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Bubble expansion rates in viscous compressible liquid
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A new equation has been derived for radial expansion of a bubble in viscous liquid, taking into account the
compressibility of liquid. This model is important in understanding the time-evolution of the bubble growth in
a cavitating flow. We solved the equation of motion of viscous liquid and obtained the velocity field and the
pressure distribution in liquid. It is found that the expansion rate of a bubble in viscous compressible liquid
is governed by the friction force due to viscosity as well as the surface tension, the inertial force, and the gas
pressure. Further, the bubble expansion rate is brought by the same expression to that in an incompressible liquid
only in the case that the liquid is in a hydrostatic state before the bubble grows.
Key words: Bubble, expansion, compressible, viscous, cavitation.

1. Introduction
Bubble dynamics is an important problem in many fields

of science and technology. When liquid is heated or decom-
pressed, bubbles are formed as a result of the phase change
from liquid to gas or the exsolution of volatile components
in liquid. In these cases, gas bubbles appear in liquid. Such
two-phase flow is usually called cavitating flow: For ex-
ample, the magma flow in conduit or the rapid flow over
a submerged body are observed as the cavitating flow. The
coexistence of gas bubbles with liquid significantly changes
the feature of the liquid flow. It is well known that, for the
same mass, matter occupies much larger volume in the gas
phase than in the liquid phase. So suddenly increasing the
volume ratio of the gas phase can accelerate the flow effi-
ciently even if the mass ratio of the gas is small (Papale,
2001). In another case, the drag coefficient in cavitating
flow generally depends on the volume ratio of the bubbles
(Batchelor, 1967). To understand the behavior of these cav-
itating flows, it is essential to know how the bubble growth
proceeds in liquid.
The growth of bubbles proceeds in two stages. In the

early stage, it is important to solely grow to size as a result
of the expansion or the diffusive flux of the volatile compo-
nent from surrounding liquid, since the distance between
bubbles is very long. On the other hand, since bubbles
grow enough and the distance between bubbles shortens,
the coalescence of a collision between bubbles becomes a
prominent process of bubble growth. The transition from
the early stage to the latter stage in the dynamics of bub-
bles significantly depends on the behavior of the bubbles,
i.e., the growth rate, in the early stage. Therefore, in this
work we focus on bubble expansion in the early stage. The
radial motion of an expanding spherical bubble immersed
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in unbounded liquid was examined by many authors (e.g.,
Plesset and Prosperetti, 1977; Prosperetti and Lezzi, 1986).
The expansion rate of a gas bubble is controlled by the bal-
ance between the gas pressure and the liquid pressure, the
surface tension, and the viscous force at the bubble surface.
The liquid pressure depends on the velocity field in the liq-
uid surrounding a bubble. Therefore, in order to derive the
bubble expansion rate, information on the liquid motion is
required.
The analysis of a problem in cavitating flow was origi-

nally made by Rayleigh (1917). He solved the problem of
the collapsing spherical cavity in an incompressible liquid.
He made the same assumption that the liquid is incompress-
ible and flow around the cavity is spherically symmetric
with only a radial component. After this study, several stud-
ies made the assumptions in investigating the oscillations of
a gas bubble as being the same as Rayleigh’s model (Ples-
set, 1949; Lauterborn, 1976; Plesset and Prosperetti, 1977).
However, the assumptions of incompressibility and spheri-
cally symmetric flow on the expanding bubble lead to a se-
rious theoretical disadvantage. The spherically symmetric
radial and incompressible liquid should bring the velocity
field around a bubble to be proportional to r−2, where r is
the distance from the bubble center. On the other hand, such
a velocity field brings the total moment integrated from the
bubble surface to infinity per unit solid angle as being equal
to infinite. Then, an additional infinite moment is needed
to accelerate the bubble expansion rate. To say conversely,
we deduce that bubbles cannot virtually expand in an in-
compressible liquid. This theoretical inconsistency princi-
pally originates from the assumption of incompressibility.
To present an appropriate model of bubble expansion, the
compressibility of liquid should be considered.
Several authors developed the radial motion of a gas bub-

ble in an ideal liquid, taking into account the liquid com-
pressibility and examined the rapid expansion of bubbles
such as explosion (Trilling, 1952; Keller and Kolodner,
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1956; Prosperetti et al., 1988). In the field of volcanology,
theoretical models of bubble expansion due to decompres-
sion were developed in several previous studies (Sparks,
1978; Toramaru, 1995; Proussevitch and Sahagian, 1998).
However, these models assume that magmas are incom-
pressible and use the analytical expression of the bubble ex-
pansion rate on the basis of Rayleigh’s solution overlooking
the theoretical inconsistency mentioned above. Moreover,
magma is a highly viscous liquid. The high viscosity of liq-
uid such as magma would have some effects on the bubble
expansion. Some studies (Keller and Miksis, 1980; Pros-
peretti and Lezzi, 1986) derived the analytical expression
of the radial expansion of bubble, taking into account the
viscous term in the equation describing the dynamical bal-
ance at the bubble surface. However, they assumed that the
Reynolds number is larger than unity and neglected the vis-
cous terms in the equation of liquid motion. Therefore, it
is unclear whether their models produce well the motion of
bubble in a highly viscous liquid. Up to now, there have
been no available studies which examine bubble expansion
in a viscous compressible liquid. So, we should develop
an analytical expression of the expansion rate of bubbles in
this study.
The aim of this paper is to derive the analytical expres-

sion for the radial dynamics of a spherical bubble embedded
in viscous liquid, taking into account the liquid compress-
ibility. To do so, we will solve a set of equations of motion.
This paper is organized as follows: In Section 2, we de-
scribe the basic equations and transform the equations of
motion into a simple form. We derive an analytical model
on the velocity and the pressure of viscous compressible liq-
uid and provide an expression describing the radial motion
of a gas bubble in Section 3. The conclusion of our study
will be presented in Section 4.

2. Mathematical Formulation
In this section, we describe the basic equations and

boundary conditions governing the velocity and the pres-
sure in liquid spreading infinitely. As assumed by sev-
eral studies (e.g., Keller and Miksis, 1980), the liquid is
assumed to be isothermal. Further, we consider a single
sphere of gas with the radius R in the liquid. Setting such
a situation is approximately valid in the case that the dis-
tance between bubbles is much larger than bubble radius
R. From this condition we naturally choose spherical coor-
dinates and make the assumption that the velocity and the
pressure in liquid are spherically symmetric. For the same
reason, we assume that the velocity field around the bubble
has only a radial component.
Taking the assumptions of the spherical symmetry and

the radial motion, the motion of liquid is governed by the
equation of continuity (Landau and Lifshitz, 1987)

∂ρ

∂t
+ 1

r2
∂

∂r

(
r2ρv

) = 0 (1)

and the equation of motion

ρ

[
∂v

∂t
+ v

∂v

∂r

]
= −∂P

∂r
+

(
ζ + 4

3
η

) (
�v − 2v

r2

)
, (2)

where ρ(r, t), P(r, t), and v(r, t) are the density, the pres-
sure, and the radial velocity, respectively, in the liquid.

Since we consider compressible liquid, two different vis-
cosities are presented. In Eq. (2), η and ζ are the viscosity
and the second viscosity, respectively. To obtain a relation
between the density and the pressure, we need the equation
of state. It is assumed to be

P = P∞ + c2 (ρ − ρ∞) , (3)

where c is the sound velocity, P∞ is the hydrostatic pressure
in the liquid, and ρ∞ is the liquid density at infinity. Then,
the sound velocity is assumed to be constant owing to that
the liquid is isothermal.
The boundary conditions on the velocity and the pressure

are imposed on the bubble’s surface, i.e., the position r
equals R, as

Pgas = P(R, t) + 2γ

R
− 4η

3

(
∂v(R, t)

∂r
− v(R, t)

R

)

− ζ

(
∂v(R, t)

∂r
+ 2v(R, t)

R

)
(4)

and, at infinity, {
v = 0,
P = P∞,

(5)

where Pgas is the pressure within a bubble and γ is the sur-
face tension of an interface between gas and liquid. Equa-
tion (4) represents the balance of forces acting on the inter-
face between a gas bubble and liquid. Since the expansion
rate of the bubble, Ṙ, is equivalent to the liquid velocity
at the bubble’s surface, another boundary condition on the
velocity of liquid at its interface is given by

Ṙ = v(R, t). (6)

As for initial distributions of the velocity and the pressure
in the liquid, we specify them in this paper as arbitrary
functions of radial coordinate r to express our result in a
general form.
We assume that the change in the density ρ(r, t) and the

liquid velocity v(r, t) are very small perturbations. This
assumption is valid as long as the expansion rate of bubbles
is much smaller than the sound velocity of the liquid. The
density is divided into the two parts of the unperturbed term
ρ∞ and the perturbed term δρ(r, t) as

ρ(r, t) = ρ∞ + δρ(r, t). (7)

Substituting Eq. (7) into Eqs. (1) and (2), equations for the
perturbation are obtained as

∂δρ

∂t
+ ρ∞

r2
∂

∂r

(
r2v

) = 0 (8)

and

ρ∞
∂v

∂t
= −∂P

∂r
+

(
ζ + 4

3
η

) (
�v − 2v

r2

)
, (9)

respectively. In the derivation of these equations, we lin-
earize them. Using Eq. (3) to represent pressure gradients
as gradients of density and substituting Eq. (8) into the time
derivative of Eq. (9), we obtain an equation of v(r, t) as

∂2v

∂t2
=

(
c2 + ν

∂

∂t

)
∂

∂r

[
1

r2
∂

∂r
(r2v)

]
, (10)
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where ν represents the extended kinematic viscosity defined
by

ν = 1

ρ∞

(
ζ + 4

3
η

)
. (11)

For later convenience, we introduce a new function
χ(r, t) defined by

v(r, t) = − ∂

∂r

{
χ(r, t)

r

}
. (12)

Substituting Eq. (12) into Eq. (10), it is rewritten as

∂2χ

∂t2
=

(
c2 + ν

∂

∂t

)
∂2χ

∂r2
. (13)

This is the basic equation of our problem. From the con-
dition on the velocity at infinity in Eq. (5), χ(r, t)/r must
tend to a constant value at infinity. Now we can subtract an
arbitrary constant from χ(r, t)/r without any change in the
velocity field defined in Eq. (13). So, for simplicity, we as-
sume that χ(r, t)/r tends to zero at infinity. In other words,
χ(r, t) is assumed to tend to a constant value at the infinite
position of r .
In the case of an ideal liquid, the above equation becomes

the wave equation. From this limiting behavior, it is clear
that the basic equation represents the behavior of liquid as a
compressible one. The boundary condition imposed on the
inner boundary is expressed by a function of time as

χ(R, t) = χ0(t). (14)

The function χ0(t) is determined by the inner boundary
condition of the liquid velocity, that is, Eq. (6). It will be
given by Eq. (34). For the initial condition we impose two
conditions on the function χ(r, t). These conditions corre-
spond to the conditions of the velocity and the pressure. As
mentioned previously, we express them in a general form as

χ(r, 0) = φ(r) (15)

and
∂χ(r, 0)

∂t
= ψ(r), (16)

where φ(r) and ψ(r) are functions of r . If the liquid is
initially in the hydrostatic state, the functions φ(r) andψ(r)
should be zero. Moreover, substituting Eq. (12) into Eq. (9)
and integrating it, we obtain

P = P∞ + ρ∞
r

∂χ

∂t
−

(
ζ + 4

3
η

)
1

r

∂2χ

∂r2
. (17)

Note that the above equation corresponds to Bernoulli’s
equation.

3. Analytical Result
3.1 Solution
Since bubbles expand or shrink, the bubble radius

changes with time. This implies that the location of the
inner boundary depends on time. Then, it is difficult to
solve Eq. (13) analytically with no assumptions or simplifi-
cations. So, we need further approximations.

Because the expansion speed of a bubble surface is usu-
ally much smaller than the sound velocity, the bubble ra-
dius hardly changes during the transmission time of sound
waves. This means that the velocity and the pressure in
liquid are immediately adjusted to increasing bubble ra-
dius. For this restricted case, we can neglect the time-
dependence of the bubble radius in deriving an analytical
solution to Eq. (13). However, we take into account the
time-dependence of the bubble radius in the derivation of
the bubble expansion rate.
We analytically solve Eq. (13) under the conditions de-

scribed by Eqs. (14)–(16). Since Eq. (13) is a linear equa-
tion, we divide χ(r, t) into two functions, χ1(r, t) and
χ2(r, t), namely χ(r, t) = χ1(r, t)+χ2(r, t). Each function
is a solution of Eq. (13). The inner boundary conditions on
χ1(r, t) and χ2(r, t) are set to be

χ1(R, t) = 0 (18)

and
χ2(R, t) = χ0(t), (19)

respectively. At the outer boundary, χ1(r, t) and χ2(r, t) are
required to tend to constant at an infinite position of r . The
initial conditions on χ1(r, t) and χ2(r, t) are set to be{

χ1(r, 0) = φ(r),
∂χ1(r, 0)

∂t
= ψ(r) − 2cχ0(0)δ(r − R),

(20)

and {
χ2(r, 0) = 0,
∂χ2(r, 0)

∂t
= 2cχ0(0)δ(r − R),

(21)

respectively.
First we solve Eq. (13) to obtain χ1(r, t). After the usual

procedure of separation of variables r , t , and owing to the
outer boundary condition, we obtain the function χ1(r, t)
written in terms of a complete set of normal modes as

χ1(r, t) =
∫ ∞

0
dk {sin[k(r − R)] + A(k) cos[k(r − R)]}

× [
B(k) exp(ω+t) + C(k) exp(ω−t)

]
, (22)

where A(k), B(k), and C(k) are the coefficients. The fre-
quencies ω+(k) and ω−(k) are given by

ω±(k) = −νk2

2
± ick

√
1 − ν2k2

4c2
, (23)

where the double-signs on both sides correspond to each
other. The coefficients in Eq. (22) should be determined by
the boundary and initial conditions. The coefficient A(k)
is required to be zero from the inner boundary condition,
χ1(R, t) = 0. Using the orthogonality of the sine function,
we obtain B(k) and C(k) from the initial conditions as

B(k) = − 2

π

∫ ∞

R

{ω−(k)φ(ξ) − ψ(ξ)} sin[k(ξ − R)]

ω+(k) − ω−(k)
dξ

(24)
and

C(k) = 2

π

∫ ∞

R

{ω+(k)φ(ξ) − ψ(ξ)} sin[k(ξ − R)]

ω+(k) − ω−(k)
dξ,

(25)
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respectively. Note that B(k) and C(k) depend on k and R.
Hence, χ1(r, t) is given by

χ1(r, t) =
∫ ∞

0
dk sin[k(r − R)] {B(k) exp(ω+t)

+ C(k) exp(ω−t)} . (26)

Secondly, let us consider about χ2(r, t). To obtain
χ2(r, t), we use Duhamel’s principle (e.g., John, 1982). We
introduce another function U (r − R, t − τ), which is the
solution of Eq. (13) and is satisfied with the following inner
boundary and initial conditions:

U (0, t − τ) = 1, (27)

U (r − R, 0) = 0, (28)

and
∂U (r − R, 0)

∂t
= 2cδ(r − R). (29)

In addition, we impose a condition that it does not become
infinite at r = ∞ onU (r−R, t−τ). UsingU (r−R, t−τ),
χ2(r, t) is expressed as

χ2(r, t) =
∫ t

0
dτ

∂U (r − R, t − τ)

∂t
χ0(τ ). (30)

Therefore, it is sufficient to obtain U (r − R, t − τ) in spite
of χ2(r, t) for our problem. Through the same manner taken
in the derivation of χ1(r, t), we can suppose the following
expression as the solution of U (r − R, t − τ):

U (r − R, t − τ)

= 2c

π

∫ ∞

0
dk cos[k(r − R)]

×
{
exp[ω+(t − τ)] − exp[ω−(t − τ)]

ω+ − ω−

}
. (31)

This function is satisfied with the boundary and initial con-
ditions (see details in the Appendix). Substituting Eq. (31)
into Eq. (30), χ2(r, t) is obtained as

χ2(r, t)

= 2c

π

∫ t

0
dτχ0(τ )

∫ ∞

0
dk cos[k(r − R)]

×
{

ω+ exp[ω+(t − τ)] − ω− exp[ω−(t − τ)]

ω+ − ω−

}
.(32)

From Eqs. (26) and (32), the solution to Eq. (13) is given by

χ(r, t) =
∫ ∞

0
dk sin[k(r − R)] {B(k) exp(ω+t)

+ C(k) exp(ω−t)}
+2c

π

∫ t

0
dτχ0(τ )

∫ ∞

0
dk cos[k(r − R)]

×
{

ω+ exp[ω+(t − τ)] − ω− exp[ω−(t − τ)]

ω+ − ω−

}
.

(33)

In the case of an ideal liquid (i.e., ν = 0), Eq. (33) becomes
the solution of a sound wave propagating in liquid. We

obtain the velocity field in liquid through Eq. (12) and the
pressure distribution through Eq. (17).
Finally, we consider the expression of χ0(t). The liquid

velocity at the bubble surface is equivalent to the bubble
expansion rate. Thus, substituting Eq. (33) into Eq. (12)
and setting r = R, χ0(t) is given by

χ0(t) = R2 Ṙ(t) + R
∫ ∞

0
dk {B(k) exp(ω+t)

+ C(k) exp(ω−t)} k. (34)

3.2 Equation of radial motion of a gas bubble
The pressure difference between the inside and outside

of a bubble leads to the expansion or shrink of the bubble.
Using the velocity distribution obtained in the previous sub-
section, we derive the radial motion of a gas bubble in vis-
cous compressible liquid.
As seen from Eq. (4), the gas pressure balances with sum

of forces acting on a boundary sphere such as the liquid
pressure, the viscosity, and the surface tension. Substituting
Eq. (17) into Eq. (4), Eq. (4) is rewritten as

Pgas = P∞ + 2γ

R
+ 4η

Ṙ

R
+ ρ∞

R

∂χ(R, t)

∂t
. (35)

We call ∂χ(R, t)/∂t an inertial term and rewrite it, using
the analytical solution of χ(r, t). Noting that the bubble
radius is a function of time and differentiating Eq. (33) with
respect to time t , we obtain

∂χ(R, t)

∂t

= −Ṙ
∫ ∞

0
dk {B(k) exp(ω+t) + C(k) exp(ω−t)} k

+ 2c

π

∫ ∞

0
dkχ0(t)

+ 2c

π

∫ t

0
dτχ0(τ )

∫ ∞

0
dk

×
{

ω2
+ exp[ω+(t − τ)] − ω2

− exp[ω−(t − τ)]

ω+(k) − ω−(k)

}
.

(36)

On the other hand, substituting Eq. (33) into Eq. (6), the
expansion rate is given by

Ṙ = − 1

R

∫ ∞

0
dk {B(k) exp(ω+t) + C(k) exp(ω−t)} k

+ 2c

πR2

∫ t

0
dτχ0(τ )

∫ ∞

0
dk

×
{

ω+ exp[ω+(t − τ)] − ω− exp[ω−(t − τ)]

ω+(k) − ω−(k)

}
.

(37)

Comparing Eqs. (36) and (37), we obtain the following
relationship:

∂χ(R, t)

∂t

= d

dt

(
R2 Ṙ

)
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+ RṘ
∫ ∞

0
dk

{
∂B(k)

∂R
exp(ω+t) + ∂C(k)

∂R
exp(ω−t)

}
k

+ R
∫ ∞

0
dk {ω+B(k) exp(ω+t) + ω−C(k) exp(ω−t)} k.

(38)

Substituting Eq. (38) into Eq. (35), we finally have

Pgas = P∞ + 2γ

R
+ 4η

Ṙ

R
+ ρ∞

(
2Ṙ2 + RR̈

)
+ρ∞ Ṙ

∫ ∞

0
dk

{
∂B(k)

∂R
exp(ω+t)

+ ∂C(k)

∂R
exp(ω−t)

}
k

+ρ∞
∫ ∞

0
dk {ω+B(k) exp(ω+t)

+ ω−C(k) exp(ω−t)} k. (39)

The same expression as Eq. (39) has been obtained except
a coefficient of 2 before Ṙ2 by assuming an incompressible
liquid if we set B(k) = C(k) = 0 (e.g., Scriven, 1959). The
inconsistency of the coefficient before Ṙ2 arises because the
advective term in Eq. (17) was neglected in this work.
Let us observe an example of time-evolutions of the ve-

locity field surrounding the oscillating bubble. The radial
motion of a bubble is strongly related to the internal pres-
sure in a bubble. We assume in this paper that the bubble
oscillates with a certain frequency ω0 for simplicity. That
is, the bubble radius is given by

R(t) = R0 − δR cos(ω0t), (40)

where R0 is the bubble radius at the equilibrium state and
δR represents a small amplitude for the change in the bub-
ble radius. Such an oscillation as Eq. (40) cannot be main-
tained in a viscous liquid without external forces and the
amplitude then decreases with time owing to the viscous
dissipation. However, Eq. (40) would be useful in under-
standing the motion of liquid around the oscillating bubble.
Therefore, we adopt Eq. (40) for the time-evolution of the
bubble radius. Moreover, the liquid is assumed to be ini-
tially in the hydrostatic state.
We transform the length, the wave number, and time into

non-dimensional forms defined by

r̃ = r

R0
, (41)

k̃ = kR0, (42)

and
t̃ = ct

R0
, (43)

respectively. Then, χ(r, t) and R(t) are rewritten by

χ̃(r̃ , t̃)

= 2

π

∫ t̃

0
dτ̃ χ̃0(τ̃ )

∫ ∞

0
dk̃ cos[k̃(r̃ − 1)]

×

⎧⎪⎪⎨
⎪⎪⎩

ω̃+ exp

[
ω̃+(t̃ − τ̃ )

Re

]
− ω̃− exp

[
ω̃−(t̃ − τ̃ )

Re

]
ω̃+ − ω̃−

⎫⎪⎪⎬
⎪⎪⎭
(44)

and

R̃(t̃) = 1 − M

Q
cos(Qt̃), (45)

respectively. In the above equations, Re, M , and Q are the
Reynolds number, the Mach number, and the ratio of the
frequency ω0 to c/R0 defined by

Re = R0c

ν
, (46)

M = δRω0

c
, (47)

and

Q = R0ω0

c
, (48)

respectively. Further, in Eq. (44), ω̃± and χ̃ are normal-
ized by ν/R2

0 and R2
0c, respectively. Note that the velocity

δRω0/
√
2 corresponds to the root-mean-square of the bub-

ble oscillating rate. Using Eqs. (12) and (44), we can obtain
the velocity normalized by the sound speed.
The velocity fields surrounding an oscillating bubble are

shown in Fig. 1 for Re = 0.25, M = 1 × 10−6, and
Q = 1 × 10−5. Panels (a) and (b) correspond to the radial
distribution of the velocity at t̃ = 50 and 1 × 102, respec-
tively. The solid line represents the velocity fields in in-
compressible liquid, while the dotted line represents those
in compressible liquid. Since the bubble expands in both
cases, the velocity at the surface of bubble increases with
time. Moreover, the ratios of the velocity in the compress-
ible case to that in the incompressible case are shown in
Figs. 2(a) and (b). The values of the parameters are the same

0 20 40

1012

1010

0 40 80
1014

1012

1010

(a)

(b)

r/R−1

v/
c

v/
c

r/R−1

Fig. 1. Velocity fields in liquid at t̃ = 50 (a) and 1×102 (b) for Re = 0.25,
M = 1 × 10−6, and Q = 1 × 10−5. The values of parameters are as
follows: c = 1 × 103 cm/s, R0 = 1 × 10−4 cm, δR = 1 × 10−5

cm, and ω0 = 100 s−1. The solid and dotted lines correspond to the
radial distribution of the velocity in the cases of incompressible and
compressible liquid, respectively. The distributions in the both cases
are in harmony at the bubble surface. This coincidence is guaranteed by
the boundary condition, i.e., Eq. (6).
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Fig. 2. The ratio of velocity field in the compressible case vcom to that
in the incompressible case vincom at t̃ = 50 (a) and 1 × 102 (b) for
Re = 0.25, M = 1 × 10−6, and Q = 1 × 10−5. The values of
the parameters are the same as in Fig. 1. In panel (b), the dotted line
represents the numerical result with some uncertaities. Note that the
x-axis is the log-plot.

as in Fig. 1. As seen in Fig. 2, the velocity of compressible
liquid decreases more rapidly than that in incompressible
liquid and oscillates. This oscillation implies that the out-
going wave takes place owing to the liquid compressibility.
It is noted that, at a far region, it is difficult to perform the
numerical calculation of the integration with respect to k in
Eq. (44). In Fig. 2, the dotted line corresponds to the nu-
merical result with large error.

4. Conclusion
We have presented a new model for the expansion rate

of a single bubble within viscous liquid. Our result gives
the general solution to this problem. Thus, the analytical
expressions can be applied to some cases of cavitating flow.
These expressions show the damping sound wave. The
analytical expansion rate of a bubble shows that the bubble
expansion rate in a viscous liquid is the same as that in
an incompressible liquid, only in the case that the liquid
is initially in the hydrostatic state. If the liquid has a certain
distribution of velocity and pressure at the beginning, an
additional effect of the viscous force on the expansion rate
should appear. This force would significantly prevent the
radial motion of a bubble in a highly viscous liquid.
In this study, we assumed that a single bubble is im-

mersed in an unbounded liquid. This assumption is valid
as long as the distance between bubbles is much larger than
the typical size of bubbles. However, in real systems, a large
number of bubbles are formed in liquid due to the bubble
nucleation and they grow with time. So interactions be-
tween bubbles should be needed to be considered. Such
cases are observed in cavitating flow at the stage when the
growth of bubbles considerably proceeds. In these cases,
the assumption that the outer boundary is set to be at infinity

is not valid because some bubbles in the vicinity of a bubble
exist. We must set the outer boundaries at the finite position
of r to obtain the bubble expansion rate. It is then expected
that the expansion rate of a bubble would diverge from the
result presented in this paper. Such an effect is important for
the time-evolution of the bubble growth in cavitating flow
at the latter stage. The radial motion of a bubble in such a
case should be a topic for future investigation.
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Appendix. Validity of the expression of Eq. (31)
We first derive Eq. (31). Through the same manner taken

in the derivation of χ1(r, t), we can suppose the following
integration as the solution of U (r − R, t − τ):

U (r − R, t − τ)

= 2c

π

∫ ∞

0
dk

{
cos[k(r − R)] + A′(k) sin[k(r − R)]

}
×

{
exp[ω+(t − τ)] − exp[ω−(t − τ)]

ω+(k) − ω−(k)

}
. (A.1)

As seen later, note that considering the above form as the
solution of U (r − R, t − τ) is valid from the uniqueness of
the solution to Eq. (13).
As easily seen from Eq. (A.1), the functionU (r − R, t −

τ) becomes zero at t = τ . First we derive the coefficient
A′(k) in Eq. (A.1) from Eq. (29). Differentiating Eq. (A.1)
with respect to t and putting to be t = τ , we have

1

π

∫ ∞

0
dk

{
cos[k(r − R)] + A′(k) sin[k(r − R)]

}
= δ(r − R). (A.2)

Multiplying sin[l(r − R)] by Eq. (A.2) and integrating it
with respect to r from R to infinity, the coefficient A′(k) is
expressed as

π A′(l) = −
∫ ∞

0
dk

∫ ∞

0
dξ sin[(k + l)ξ ]

+
∫ ∞

0
dk

∫ ∞

0
dξ sin[(k − l)ξ ], (A.3)

where ξ is a dummy variable corresponding to r − R.
The first term on the right-hand side of Eq. (A.3) is

rewritten as∫ ∞

0
dk

∫ ∞

0
dξ sin[(k + l)ξ ]

= lim
K→∞

∫ K

0
dk lim

L→∞

∫ L

0
dξ sin[(k + l)ξ ]

= lim
K→∞

[ln(k + l)]K0 −
∫ ∞

0
dk lim

L→∞
cos[(k + l)L]

k + l
.

(A.4)

The second term on the right-hand side of Eq. (A.4) is∣∣∣∣ limL→∞

∫ ∞

0
dk

cos[(k + l)L]

k + l

∣∣∣∣
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=
∣∣∣∣ limL→∞

[
sin(yL)

yL

]∞

l

+ lim
L→∞

1

L

∫ ∞

l
dy

sin(yL)

y2

∣∣∣∣
≤

∣∣∣∣ limL→∞
sin(l L)

l L

∣∣∣∣ +
∣∣∣∣ limL→∞

1

L

∫ ∞

l
dy

sin(yL)

y2

∣∣∣∣
≤ lim

L→∞

∣∣∣∣ 1l L
∣∣∣∣ + lim

L→∞

∣∣∣∣ 1L
∫ ∞

l

dy

y2

∣∣∣∣ → 0. (A.5)

Hence we obtain∫ ∞

0
dk

∫ ∞

0
dξ sin[(k + l)ξ ] = lim

K→∞
[ln(k + l)]K0 . (A.6)

We calculate the second term on the right-hand side of
Eq. (A.3). To do so, we divide the integration as follows:∫ ∞

0
dk

∫ ∞

0
dξ sin[(k − l)ξ ]

=
[∫ l−ε

0
+

∫ l+ε

l−ε

+
∫ ∞

l+ε

]
dk

∫ ∞

0
dξ sin[(k − l)ξ ],

(A.7)

where ε is a smaller arbitrary positive parameter than l.
Then, each term on the right-hand side of Eq. (A.7) is given
by ∫ l−ε

0
dk

∫ ∞

0
dξ sin[(k − l)ξ ]

= ln(ε) − ln(l) −
∫ l−ε

0
dk lim

L→∞
cos[(k − l)L]

k − l

= ln
(ε

l

)
, (A.8)

∫ l+ε

l−ε

dk
∫ ∞

0
dξ sin[(k − l)ξ ]

=
∫ ∞

0
dξ

∫ l+ε

l−ε

dk sin[(k − l)ξ ] = 0, (A.9)

and∫ ∞

l+ε

dk
∫ ∞

0
dξ sin[(k − l)ξ ]

= lim
K→∞

[ln(k − l)]Kl+ε −
∫ ∞

l+ε

dk lim
L→∞

cos[(k − l)L]

k − l

= lim
K→∞

[ln(k − l)]Kl+ε . (A.10)

Substituting Eqs. (A.4)–(A.10) into Eq. (A.3), we obtain

π A′(l) = − lim
K→∞

ln

(
K + l

K − l

)
= 0. (A.11)

At the position of r equal to R, Eq. (31) is written by

U (0, t − τ)

= 2c

π

∫ ∞

0
dk

exp[ω+(t − τ)] − exp[ω−(t − τ)]

ω+(k) − ω−(k)
.

(A.12)

It is found from Eq. (23) that the frequencies ω+(k) and
ω−(k) can be replaced with ω−(−k) and ω+(−k), respec-
tively. Using the relationship between ω+(k) and ω−(k),
Eq. (A.12) is transformed to

U (0, t − τ) = 2c

π

∫ ∞

−∞
dk

exp[ω+(t − τ)]

ω+(k) − ω−(k)
. (A.13)

We regard the wave number k as the complex variable
and evaluate the integration of Eq. (A.13) in the complex
plane. Equation (A.13) has singularities at k = 0, 2c/ν,
and −2c/ν. We consider the integral path, C0, shown in
Fig. A.1. Integrating Eq. (A.13) along the integral path, we
obtain from Cauchy’s integral theorem∮

C0

dk
exp[ω+(t − τ)]

ω+(k) − ω−(k)
= 0. (A.14)

On the other hand, the residues at three singular points are
given by

lim
ε→0

∫
|k|=ε

dk
exp[ω+(t − τ)]

ω+(k) − ω−(k)
= π

2c
(A.15)

and

lim
ε→0

∫
|k±2c/ν|=ε

dk
exp[ω+(t − τ)]

ω+(k) − ω−(k)
= 0, (A.16)

respectively. Note that the above integrations were carried
out on the semicircle in the upper plane. Moreover, we eval-
uate the value of the integration on the large semicircle C1,
which is a part of the integral path C0. On the contour C1,
the variable k is given by Leiθ , where L is the radius and θ

is the angle measured from the positive real axis. Assum-
ing that L is large as compared with 2c/ν, the frequencies
ω±(k) are approximately given by

ω+ � −c2

ν
(A.17)

and
ω− � −νL2, (A.18)

respectively. Using Eqs. (A.17) and (A.18), the integration
on the contour C1 is estimated as

lim
L→∞

∣∣∣∣
∫
C1

dk
exp[ω+(t − τ)]

ω+(k) − ω−(k)

∣∣∣∣
≤ lim

L→∞

∫
C1

|dk|
∣∣∣∣exp[ω+(t − τ)]

ω+(k) − ω−(k)

∣∣∣∣
= lim

L→∞

exp
[
− c2(t−τ)

ν

]
ν

πL

L2 − (c/ν)2
→ 0. (A.19)

Substituting Eqs. (A.15), (A.16) and (A.19) into Eq. (A.14),
we obtain ∫ ∞

−∞
dk

exp[ω+(t − τ)]

ω+(k) − ω−(k)
= π

2c
. (A.20)

Fig. A.1. The integral path C0 is shown. The filled circles represent the
singular points (k = 0, ±2c/ν). The contour C1 denotes the integral
path shown by the largest semicircle in the upper half-plane.
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This result indicates thatU (0, t−τ) becomes unity. Hence,
it was proved that Eq. (31) is satisfied with the boundary and
initial conditions given by Eqs. (27)–(29).
We secondly consider the uniqueness of solution to Eq.

(13). To prove the uniqueness, we assume that there are
two solutions to Eq. (13) with the same boundary and initial
conditions. Here two solutions are denoted by χ(1)(r, t) and
χ(2)(r, t). Now we introduce the function X (r, t) defined by

X (r, t) = χ(1)(r, t) − χ(2)(r, t). (A.21)

Note that the function X (r, t) is also a solution to Eq. (13).
Then, the boundary conditions at the position of r equal to
R and ∞ imposed on X (r, t) are

X (R, t) = 0 (A.22)

and
X (∞, t) = 0, (A.23)

respectively. The initial conditions are also given by

X (r, 0) = 0 (A.24)

and
∂X (r, 0)

∂t
= 0. (A.25)

We introduce two positive functions of time t defined as

F(t) =
∫ ∞

R

[
c2

(
∂X

∂r

)2

+
(

∂X

∂t

)2
]
dr (A.26)

and

G(t) = 2ν
∫ ∞

R

(
∂2X

∂r∂t

)2

dr. (A.27)

We assume that the integral of F(t) and G(t) is integrable.
Differentiating F(t) with respect to t and performing the
partial integral, we obtain

dF(t)

dt
= 2ν

∫ ∞

R

∂X

∂t

∂3X

∂t∂r2
dr, (A.28)

where we used Eq. (13) and the boundary and initial con-
ditions imposed on X (r, t). On the other hand, performing
the partial integral for the function G(t), it is rewritten as

G(t) = −2ν
∫ ∞

R

∂X

∂t

∂3X

∂t∂r2
dr. (A.29)

From Eqs. (A.28) and (A.29), the time derivative of the
function F(t) is expressed in terms of G(t) as

dF(t)

dt
= −G(t). (A.30)

It is shown from Eq. (A.30) that the function F(t) can never
increase because the function G(t) is positive. Moreover,
since F(t) is zero at t = 0, it cannot exceed zero. However,
the function F(t) is a positive function. Thus, we conclude
that the function F(t) is equivalent to zero. Since each
integrand in Eq. (A.26) is positive as well, we have from
the condition that F(t) = 0

∂X

∂t
= ∂X

∂r
= 0. (A.31)

Integrating Eq. (A.31) and using the initial and boundary
conditions, we consequently obtain

X (r, t) = 0. (A.32)

This means that χ(1)(r, t) is consistent with χ(2)(r, t). It
was proved that Eq. (13) has only one solution.
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