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The equatorial GDV fields have been widely measured in North-South magnetometer chains and the data so
obtained interpreted by assuming that these variations are bi-dimensional. This hypothesis limits its application to
the inference of the noon amplitude of the ionospheric current and to the case on which the suspected local Earth’s
structure does not have discontinuities running along the direction normal to that of the electrojet current vector.
In this work we develop a method to interpret three-dimensional GDV fields, based on the Riesz and in the Fourier
integral transforms. This method consists in a numerical code that allows to separate, in real time, any three-
dimensional low frequency field, and a system equations to infer the ionospheric current system at daylight times
and to predict the field induced from the external GDV field in a layered Earth’s model. We discuss the application
of the method to data obtained in North-South magnetometer chains, and, by analyzing a particular case—data from
the Indian geomagnetic observatories—we illustrate how the method increases the amount of information that may

be obtained from these data.

1. Introduction

The geomagnetic variations (GV) are due to the iono-
spheric-magnetospheric current systems, and to the currents
induced by them inside the Earth. So, they have been
extensively used to infer external current morphology and
Earth’s structures.

When the geometry of the source must be taken into
account, as is the case for example for storm-time and
geomagnetic daily variations (GDV) fields, the first step
that must be achieved to analyze GV fields, is to separate
them into parts of internal and external origin.

Once this task is performed, some characteristics of the
external current system and its variations with solar terrestrial
conditions may be inferred from the external field. Also the
Earth’s structure may be investigated, by predicting the field
induced by the external field in a model of the suspected
structure and comparing it with the internal field.

In the case of the GDV fields the frequencies involved are
low enough to allow to the signal to penetrate down to upper
mantle depths and, so, by using these variations the structure
of this Earth’s layer may be inferred (see e.g. Campbell,
1987).

Inparticular, atequatorial latitudes, the GDV were assumed
to be bi-dimensional, and then, they were separated by
performing the Kertz operator of the field components, as
proposed by Kertz (1954). To perform this transform the
involved function must be specified in a profile ranging
from —eo to eo, which is a priori impossible in the case of the
application to equatorial GDV fields, since they are measured
within a finite interval.

The field components are enhanced in a small latitude
interval around the equator. Based on this fact, the first
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attempt to solve the above problem was to represent the total
field as asum of two parts: an incremental or “electrojet” and
an extended or planetary parts, respectively. In such a way
that the electrojet part is made zero out of a finite interval
around the dip by a suitable choice of the extended part. The
Kertz operator was then applied only to the incremental part.

To separate the planetary part the values of the ratio of the
internal to the external contribution were assumed to be
equal to 0.4 and —0.4 for the horizontal and the vertical
components, respectively. These values correspond to the
global average of the ratio of the first few terms of the
spherical harmonics analysis of the S¢ field (see e.g. Forbush
and Casaverde, 1961; Onwumechilli, 1967; Fambitakoye
and Mayaud, 1976). This procedure implies the assumption
that the Earth’s layers are laterally homogeneous and that
the conductosphere begins everywhere at its average depth
which is approximately 650 km (see e.g. Osella and Duhau,
1983).

Nevertheless, by comparing rocket measurements of
geomagnetic field variations at E-region heights with GDV
data, the presence of a strong inhomogeneity in the
conductosphere layer has became apparent (Duhau and
Romanelli, 1979; Duhau et al., 1982).

Therefore, in order to make the method applicable to the
above case a different approach has been introduced by
Duhau and Osella (1982): a suitable continuation of the field
at the end of the measured profile was provided and then the
Kertz operator was applied to the total field. In that way it
was found that the conductosphere’s depth varies strongly
around the Earth, and seems to be related to tectonic features.
It was found, also, that the equatorial dip may be running
along deep discontinuities in the Earth’s conductivity (see
Duhau and Favetto, 1990 and references therein).

The external GDV field is approximately bi-dimensional
only around noon and near the equator, and will induces a
field with the same geometry only in the case that the local



142 S. DUHAU AND E. A. MARTINEZ: INTERPRETATION OF THREE-DIMENSIONAL EQUATORIAL GDV FIELDS

Earth’s structure does not have discontinuities running
along the direction normal to that of the electrojet current
vector. So, to assume that the field is bi-dimensional severely
limits the applications of the above methods. Moreover,
even in the bi-dimensional case, it will be convenient to
evaluate the important of the East West derivative due to the
variation on local time.

To be able to make this evaluation and to separate GV at
times, latitudes or frequencies other than local noon at the
equator and at daily frequencies, a method to separate three-
dimensional GV fields is needed. In particular this will
allow the use of the equatorial GDV data to investigate the
structure of the upper mantle in the general case.

In the present paper, to analyze GDV fields, we apply a
system equation developed by Hartmann (1963) and by
Weaver (1963), thatallows separating any three-dimensional
low frequency field known over a plane surface into parts
originated above and below the surface. This system equation
is based on the Riesz transform that includes singular inte-
grals. So to apply it we introduce a mathematical algorithm
able to compute the principal values of a singular integral.

After the field is separated, a theory must be introduced to
interpret the results. For the bi-dimensional case the external
field was interpreted by assuming very simple forms for the
external field (see e.g. Onwumechilli, 1967; Duhau and
Favetto, 1990). In the present paper we introduce a theory
based on the Fourier transform that allows to represent
general three-dimensional fields together with a general
formulae to infer, from the external field so described, the
field induced in an horizontally layered Earth’s model.

Most of the GDV equatorial data have been measured in
North-South chains. Therefore, to increase the information
that may be obtained from these data, we discuss the ap-
plication to them of the above separation method and in-
terpretation theory. This is possible under a hypothesis that
the East-West coordinate is equivalent to the time coordi-
nate in the reference frame fixed to the sun (Campbell,
1987).

As an example we apply the method to GDV data from
India (Indian Institute of Geomagnetism, 1983), and the
results are commented in Section 4.

2. The Method of Separation of GV Fields into
Part of Internal and External Origin
2.1 Theory
We restrict ourselves to low frequencies, such that the
displacement current is negligible, and we assume that there
are no sources at ground. Thus, the magnetic field, B,isgiven
by:

B=-VO, (1)

where Q is the scalar potential that satisfies, both, the
Laplace equation:

ViQ=0, (2)

and the boundary conditions.

We assume a plane geometry, and therefore the Fourier
transform may be applied to solve Eq. (2). The general
solution found by this procedure is (see e.g. Weaver, 1963):

Q=Q, +Q,. 3)

The coordinate system, (x, y, z), is defined as usual: north-
ward, eastward, and downward respectively. In that coor-
dinate system, the subscripts ¢ and i refer to the potentials
originated in sources that are in the z <0 (external) and in the
z > () semi space, respectively, and:

1 _
Qi = [;: Mei(v. 0.z m)exp(Frz)dlan,  (4)

with:

V=N &,

(4.1)
and

A

Moy =22 expli(er-+ m)} 42)

where i is the imaginary unit and ée’i are the Fourier trans-
forms of the vertical component of the field of external and
internal origin, respectively.

The application of the Riesz transform to the separa-
tion of a potential field A system equation that allows
separating any potential field known over a plane into parts
originated by sources located above and below the plane
may be found by using the formalism of the previous
section. The procedure may be summarized as follows
(Hartmann, 1963; Weaver, 1963): introducing Egs. (3) and
(4) in Eq. (1) and applying the convolution theorem, it is
found that the internal and external parts of the GDV field
component (X, Y, Z), are given by:

X =1/2[X£RZ| (5.1)
Y,;=1/2[Y+R,Z], (52)

Z.;=1/2[ZF RX £ R)Y],

(5.3)

respectively. In the above equations R;f are the Riesz
transforms of the function f, defined as:

R, f(x,y)= j%z f(u, V)N, ,dudv, (6)
with:

X—u

N, =
(=) + ()]

(6.1)

3/2°
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N2= YoV

75 (6.2)
[+ (r=v)’]

In the case that the field is two-dimensional, and the
coordinate system is selected such that fdepends only on x,
R, reducesto the Kertz operatorand Ryfand Yare indentically
Zero.

Equations (5) and (6) allow to separate the components of
a three-dimensional field, which are known over the plane z
=0, into parts of internal (z > 0) and external (z < 0) origin.
However, since V| » — oo foru, v — x, y, performing the Riesz
transforms implies to compute integrals of singular functions.
Therefore to apply the above equations this problem should
be solved first. In the following we discuss a method that
allows computing the principal value of Eq. (6).

2.2 A numerical method to compute the Riesz transform

The Riesz transforms are singular integrals. Therefore the
ordinary methods of numerical integration like Simpson,
variable quadrature or Monte Carlo are not suitable to
compute them. To solve this problem the field may be
represented in a basis L2(%R) whose Riesz transforms are
analytical functions, as for example the Fourier one, and
then the Riesz operator applied over the components of that
basis. In fact, Agarwal and Weaver (1990) used this procedure
to compute the Kertz operator.

From the convolution theorem Eq. (6) may be rewritten
as:

Rl,zf(an’) = [Cl,zf(zfa TI)] (7)

C - (62 +i1§72)1/2 , (7.1)
C2 =(§2J#9 (72)

where [ |¥isdefined as for Eq. (15) and J} (&, ) isthe Fourier
transform of f{(x, y). Note that the Fourier transform of a
regular function is also a regular function and that Cy , — =+i
for &, n — 0 so the arguments of the inverse Fourier
transforms in Eq. (7) does not have singular points and then
the involved integrals may be computed by the standard
numerical algorithms. To perform the Fourier transforms
(and inverse transforms) we have used the Fast Fourier
transform algorithm as given by Press ef al. (1992).

To test the numerical method we have applied it to a dipole
field. As forany potential field, the components of the dipole
field are related by the Riesz transforms as (see e.g. Weaver,
1963):

bx = Rlbz7

(8.1)

b, = Ryb.. (8.2)

The numerical computations of the Riesz transforms
necessitate an evaluation of the integrals involved in Eq. (7)
over a finite domain instead of over the entire real plane. To
evaluate the error introduced by this limitation we have
computed the Riesz transforms of b., from its analytical
expression, over an square domain of side nA with z an in-
teger and /4 the height above ground at which the dipole is
located. Thus we have compared the values of b, and b,
obtained from Eq. (8) by this procedure, with the values
obtained from the corresponding analytical expressions. For
the x component we found that for n > 3 the relative error is
less than 0.2% in the center of the square, increasing to the
border of the square and minimizes at » = 5 in which case is
of around 5% at the border. The results are similar for the y
component.

2.3 Some comments about the application to low fre-
quencies GV fields

Equations (5) and (6), these last computed with the nu-
merical algorithm discussed in Subsection 2.2, may be
applied to a field known over a plane surface at a fixed time,
to separate the field into the part originated by sources above
the plane from that originated below.

The assumptions involved in the derivation of Egs. (5) and
(6) are that the displacement current may be neglected and
there are no sources of the field at ground. The first ap-
proximation sustains only for low frequency fields and the
second, due to the low conductivity of the Earth at ground,
for any frequency. None of the above assumptions implies
a restriction on the geometry of the source and so both, the
UT and the LT, time variations of the signal are taken into
account if the method is applied to GV measured over a
region at a fixed UT (see also Takeda, 1991).

The method implies plane geometry, in the case of the
GDV fields the domain over which the field is measured is
a spherical surface. We have evaluated the error introduced
by approximating it by a plane surface. We found that this
is less than 0.1%.

Instead of a discrete Fourier spectrum of the GDV, like in
the spherical harmonic analysis of these variations, to use
the Fourier transform formalism allow describing continuum
spectrum. This feature makes the method specially suited
forthe application to equatorial data since—as was discussed
by Chapman and Bartels (1940)—a discrete spectrum do not
allows to describe the sharp equatorial enhancement of the
GDV field accurately enough.

Theinference ofionospheric currents at daylight times
from the external field In analyzing the Global GDV field
by the spherical harmonic expansion of its components, it is
usually assumed that the currents are circulating in an
infinitesimal layer concentric with the earth (see e.g.
Chapman and Bartels, 1940). Similarly we may assume that
the ionospheric current is circulating in an infinitesimal
layer located a constant height # (=107 km).

With the above approximation, which limits the application
of the method to daylight times, the ionospheric current
system may be found by performing the analytical con-
tinuation of the field to the height 4 and by computing from
this the current intensity from the Ampere’s law. It is found:
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| _
Jy = Zxﬂ'_,uo 22 (VHe)exp(—vh)dfdn, 9)

where Z is a unit vector in the vertical direction.

3. A Method to Analyses GDV Field Measured in
North-South Profiles

The interest in the equatorial electrojet phenomenon has
lead to many researches to measure the GDV field around
the equator. The electrojet flows along the dip equator and,
around noon, its East-West extend is very large as compared
with its North-South one. Therefore most of the measure-
ments have been performed along magnetometer chains
aligned, as far as possible, to a meridian. Then, the data so
obtained have been interpreted by assuming that the electrojet
is bi-dimensional in a Cartesian coordinate system with one
ofitsaxis aligned with the dip equator (see e.g. Onwumechilli,
1967; Duhau and Favetto, 1990).

Notices that due to the bi-dimensional geometry assumed
by the above methods only local noontime values of south-
north profiles of the GDV components may be considered.
This implies that, both, UT and LT are lost when applying
them.

However, the LT variation of these profiles may be used
to infer three-dimensional fields by making the assumption
that the GDV are stationary in a coordinate system fixed to
the Sun (Campbell, 1987) and, therefore, taking the temporal
variation as equivalent to the East-West one. In fact, this
approximation which leads to lost UT variations is made
when applying spherical harmonic expansion to analyze Sq
fields (see e.g. Chapman and Bartels, 1951; Matsushita,
1967; hereafter, M67).

3.1 Theory

The external field We assume that the ionospheric
current system that leads to the field is stationary in the
coordinate system fixed to the sun. Therefore, in that co-
ordinate system the scalar potential field from which the
external magnetic field, l§e, may be derived (Eq. (4)) is
stationary.

To find the expression of the field as seen in the coordinate
system moving with the Earth we should perform a Lorentz
transformation.

For non-relativistic velocities the convective electrical
currents may be neglected (Takeda, 1991) and so the mag-
netic field is invariant. Then the potential function, .2, from
which that field may be derived in the Earth’s frame is given
by:

Q¢ =Q (x,y—ut,z),

: (10)
where u is the tangential component of the earth rotation
velocity at the earth’s surface.

It is readily shown that the solution of Eq. (2) for a
potential function of the form (10) is given by Eq. (4) with
definition (4.1), and definition (4.2) replaced by

A

I, = ZT expli(&x +n(y —ut))] (10.1)

On the other hand, when UT variations are ignored the
external electric field is stationary in the Sun’s reference
frame. Therefore the induced current are made not by the
time variation of this field but by the time derivative of the
dynamo field, Ee, as seen in the frame fixed to the Earth,
which is given by (see e.g. Takeda, 1991):

E, =-iixB,,

S

(1)

where for simplicity we have omitted the superscript g.
From this and Egs. (1) and (4) (with definitions (4.1) and
(10.1)), it follows:

E, = ﬁ [, . & exp(-vz)dédn, (12)

with

- Il
= 0) £ >
£, u(v II., . )

(12.1)
and from Egs. (1), (4) and (10) the time and the east west
derivative of the external field as seen in the Earth’s refer-
ence frame are related by:

e (13)

The field induced within the Earth The external electric
field induces in the Earth currents whose characteristics
depend on the boundary conditions imposed by the Earth’s
structure, therefore it is impossible to predict the field
induced by the external field in general case. Nevertheless,
the solution of this problem for the case of a horizontally
stratified Earth model may be found by the Fourier transform
formalism, and is presented in the next paragraph.

The field induced on a horizontally stratified Earth
model The potential function of the magnetic field induced
in the Earth’s interior by a field whose potential is of the
form (10) is given by:

Qf =Q;(x,y—ut,z).

i (14)

As in the previous paragraph, the solution of Eq. (2) for a
potential function of the form (14) is given by Eq. (4) with
definition (4.1) and definition (4.2) replaced by:

A

IT; =%exp[i(§x+n(y—ut))]. (14.1)

Introducing Eqgs. (1) and (4) (with definitions (4.1) and
(14.1)) in the Poisson and Ampere equations and taking into
account the boundary condition at ground, it follows that
outside the earth the induced field may be set in the form:
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(15)

= 1 -

where
- (0P _BP aIl,
E; _(_&y +uvll,, FaLay ) (15.1)
with:
u AT, +11,)
=2 e 2
P ) Py (15.2)

Similarly, the induced field inside the conductor is found
to be of the form:

1

E-L
2r

.[%2 E‘[ak exp(—@kz) + B, exp(ekz)]dgdn, (16)

. [(oP oP
82(5,5,0} (161)

and the subscript k refers to the k-layer; the coefficients oy
and f; may be found by applying the boundary conditions at
each interface and 6 are constants that are determined by
imposing the restriction that the diffusion equation (see e.g.
Price, 1950):

6(6 . E) ~V?E =470, %

must be fulfilled within each conducting layer: In the above
equation oy is the conductivity of the layer k. Introducing (14)
on that equation, it follows that:

07 =& +n? — 4miunc,. (16.2)

The magnetic field inside the conductor is found by
introducing (16) inthe Faraday’s law and taking into account
(10). Finally the solution is obtained by introducing the
boundary conditions for the magnetic field at each interface.

Price (1950) found the solution for a semi-infinite con-
ductor and a field of the form (16.1) with P an arbitrary
function. It is easy to generalize it to a layered model (see
also Duhau and Favetto, 1990) and to apply itto a field of the
form (14), we find:

X, =lek,]’, (17.1)

(17.2)

z,=[oz.]",

where [ f']V is the inverse of the Fourier transform of the
function fand ¢ is given by:

(17.3)

(v-6,)+a(v+6,)

v r0) (=0, (18)

with ¢ given by the recurrence formulae:

(9k =04y ) + O‘k+1(9k + 9k+1)

o = exp(—26,Ap, ), 18.1
¢ (Gk +9k+1)+ ak+1(0k _9k+1) ( g k) ( )
beginning with:
(en _6n+1)
=" —20,A 18.2
an (en +9n+1) exp( n pn)’ ( )

where Apy is the thickness of the & layer. The n + 1 layer
extends to infinity.

Once the GDV are separated into parts of internal and
external origin—by applying Eqgs. (5) and (6)—Equations
(17) and (18) allow to predict the field induced by the
external field on a horizontally stratified Earth.

3.2 Application

The method of interpretation presented above requires
that the tangential velocity at the Earth surface being a
constant. The error that this approximation introduces in the
determination of the phase shift between the external and the
internal field is 0.1% at the equator and increases with
latitude, being 5%, at the latitude of 30°.

To improve the precision when computing the Riesz
transforms is convenient to make same estimation of the
components beyond the measured profiles, instead to make
the field zero there (as in the example of Subsection 2.2). For
GDV equatorial data the best approximation is to use the
Global field as described by the spherical harmonic analysis
of Global data obtained at the same solar activity, and
normalizes it to the value of the measured field at the border
of the measured surface. That criterion is a generalization
for three-dimensional GDV fields of the criterion proposed
by Duhau and Osella (1982) for bi-dimensional GDV fields.
3.3 Some comments about the inference of the upper

mantle structure

To apply equatorial GDV North-South profiles to the
inference of upper mantle structures, the noon amplitudes of
the components of the GDV field were separated by the
Kertz operator. The external part of the field thus separated
was assumed to be a single diurnal wave, which was rep-
resented by the sum of an incremental and an extended part.
This last was represented by a sum of a constant and a single
harmonic function—with n=0and £=7.6 x 1077 m~'—.
Under these assumptions only a very simple Earth’s model
may be resolved: a non-conducting layer above a semi-
infinite perfect conductor. By this procedure the
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conductosphere depth near dip equator was found (see e.g.
Duhau and Favetto, 1990, and references therein).

The method presented here allows finding the wave spec-
trum of the internal and external GDV fields, and so it may
be applied to solve more realistic Earth’s models. In particu-
lar, the two-dimensional method allows to find the ratio of
the amplitudes 4 (=|c|) but not the phase shift ¢
(=arctan(imag(a)/real())) between the internal and exter-
nal fields, and therefore even in the simplest case of a single
harmonic wave the three-dimensional method improves the
information that may be found from equatorial GDV fields.

To illustrate this point, we have computed the parameter
oa—from Eq. (18) with 6; given by Eq. (16.2)—for single
diurnal (n=1.6 x 1077 m~!) and semidiurnal (n=3.2 x 10~
"m~") waves with E=7.6 x 107 m™!, and for a three-layered
Earth’s model: a non conducting layer followed by a 0.1
mho/m layer of thickness Ap above a semi infinite perfect
conductor with a plane boundary located at a depth p.. This
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o 0.40-
o
2
g
< 020
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) 4
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o
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Fig. 1. Theratio of the internal to the external parts of the noon amplitude
of the diurnal geomagnetic variation and the phase shift of the internal
with respect to the external field for the diurnal and semidiurnal
geomagnetic variations. For the case of a three layered conductivity
model: a not-conducting layer followed by a 0.1 mho/m layer of
thickens Ap above a semi-infinite perfect conductor with its boundary
at a depth p..

simple model was selected since, according to the result of
Duhau and Favetto (1990), the layers that contributes appre-
ciably to GDV fields are the conductosphere and a less
conductive layer above it. Also, the conductosphere con-
ductivity may be considered infinite at daily frequencies,
and that of the less conducting upper layer has been well
determined from magnetotelluric methods (see e.g. Riesz,
1983).

Figure 1 shows the ratio for the diurnal variation—which
for the semidiurnal is almost the same—and the phase shift
for the diurnal and semidiurnal variations. Note that for a
given value of 4 there is an infinite set of values of p. and Ap
and, so, only a minimum value of p. may be determined,
which corresponds to the case Ap = 0 (see also Duhau and
Favetto, 1990).

However, ¢ depends on Ap, which allows determining
univocally the actual set. For example, for the average
global case p. = 600 km and Ap =200 km (see e.g. Pecovi
etal., 1987) A=0.4 and ¢ =20 min (5°) for the diurnal and
¢=60min (15°) for the semidiurnal variations, respectively.
These values are in the range found by the spherical harmonic
analysis of global data (see e.g. M67, and references therein).

Local values of the conductosphere depth ranging from
250 km to 1000 km where obtained from equatorial GDV
data (Duhau and Osella, 1985 and references therein).
Consequently, local values of the ratio between the internal
and the external fields for the daily frequency are ranging
roughly from 0.7 to 0.2 (see Ap = 0 curve in Fig. 1).

Therefore there exists a large departure of the local value
of the ratio between the internal and external parts of the
GDV field fromits average—0.4—value. This fact indicates
that separation methods based on the assumption that this
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Fig. 2. The location of the Indian geomagnetic observatories and the
tectonic features that delimit the Indian Plate (this last has been adapted
from The National Geographic Magazine, 1995).
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harmonic representation of the global GDV field determined at the same solar activity.
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value sustain for the planetary field, precludes the applica-
tion of that methods to the study of local variation of the
upper layer structure. Also, it may introduce distortions in
the separated internal and external parts of the electrojet
fields.

The above simple model was presented only as a mode of
an example. To find the actual structure of the upper mantle
and its conductivity distribution, the entire wave spectrum
should be considered, even at noon. In particular, the layers
laying above the conductosphere must be investigate with
the help of higher frequencies, since these layers may
contribute to the phase shifts of the GDV wave spectrum.
Also, the Indian equatorial zone is surrounded by the ocean
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that extend from the dip equator freely to the south (see Fig.
2)and highly inhomogeneous distribution of land and ocean,
may substantially contribute to the phase shifts for daily
frequencies (Takeda, 1991).
3.4 Application to the Indian equatorial North-South
chain

We have applied the method to data from India, provided
by the Indian Institute of Geomagnetism (1983). These data
correspond to hourly average during the March equinox of
1983 and have been taken along an almost North-south
chain, the locations of the stations are shown in Fig. 2. Note
that there are six geomagnetic stations which—with our
methodology—are equivalent to 144 stations.
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Fig. 4. The external, X,, and the internal, Xj, parts of the northward component of the GDV field of Fig. 3 in the interval covered by the Indian

observatories.
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We have taken the coordinate axes as in the previous
paragraph, with the x-axis along the dip equator. To com-
plete the field profiles outside the North-South interval
covered by the magnetometer chain, the global field repre-
sented by a spherical harmonic series as given by Chapman
and Bartels (1940) for the year 1905 (a year of a solar
activity similar to that of the data) has been used.

It should be observed that all but one geomagnetic station
(Trivandrum, dip latitude 1.03°S) are located to the north of
the dip equator. So, to the north of Sabhawala (20.95°N) the
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North-South profiles of the field components for each hour
have been completed using the global field. It was not
possible to do the same to the south since the spherical
harmonic analysis does not represent properly the GDV
field at electrojet latitudes (see e.g. Chapman and Bartels,
1940). Therefore, to complete the profile of the X and Z
components to the south of Trivandrum, the global field was
subtracted from the total field in the measured interval of
latitudes at the north, and the result was added to the global
field. Finally, we have interpolated the experimental values
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Fig. 5. Equal intensity contours of the horizontal GDV field (a) the external and (b) the internal parts, respectively (1 unit = 1 nT).
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by a three-degree spline algorithm, the data so processed are
shown in Fig. 3.

The separation of the field We have applied Eq. (5) to
the above data with the help of the algorithm presented in
Subsection 2.2 (Eq. (7)). The external and the internal parts
ofthe X component thus found around noon times are shown
in Fig. 4. On that figure we have restricted ourselves to the
North-South interval covered by the Indian data. Out of this
interval the data correspond to a global average and have
been only used to evaluate the Riesz transform.

The external and the internal fields By introducing the
external field in Egs. (17) and (18) the field induced by this
in a given Earth’s model may be computed. According to
previous results we have assumed a two layered model,
consisting in: a non conducting horizontal layer up to a deep
of 1000 km, and semi infinite perfect conductor below
(Ramaswamy ef al., 1985; Chamalaun ef al., 1987; Favetto
et al., 1992).

Figure 5 shows the equal intensity contours of the horizontal
GDV field. The two-layered model predicts a field distri-
bution which morphology is quite similar to the external
one. While the actual internal distribution (Fig. 5(b)) is
similar to the external (Fig. 5(a)) only near the equator but
has striking differences beyond 12°N.

These departures of the computed horizontal field distri-
bution from the actual one indicate the presence of an
inhomogeneous conductivity distribution in the region.
Evidence for a strong inhomogeneity at the North-west of
India, was found also by Parkinson (1987) in data from
Arora et al. (1982).

This results may be interpreted by observing the highly
inhomogeneous distribution of land and ocean and the
strong tectonic features that has the Indian region (see Fig.
2).

In fact, model computations of the induction effect of the
GDV in arealistic model of ocean-land distribution indicate
that two strong current vortices are produced by these
variations in the ocean around the Indian region (see figure
2 in Beamish ef al., 1983 paper). This system current may
substantially contribute to the total GDV at land in that
region.

Also, according to previous results (see e.g. Duhau and
Osella, 1985, and references therein), some tectonic features
are associate to lateral discontinuities in the Earth’s struc-
ture at upper mantle depths that leads to lateral conductivity
contrasts.

In particular, in India the contact between the Eurasian
and the Indian plates might be associate to a large conduc-
tivity contrasts. This tectonic feature is just near the
Sabhawala observatory, which is located too far—more
than 12,000 km—from the next observatory (Alibag) (see
Fig. 2). This lack of data may leads to a large error in the
interpolated field components, more since these might be
very irregular there. Therefore, a denser chain of observa-
tories is needed around the contact between the plates in
order to have the necessary data to make a quantitative study
of this interesting tectonic feature.

4. Summary and Conclusions
We have developed a method of interpretation of three-

dimensional GDYV fields at equatorial latitudes based on the
Riesz and the Fourier transforms formalism.

The method has two steps:

(1) The field components are separated in external and
internal parts by the application of the Riesz transform
trough the system equations obtained by Weaver (1963) and
by Hartmann (1963) (Eq. (5)). The Riesz transforms are
singular integrals; therefore an algorithm based on the
Fourier transform is introduced to find the principal value of
a singular integral (Eq. (7)). By applying the fast Fourier
transform to the numerical code that build up this algorithm
the separation of the field components is performed in real
time.

(2) Theexternal current system is found from the Fourier
transform of the downward component of the external field
(Eq. (9)). And the field induced by the external field in
horizontally layered model is computed from Egs. (15) and
(16). By comparing the field so computed with the actual
one, the parameters of the conducting layers may be found
in the case that the upper mantle layers underneath are
laterally homogeneous. Otherwise the upper mantle lateral
inhomogeneity are detected, and by comparing it with the
tectonic features of the region, a realistic laterally
inhomogeneous model may be workout.

The method of separation summarized in (1) may be
applied to any low frequency GV field known in a plane
domain at any fixed UT, in which case both, UT and LT,
variations are retained (see also Takeda, 1991). It presup-
poses that the field is known over a plane domain. The error
introduced by this assumption is less than 0.5%. Also, it
assumes that the Earth’s tangential velocity being a constant,
that introduces a relative error in the determination of the
phase shift between the external and the internal fields less
than 0.5% at the equator increasing with latitude to reach 5%
at 30°.

The method of interpretation summarized in (2) may be
applied to LT GDV field known on a south north profile.
This is possible under the assumption that the external
current system that leads to the GDV variations is stationary
inacoordinate system fixed to the Sun (Campbell, 1987). So
UT variations are disregarded, which limits the application
of the methods to GDV fields measured in geomagnetically
quiet conditions.

We have applied the method, under the above assumption,
to data obtained by the Indian geomagnetic observatories
and provided by the Indian Institute of Geomagnetism
(1983). This example has illustrate how its application to
North-South profiles of the GDV field components allows
to detect the local three-dimensional structure of the upper
mantle.
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