip
angles around 30◦. Host rocks will be heated by repeated
intrusion of magmas and then the magnitude of the tectonic
stress will be locally reduced. Following magmas can ascend
higher to cause surface activities. Tectonic forces will be
supported by the surrounding region. The seismicity in vol-
canic regions (e.g., Hasegawa et al., 1991) may reflect such
tectonic and thermal processes. Combined study of geophys-
ical observations and numerical modeling will lead to a good
understanding of volcanism in relation to its tectonic envi-
ronment.
5.2 Influences of topographic load
The topographic load generates a gravitational stress,

which can be a principal component of the external stress at
shallow levels (<a few km). The gravitational stress affects
the ascent and emplacement of magmas in two ways. First, it
affects the orientation of magma-filled cracks to govern the
array of vents and the site of eruption. Secondly, the gradient
of the crack normal stress changes the driving force of ascent
to control the depth of emplacement.
The influence on the orientation of dikes has been often

pointed out. Fiske and Jackson (1972) performed gelatin
experiments to study the crack propagation in a volcanic
edifice, and showed that the gravitational stress played an
important role in controlling the orientation and growth of
Hawaiian volcanic rifts. McGuire and Pullen (1989) investi-
gated the distribution and orientation of fissures at Mt. Etna,
and showed that the competition between the gravitational
stress and the regional tectonic stress determined the location
and orientation of eruptive fissures and feeder-dikes. Muller
et al. (2001) performed both laboratory and numerical exper-
iments to investigate the influence of a volcanic load on the
crack propagation in the basement. The surface load can at-
tract an ascending dike. They defined the critical distance as
the maximum distance from which the load attracts a dike,
and obtained an empirical relation between the critical dis-
tance and the ratio of the load per unit area to the magma
driving pressure. They applied their results to explain the
spacing and sizes of volcanoes in the Cascade Range. Their
results are consistent with our Experiment 1. Since the vol-
ume of crack-filling liquid was fixed, the average liquid ex-
cess pressure was constant in their experiments. As the dis-
tance from the surface load increases, the intensity of the
external stress and the degree of crack deflection decrease.
The ratio of the maximum shear stress on a crack plane to
the average excess pressure must be less than 0.2 for a crack
without deflection.
The gradient of crack normal stress has been pointed out

to affect magma ascent. Rubin (1995) made a comprehensive
review on the role of stress gradient. Our experiments (Ex-
periment 1) have shown that the topographic load reduces
the driving force of magma ascent through the stress gra-
dient. It can change the emplacement depth of magmas.
Pinel and Jaupart (2000) studied the influence of the grav-
itational stress on magma ascent and showed that a volcanic
edifice can work as a magma filter that prevents the eruption
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of dense magmas. Their discussion was, however, based on
the static criterion for a crack to extend (e.g., Watanabe et
al., 1999). The pressure distribution in a crack was assumed
to be hydrostatic. As Lister and Kerr (1991) showed, once a
crack begins to extend, the pressure distribution is dynami-
cally determined. Here, we evaluate the influence of a moun-
tain load on the emplacement depth of magma by applying
the effect of stress gradient to a dynamically ascending crack.
The vertical gradient of the crack normal stress is calcu-

lated for a mountain load with two-dimensional simple ge-
ometry (10 km width and a uniform height). The crack is
assumed to ascend vertically beneath the center of the load.
The formulation used for this calculation is described in Ap-
pendix A. The density of host rocks is assumed to be uni-
formly 2700 kg/m3. The depth profile of the stress gradient
is shown in Fig. 12. The negative value implies more com-
pressive stress at shallower levels. Thus, the stress gradient
works as negative buoyancy. The magnitude of the stress gra-
dient rapidly increases with ascent at shallow levels (<5 km),
and it increases with the mountain height.
The emplacement depth is given as LNB. We consider a

crack to which magma is continuously injected from the bot-
tom, because previous studies (e.g., Nakashima, 1993) have
shown that an isolated crack can contain only a small vol-
ume of magma and cannot play a major role in the magma
transport due to rapid freezing. Lister and Kerr (1991) have
shown that a continuously injected crack changes its propa-
gation direction from vertical to horizontal at LNB. When
the magma supply terminates, magma is emplaced around
there.
The buoyancy comes from the density difference between

magma and host rocks and the vertical gradient of crack
normal stress:

f = �ρg + dσnormal

dz
.

If the negative buoyancy due to stress gradient equals the
buoyancy due to density difference in magnitude, a magma-
filled crack will cease to ascend. LNB is shown in Fig. 12

for various density of magma. When the magma density
is 2400 kg/m3 (the density difference of 300 kg/m3), the
emplacement depth will be 3∼5 km. The emplacement depth
becomes deeper for higher mountain loads. If a volcanic
edifice grows to the height of 2 km, magmas cannot reach to
the surface without a large reduction of the density (∼1000
kg/m3). If the magma density is 2600 kg/m3, the vesiculation
around 40 vol.% is needed to decrease the density by 1000
kg/m3. Though other stress sources as regional tectonic
forces may reduce the effect of a mountain load, we must
stress that the topographic load can affetcs the evolution of
eruption style during the lifetime of a volcano.
5.3 Magma mixing by crack coalescence
Petrological studies have shown that mechanical mixing

of magmas with different compositions often occurs beneath
volcanoes (e.g., Nakamura, 1995). The crack coalescence is
one of viable mechanisms for magma mixing. If the tectonic
stress is weak enough, magma-filled cracks can coalesce
repeatedly in the course of magma ascent: from deep in the
lithosphere to the Earth’s surface.
Our experiment has shown that crack coalescence has di-

rectivity. It can affect the spatial variation in chemistry of
erupted and intruded magma. Magma mixing through crack
coalescence can take place more easily in the direction per-
pendicular to the preceding crack than in the direction par-
allel to it. Most of cracks should be perpendicular to the
maximum tensile direction, even if the stress magnitude is
very low. Thus, the spatial variation of magma chemistry
is more diminished in the direction of the maximum tensile
stress than in the direction perpendicular to it. The directivity
should be taken into account in interpretation of the spatial
variation of magma chemistry.

6. Conclusions
If a liquid-filled crack is not perpendicular to the maxi-

mum tensile stress, it propagates with progressively chang-
ing its orientation. It tends to be perpendicular to the max-
imum tensile stress. The degree of deflection reflects the
competition between the external stress and the liquid excess
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pressure. When the ratio of the shear stress on a crack plane
to the average excess pressure is less than 0.2, no significant
deflection takes place. The volcanic activity in a compres-
sional stress field might be understood in the context of this
competition.
A mountain load generates a stress gradient along a crack,

which can significantly change the driving force of propaga-
tion. The stress gradient can control the emplacement depth
of magmas. It might lead to the evolution of eruption style
during the lifetime of a volcano.
An ascending crack can be a source of external stress to

a following crack. It changes the propagation direction of
a following crack, and can lead to the coalescence of two
cracks. The deflection of a following crack takes place,
when the ratio of the shear stress generated by the preceding
crack to the average excess pressure of the following crack
is larger than 0.2. The coalescence takes place in a smaller
area. It has directivity: the region of coalescence extends
more in the direction perpendicular to the preceding crack
than in the direction parallel to it. It reflects the stress field
around the preceding crack. This directivity might cause a
characteristic spatial variation of magma chemistry through
magma mixing.
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Appendix A. Non-Hydrostatic Stress Generated by
Surface Load

Let us suppose two-dimensional situation shown in
Fig. A1. A surface load is uniformly distributed at −a <

x < +a (a: the half width of the load). The stress generated
by the load can be analytically evaluated as follows (e.g.,
Jaeger, 1969).

σ ′
xx = P

π

[
(θ1 − θ2) − (x + a)z

(x + a)2 + z2
+ (x − a)z

(x − a)2 + z2

]

(A.1)

σ ′
zz = P

π

[
(θ1 − θ2) + (x + a)z

(x + a)2 + z2
− (x − a)z

(x − a)2 + z2

]

(A.2)

σ ′
xx = P

π

z2(r22 − r21 )

r21r
2
2

(A.3)

where P is the load per unit area. From (A.1), the vertical
gradient of σ ′

xx is expressed as

dσ ′
xx

dz
= P

π

[
2a(x2 − z2 − a2)

[(x + a)2 + z2][(x − a)2 + z2]

− (x + a)[(x + a)2 − z2]

[(x + a)2 + z2]

+ (x − a)[(x − a)2 − z2]

[(x − a)2 + z2]

]
(A.4)

The contour of the vertical gradient is shown in Fig. A2. The
magnitude of the vertical gradient is normalized by the ratio
of the load per unit area to the half-width of the load. At

x

z

(x, z)

-a a

θ1θ2

Fig. A1. The definition of the coordinate and angles (θ1 and θ2) used in the
calculation of the stress generated by a surface load (−a < x < a).

x = 0, we obtain

dσ ′
xx

dz
= −4P

πa

1

[1 + (z/a)2]2
. (A.5)

Appendix B. The Liquid Excess Pressure in a Verti-
cally Ascending Crack

The liquid pressure pl is approximately hydrostatic in our
experiments, since the flow in a crack is laminar and the
viscous pressure drop is negligible. The liquid pressure in
a vertically ascending crack is thus given as

pl(z) = pl(z0) + ρl g(z − z0) (B.1)

where z0 and ρl are the depth of the crack center and the
density of the liquid. It will be shown in the following
that the flow is laminar and the viscous pressure drop is
negligible.
The laminar flow is justified from the Reynolds number,

Re = ρl tv

η
(B.2)

where η, t and v are the viscosity of the liquid, the average
half thickness and the ascending velocity of a crack. Dimen-
sions of a crack are defined as Fig. 3. The flow is laminar
if the Reynolds number is smaller than ∼1000 (e.g., Spence
and Turcotte, 1990). In our experiments, the average half
thickness is around 3 mm, and cracks ascend at nearly con-
stant rate (∼10 mm/min.). The Reynolds number is calcu-
lated to be around 0.5.
The viscous pressure drop per unit length is given by

�Pv = ηv

t2
(B.3)

(e.g., Lister and Kerr, 1991). This is calculated to be around
0.07 Pa/m, which is much smaller than the hydrostatic pres-
sure gradient ρl g (8000 Pa/m).

The crack normal stress is composed of hydrostatic and
deviatoric components as

σ(z) = σ(z0) +
∫ z

z0

(
ρgg + dσ ′

xx

dz

)
dz (B.4)

where ρg and σ ′
xx are the density of gelatin and the devia-

toric stress. If the second term in the integral is negligible
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compared with the first term, the liquid excess pressure is
approximately expressed as

pex (z) = [pl(z0) − σ(z0)] − (ρg − ρl)g(z − z0). (B.5)

The average excess pressure is thus given by

p̄ex = pl(z0) − σ(z0). (B.6)

Secor and Pollard (1975) showed that the average excess
pressure on the verge of propagation is related to the crack
height L as

p̄ex = (ρg − ρl)gL

4
. (B.7)

From (B.4), the approximation (B.5) is valid when
∣∣∣∣
dσ ′

xx

dz

∣∣∣∣ � ρgg. (B.8)

The magnitude of the vertical gradient is shown in Fig. A2, in
which the normalizing factor is of the order of 2× 103 Pa/m.
The magnitude of ρgg is around 104 Pa/m. If the normalized
depth is larger than 1, the L.H.S. is less than the R.H.S. by
two orders of magnitude.
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