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Shear instabilities in the dust layer of the solar nebula II.
Different unperturbed states
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In the previous paper (Sekiya and Ishitsu, 2000), the shear instability in the dust layer of the solar nebula was
investigated by using the constant Richardson number solution (Sekiya, 1998) as the unperturbed state, and the
growth rate of the most unstable mode was calculated to be much less than the Keplerian angular velocity as long
as the Richardson number was larger than 0.1. In this paper, we calculate the growth rate using different unperturbed
states: (1) a sinusoidal density distribution, and (2) a constant density around the midplane with sinusoidal transition
regions. An unperturbed state of this paper is considered to correspond to the first stage of shear instability that
occurs as a result of dust settling in a laminar phase of the solar nebula. On the other hand, the unperturbed state
of the previous paper corresponds to the quasi-equilibrium state (Sekiya, 1998) which is attained by the turbulent
mixing. The results show that the growth rate is much larger than the Keplerian angular velocity, in contrast to the
previous result.

1. Introduction
One of the important events of the solar system forma-

tion which have not been understood well is the formation
of planetesimals. The gravitational instability theories
(Safronov, 1969; Goldreich and Ward 1973; Coradini et
al., 1981; Sekiya, 1983) are mathematically neat and were
preferred previously. It was claimed, however, that the
shear induced turbulence might have prevented the dust
from settling sufficiently to be gravitationally unstable
(Weidenschilling, 1980, 1984; Cuzzi et al., 1993;
Weidenschilling and Cuzzi, 1993; Champney et al., 1995;
Sekiya, 1998; Dobrovolskis et al., 1999).

In order to elucidate the growth rate of the shear induced
instability, we performed linear calculations of the pertur-
bation equations of fluid mechanics in the previous paper
(Sekiya and Ishitsu, 2000, hereafter referred to as Paper I)
under the following assumptions: (1) The self-gravity is ne-
glected. (2) A mixture of gas and dust is treated as one fluid,
which is a good approximation in the case where dust ag-
gregate sizes are small (<∼1 cm). (3) The solar tidal force,
which is the sum of the radial component of the solar grav-
ity and the centrifugal force, is neglected; thus the radial
shear ∂v/∂r is not incorporated in the unperturbed state, and
only z-component of the solar gravity is taken into account,
where v is the rotational velocity of a fluid which is a mix-
ture of gas and dust, r is the distance from the rotation axis,
and z is the coordinate perpendicular to the midplane of the
solar nebula (z = 0 on the midplane). (4) The effects of
the Coriolis force are neglected. (5) The effects of the ra-
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dial density and pressure gradients of the unperturbed state
are only incorporated in the unperturbed rotation velocity
distribution v0(z). (6) Local Cartesian coordinates (x, y, z)
are used and we neglect the curvature of a circle with con-
stant value of r and z. (7) The unperturbed state has a con-
stant value of the Richardson number in the dust layer. The
Richardson number J is a non-dimensional number, which
is given by

J = [∂ρ0(z)/∂z]ρ0(z)
−1gz[∂v0(z)/∂z]−2, (1)

where ρ0(z) is the unperturbed total (gas plus dust) density
distribution, gz = −
2

K z is the z-component of the solar
gravity, and 
K is the Keplerian angular velocity. A flow is
stable as long as J ≥ 0.25 for all the region (Chandrasekhar,
1961; Howard, 1961).

According to the numerical results of Paper I, the growth
rate of the most unstable mode is much less than the Kep-
lerian angular velocity as long as the Richardson number J
is larger than 0.1. Thus above assumptions (3) and (4) may
be inadequate, since the growth of the most unstable mode
require several Keplerian periods and the effects of radial
shear and the Coriolis force may not be negligible.

We presumed that the small growth rate of the instability
obtained in Paper I is due to special selection of an unper-
turbed state, i.e. the constant Richardson number solution
(Sekiya, 1998), which we adopted only for simplicity. This
solution corresponds to a quasi-equilibrium state where the
strength of the shear turbulence is just adjusted so that the
marginal shear stability is maintained (Sekiya, 1998); thus
this density distribution is expected to be achieved asymptot-
ically after the shear induced turbulence had occurred. Be-
fore the onset of the shear induced turbulence, there is no
reason for the dust density distribution to have been equal
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to the constant Richardson number solution. Thus we use in

this paper different unperturbed states, and solve the pertur-

bation equation of the shear stability (Eq. (22) of Paper I),

with assumptions (1) to (6) (except (7)) which are mentioned

above. In other words, this paper treats the onset of the shear

instability in the dust layer which had been laminar, and dust

had settled towards the midplane till then. After the onset of

the instability, dust density distribution would achieved the

quasi-equilibrium density distribution (Sekiya, 1998). Plan-

etesimals are expected to have been formed by mutual stick-

ing of dust aggregates in the nebula with the shear-induced

turbulence.

2. Models and Numerical Results
As the dust particles settle toward the midplane, they stick

each other and aggregates of them grow. In a laminar neb-

ula, the dust settling velocity is proportional to the dust ra-

dius (as long as the Epstein law is appropriate) and the dis-

tance from the midplane z (equation (5) of Nakagawa et al.
(1981)). Thus, dust aggregates grow faster in regions with

larger |z|, since the principal relative velocity of dust ag-

gregates is induced by difference of settling velocities of

dust aggregates with different radii (Weidenschilling, 1980;

Nakagawa et al., 1981). As dust aggregates grow, their set-

tling velocities increase. Thus, dust aggregates accumu-

late in a certain region with an intermediate value of |z|
(see 1000 yrs and 1300 yrs density distribution in figure 2

of Nakagawa et al. (1981)). This state is unstable for the

Rayleigh-Taylor instability, and the dust density distribution

is considered to be adjusted as to be constant in the dust

layer (Watanabe and Yamada, 2000). Thus, a dust density

distribution has a tendency to be constant in the dust layer.

Considering this conjecture, we here adopt a model which

has a constant density distribution around the midplane with

sinusoidal transition region:

ρd0(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρd0(0) for |z| ≤ zd − 2h,

ρd0(0){1 − sin[π(z − zd + h)/2h)]}/2

for zd − 2h < |z| < zd ,

0 for zd ≤ |z|,

(2)

where ρd0(0) is the dust density on the midplane, zd is the

half-thickness of the dust layer, and h is the half-thickness

of the transition zones, where the dust density varies from

ρd0(0) to 0 sinusoidally.

We consider two representative cases for h: (1) h/zd =
0.5 where dust distribution is given by a sinusoidal curve

(no constant density regions), and (2) h/zd = 0.1 where

dust density is constant for 80% of the dust layer, and den-

sity abruptly change in thin transition regions sinusoidally

(Fig. 1). As for values of ρd0(0), we consider two represen-

tative cases where (A) ρd0(0) = ρg and (B) ρd0(0) = 100ρg ,

where ρg is the gas density, which is assumed to be constant

in the dust layer (this assumption is valid, since we suppose

a thin dust layer). Thus, there are four combinations as listed

in Table 1.

We here restrict ourselves to the terrestrial orbit, and the

half-thickness of the dust layer is given by

zd = [�d/2ρd0(0)] + h, (3)

0 0.5 1
0

0.5

1

Fig. 1. The distribution of the unperturbed dust density ρd0 given by

Eq. (2), in the cases where h/zd = 0.5 (sinusoidal for 0 ≤ |z|/zd ≤ 1)

and h/zd = 0.1 (constant for 0 ≤ |z|/zd ≤ 0.8, and sinusoidal for

0.8 ≤ |z|/zd ≤ 1). Only the region with z ≥ 0 is depicted.

Table 1. Representative parameters used for a comparative study.

model 1A 1B 2A 2B

h/zd 0.5 0.5 0.1 0.1

ρd0(0)/ρg 1.0 100 1.0 100

where the dust column density is given by

�d = 7.1 fd [g/cm2]. (4)

We assume fd = 1 in most of calculations (this is the case

of Hayashi’s solar nebula model at 1AU (Hayashi, 1981;

Hayashi et al., 1985)), except for Fig. 10. Note that the un-

perturbed total density is given by ρ0(z) = ρd0(z) + ρg .

Figures 2 and 3 show the distributions of the Richardson

number J (see Eq. (1)) for models (1A) and (1B), and (2A)

and (2B), respectively. The Richardson number J is smaller

than the critical value 0.25 for most of regions in models

(1A) and (1B) (Fig. 2), and for thin layers with sinusoidal

density distributions in models (2A) and (2B) (Fig. 3). On

the other hand, the Richardson number J is larger than the

critical value for regions with constant density distributions

in models (2A) and (2B) (Fig. 3).

The growth rate of the instability is calculated under the

unperturbed state described above by solving the linear per-

turbation equation (see equation (22) of Paper I):

d2w1

dz2
+ 1

ρ0

dρ0

dz

dw1

dz
−

(
k2 + 1

v̄

d2v0

dz2

+ 1

ρ0

dρ0

dz

1

v̄

dv0

dz
+ �2

K z

v̄2

1

ρ0

dρ0

dz

)
w1 = 0, (5)

where w1 is the component of the perturbed velocity vertical

to the midplane, ρ0 (= ρg+ρd0) is the total unperturbed den-

sity, k is the azimuthal wave number (we assume the radial
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Fig. 2. The distributions of the Richardson number J given by Eq. (1), for

models (1A) (solid curve), and (1B) (dashed curve). The flow is stable

as long as J ≥ 0.25 for all the region (Chandrasekhar, 1961; Howard,

1961). The dotted line shows the critical value J = 0.25.
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Fig. 3. Same as Fig. 2, but for model (2A) (solid curve) and (2B) (dashed

curve).

wave number to be zero as Paper I), v̄ = v0 − (ω/k), and

ω is the complex angular frequency (the perturbation grows

if ωi (the imaginary part of ω) is positive). Condition at the

boundary between the dust and gas layers is given by (see

equation (28) of Paper I)

dw1

dz
+

(
k − 1

v̄

dv0

dz

)
w1 = 0 at z = zd , (6)

and we assume anti-symmetry with respect to the midplane

as Paper I:

w1 = 0 at z = 0. (7)

We solved Eq. (5) with boundary conditions, Eqs. (6) and
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Fig. 4. The growth rates of the shear instability ωi normalized by the

Keplerian angular frequency �K as functions of the wave number k nor-

malized by the half-thickness of the transition region h, for models (1A)

(solid curve), and (1B) (dashed curve).
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Fig. 5. Same as Fig. 4, but for models (2A) (solid curve) and (2B) (dashed

curve).

(7), and obtained the eigenvalue ω.

Figures 4 and 5 show the growth rates of the shear insta-

bility as functions of the wave number k in cases (1A) and

(1B), and (2A) and (2B), respectively. As seen from these

figures, there is a peak growth rate at a finite wave number

in each case. This feature is similar to the results of Paper I,

where the reason why a peak growth rate exists for a finite

wave number is explained in detail.

Figure 6 shows the peak growth rates as functions of h/zd

for ρd0(0)/ρg = 1.0 and 100. The peak growth rate in-

creases as h/zd decreases, as seen from these figures. Thus

a dust layer with abrupt density change is very unstable.

Figure 7 shows the peak growth rates as functions of

ρd0(0)/ρg for h/zd = 0.5 and 0.1. As seen from this figure,
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Fig. 6. The peak growth rates of the shear instability ωi normalized by the

Keplerian angular frequency �K as functions of the half-thickness of the

transition region h normalized by the half-thickness of the dust layer zd ,

for ρd0(0)/ρg = 1.0 (solid curve) and 100 (dashed curve).
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0

2

Fig. 7. The peak growth rates of the shear instability as functions of the

dust to gas mass ratio on the midplane ρd0(0)/ρg , for h/zd = 0.5 (solid

curve) and 0.1 (dash-dotted curve). The critical density of the gravita-

tional stability is shown by the arrow.

the peak growth rate increases as ρd0(0)/ρg increases. The

dust layer becomes more unstable as the dust settling pro-

ceeds. The gravitational instability of the dust layer could

occur if ρd0(0)/ρg (the midplane dust density divided by the

gas density) exceed 260, in the case of the Hayashi’s nebula

model at 1AU from the Sun (see equations (1) and (13) of

Sekiya (1998)). It is seen that the growth rate of the shear

instability becomes much larger than the Keplerian angular

velocity before the dust layer becomes gravitationally un-

stable (our assumption to neglect the effects of radial shear

and the Coriolis force is appropriate in this case). On the

0 0.5 1
–2

0

2

4

Fig. 8. The shear rates of the unperturbed states normalized by the Keple-

rian angular velocity, (dv0/dz)/�K , for models (1A) (solid curve) and

(1B) (dashed curve).
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Fig. 9. Same as Fig. 8, but for models (2A) (solid curve) and (2B) (dashed

curve).

other hand, time scale of the dust settling is much longer

than the Keplerian period, since we assume that dust ag-

gregates are small (<∼1 cm). Thus the dust layer would be

stirred by turbulence induced by the shear instability. The

dust density distribution is considered to have converged to

a certain state where dust settling and the turbulent diffusion

balanced each other (Cuzzi et al., 1993; Champney et al.,
1995; Sekiya, 1998; Dobrovolskis et al., 1999).

Figures 8 and 9 show the shear rates of the unperturbed

state normalized by the Keplerian angular velocity,

(dv0/dz)/�K for models (1A) and (1B), and (2A) and (2B),

respectively. It is seen that as h/zd decreases and ρd0(0)/ρg

increases, the peak value of the shear rate increases. Thus, it

is seen that the growth rate of the shear instability increases
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Fig. 10. The peak growth rates of the shear instability as a function of fd

(see Eq. (4)) for h/zd = 0.5 and ρd (0) = 100.

as the peak value of the shear rate increases.

Figure 10 shows the peak growth rate as a function of

fd (see Eq. (4)). As fd increases, the peak growth rate de-

creases, which is understood as follows. As fd increases

with ρd(0) = constant, the dust scale height increases, and

the shear rate dv0/dz decreases. Thus the shear instability

is depressed.

The results of this paper show that the growth rate of the

instability is much larger than the Keplerian angular fre-

quency as long as fd ∼ 1, in contrast to the result of Paper I.

The large growth rates obtained in this paper are considered

to result from very small values of the Richardson number

J in the transition region zd − 2h < z < zd (see Figs. 2

and 3). In other words, the kinetic energy supplied by the

shear dv0/dz is converted to the kinetic energy of the per-

turbed flow if J ≈ 0; on the other hand, a considerable part

of the kinetic energy supplied by the shear is lost through

the work done by z-component of the solar gravity �2
K z in

the case of Paper I where J >∼ 0.1, and the growth of the

perturbed flow is suppressed.

3. Conclusion
We calculated the growth rate of the shear instability

which is induced by density gradient vertical to the mid-

plane of the solar nebula. In this paper, we adopted two

types of dust density distributions: (1) a sinusoidal density

distribution, and (2) a constant density around the midplane

with sinusoidal transition regions, instead of the dust density

distribution under the constant Richardson number adopted

in the previous paper (Paper I). The results show that the

growth rate is much larger than the Keplerian angular ve-

locity, as long as the dust density on the midplane is much

larger than the gas density, in contrast to the previous result

(Paper I). The dust layer is considered to evolve to a turbu-

lent state, and the dust density distribution would converge

to a certain state where dust settling and the turbulent dif-

fusion balanced each other (Cuzzi et al., 1993; Champney

et al., 1995; Sekiya, 1998; Dobrovolskis et al., 1999). The

dust density in this state is much lower than the critical den-

sity of the gravitational instability. Thus planetesimals are

considered to have been formed by mutual sticking of dust

aggregates. Further elaborate analyses of the shear-induced

turbulence are needed in order to elucidate the formation

process of planetesimals in more details. For example, in

the quasi-equilibrium state obtained by Sekiya (1998), the

growth rate of the shear instability is much smaller than the

Keplerian angular velocity as calculated in Paper I. In this

state, however, the radial shear and the Coriolis force may

played important roles. In subsequent papers, we plan to

elucidate these problems.
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