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An approach is presented to detect deep-seated regional conductivity anomalies by analysis of magnetic
observations taken by low-Earth-orbiting satellites. The approach deals with recovery of C-responses on a
regular grid and starts with a determination of time series of external and internal coefficients of the magnetic
potential. From the coefficients, time series of the magnetic vertical component and of the horizontal divergence
of the horizontal components are synthesized on the grid and the C-responses are determined by means of signal
processing of the corresponding time series. For validation of the approach, 3 years of realistic synthetic data at
simulated orbits of the forthcoming Swarm constellation of 3 satellites have been used. To obtain the synthetic
data for a given 3-D conductivity Earth’s model a time-domain scheme has been applied which relies on a Fourier
transformation of the inducing field, and on a frequency domain forward modelling. The conductivity model
consists of a thin surface layer of realistic conductance and a 3-D mantle that incorporates a hypothetic deep
regional anomaly beneath the Pacific Ocean plate. To establish the ability of the approach to capture the geometry
of the mantle heterogeneities used in the forward approach, numerical experiments have been undertaken using
various satellite combinations, sampling periods of the resulting time series, and numbers of internal coefficients.
The possibility of the approach to map anomalies in the mantle using satellite data that contain contributions from
the core and lithosphere, from the magnetosphere and ionosphere (and their Earth-induced counterparts), as well
as payload noise has been investigated. The model studies have shown that C-responses obtained on a regular
grid might be used to map regional deep-seated conductivity anomalies. Moreover, it has been demonstrated that
these C-responses are successfully recovered from magnetic data collected by the proposed Swarm constellation
of 3 satellites.
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1. Introduction

The study of lateral variability in physical properties of
Earth’s mantle using geophysical methods is a topic of mod-
ern fundamental science as it gives insight into geodynamic
processes such as mantle convection, the fate of subducting
slabs and the origin of continents. Global seismic tomogra-
phy (cf. Li and Romanowicz, 1995; Woodhouse and Tram-
pert, 1995; Su and Dziewonski, 1997; Ritsema et al., 1999;
Bijwaard and Spakman, 2000; Deschamps et al., 2002) pro-
vides today a variety of three-dimensional (3-D) mantle ve-
locity models which can be interpreted in terms of cratonic
roots, mantle plumes and slab graveyards.

The goal of electromagnetic (EM) induction studies is to
identify complementary large-scale spatial variations (3-D
structures) in the electrical conductivity of the mantle. This
is an important issue since conductivity reflects the connec-
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tivity of constituents as graphite, fluids, partial melt, and
volatiles (all of which may have profound effects on rheol-
ogy and, eventually, mantle convection and tectonic activ-
ity), while seismology ascertains bulk mechanical proper-
ties.

Traditionally, ground-based observatory recordings of
the geomagnetic field (cf. Roberts, 1984; Schultz and
Larsen, 1987; Schultz, 1990; Olsen, 1998) along with long-
period magnetotelluric (MT) measurements (cf. Egbert and
Booker, 1992; Schultz et al., 1993; Neal et al., 2000; Se-
menov et al.,2003), and submarine cable recordings of volt-
age differences (cf. Lizarralde et al., 1995; Fujii and Utada,
2000; Utada et al., 2003; Santos et al., 2003) have been
used to detect radial mantle conductivity variations. But
global images of 3-D mantle heterogeneities can hardly be
obtained with the use of ground-based data due to the sparse
and very irregular distribution of geomagnetic observatories
and long-period MT sites. For instance, the about 75% of
the globe that are occupied by oceans is almost free of ge-
omagnetic observatories and MT sites. Voltage data from
transoceanic submarine cables somehow fill this gap (cf.
Fukao et al., 2004) but, again, cables are rare and provide
only an integral characteristic (voltage), making it impossi-
ble to trace lateral variations of conductivity along the cable.
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Fig. 1. Top: Surface shell conductance in units of S. Middle: Conductivity
[S/m] at depths from 1 km down to 400 km. Bottom: Conductivity
[S/m] at depths from 400 km down to 700 km.

Satellite-borne measurements provide an intriguing and
unique source of improving our knowledge about 3-D vari-
ations of electrical conductivity in the Earth’s mantle owing
to a good spatial coverage with high-precision data of uni-
form quality. However, satellites move with a speed of a
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few km per second and thus measure some mixture of tem-
poral and spatial changes of the magnetic field. This makes
satellite data more difficult to process compared to ground
data. In spite of this problem several successful attempts
have been made to derive a global conductivity-depth (1-D)
distribution from magnetic satellite measurements (cf. Did-
wall, 1984; Oraevsky et al., 1993; Olsen, 1999; Olsen et al.,
2002; Constable and Constable, 2004). On the other hand,
until now 3-D induction studies with satellite data are con-
fined to simulating magnetic effects of conductivity anoma-
lies at satellite altitudes (cf. Kuvshinov et al., 1998; Olsen,
1999; Tarits and Grammatica, 2000; Grammatica and Tar-
its, 2002; Everett et al., 2003; Velimsky et al., 2003; Ku-
vshinov and Olsen, 2005b; McCreadie and Martinec, 2005;
Velimsky and Everett, 2005).

In this paper we make a first attempt to map deep 3-D
anomalies from space. Our analysis deals with a recovery of
global maps of C-responses by processing realistic signals
calculated in the frame of the closed-loop simulation of the
Swarm multi-satellite mission (cf. Olsen et al., 2006).

The contents of the paper is as follows. Section 2 de-
scribes the 3-D conductivity model that has been designed
for our simulation studies. Section 3 presents the time-
domain scheme that was applied to produce synthetic in-
duced magnetic signals from a given magnetospheric source
distribution using this 3-D conductivity model at the or-
bits of the Swarm constellation. Transfer functions (C-
responses) for induction studies are discussed in Section 4.
Model studies to validate the ability of C-responses to cap-
ture the geometry of the mantle inhomogeneities are pre-
sented in Section 5. Section 6 introduces a scheme for re-
covering these C-responses from satellite data and presents
results obtained with data that only contain contribution due
to magnetospheric sources. Section 7 reports on C-response
determination using data that comprise, along with mag-
netospheric signals, realistic contributions from all other
sources modelled - from core and crustal fields, ionospheric
variations, as well as payload noise. Conclusions and some
suggestions for further work are presented in Section 8.

2. Design of the 3-D Conductivity Model

The 3-D conductivity model that we consider consists
of an inhomogeneous conducting surface shell, three local
conductors of 0.04 S/m at depths from the bottom of that
shell down to 400 km, and a deep-seated regional conduc-
tor of 1 S/m located between 400 km and 700 km depth.
The local and regional conductors are embedded in a ra-
dially symmetric section consisting of a relatively resistive
400 km thick layer of 0.004 S/m, a 300 km thick transition
layer of 0.04 S/m, and an inner uniform sphere of 2 S/m.

Figure 1 shows global maps of these anomalous struc-
tures. The top panel presents the adopted surface shell
conductance. It approximates the nonuniform distribution
of oceans and continents. The conductance of the shell is
chosen as realistic as possible and includes contributions
from sea water and from sediments. The conductance of
the oceans has been derived from the global 5’ x 5" NOAA
ETOPO map of bathymetry, multiplying the water depth by
a mean seawater conductivity of 3.2 S/m. The conductance
of the sediments has been derived from the global sediment
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Fig. 2. Scheme describing the calculation of induced field contributions.

thickness given by the 1° x 1° map of Laske and Masters
(1997) with the use of a heuristic procedure similar to that
described in Everett et al. (2003).

Two local conductors of horizontal size 600 x 1200 km?
describe hypothetic plums beneath the Baikal and Hawaii
(Constable and Heinson, 2004); the third conductor of size
of 600 x 3000 km? represents a hypothetic subduction zone
along the western margin of South America. This part of
the model is shown in the middle panel of the Figure and
was suggested by Steve Constable (2003; private commu-
nication). Finally, the deep-seated large scale structure de-
scribing a hypothetic conductor beneath the Pacific Ocean
plate is presented in the bottom panel of the figure. The
aim of this model is not to be identical to the “true” world

(e.g., we do not claim that there really exists a plume under
the Baikal), but to provide a test model for our retrieval al-
gorithm. The model was split in the vertical direction into
4 inhomogeneous spherical sublayers of thickness 1, 150,
250, and 300 km, respectively; each spherical sublayer was
discretized in horizontal direction in 180 x 90 cells of size
2° % 2°.

3. 3-D Time-Domain Modeling of Swarm Satellite
Signals Induced by Magnetospheric Sources

The procedure shown in Fig. 2 has been used to produce

magnetic fields due to magnetospheric sources at the orbits

of the Swarm satellites for a given 3-D spherical conductiv-

ity model of the Earth and for a given time series of hourly
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mean values of external (inducing) coefficients ¢’ (¢) and
sty (m = 1,2,..., Ne,m = 0,1, ..., n) of the magnetic
potential (details of derivation of inducing coefficients are
presented in the companion paper of Olsen et al. (2006)).
This procedure follows in general the scheme described
in Olsen and Kuvshinov (2004) and Kuvshinov and Olsen
(2005b) and consists of the following steps

1) The time series of the external coefficients ¢, (¢) and
s (t) are Fourier transformed to obtain complex co-
efficients ¢g)'(w) and §'(w) at a set of frequencies,
w;,i =1,2,..., Ny, where N; = ﬁ. By performing
discrete Fourier transform of a time series of external
coefficients on an interval [0, P] we implicitly assume
that our time series are represented by a finite trigono-
metric series. Due to the quasi-regular nature of the
magnetospheric signal at a long time scale (in our case
P = 5 years) we believe that such a representation is
accurate enough for our time-domain simulations.

2) EM induction simulations are performed using the
above described 3-D model of electrical conductiv-
ity in the frequency domain for N, logarithmically
spaced frequencies, w;, j = 1,2, ...Ny, covering the
frequency range from w; = 27” to wy, = zz—gt (here
At = 1 hour). For each frequency the simulations are
performed for a set of preselected elementary harmon-
ics, Y™(9, 9) = P)"/(cos®)ei™ of the external field
(in our case for all harmonics up to degree N, = 3). To
simulate the magnetic fields the frequency domain 3-
D numerical solution (Kuvshinov et al., 2002, 2005),
which is based on an integral equation approach, is
used. Note that there is no need to calculate the fields
at all involved frequencies, w;, of the inducing field.
Due to the smoothed (with respect to frequency) na-
ture of the induced field we calculate the response at a
coarse grid of frequencies, w; (with 9 frequencies per
frequency decade), with subsequent interpolation to all
frequencies (see Step 4).

3) For each elementary harmonic, Y (¢,¢) (n =
1,2,...,.N,, m = —n,—n + 1, ..., n) and each fre-
quency, w;, a spherical harmonic analysis of the sim-
ulated induced part of B, (from step 2) is performed,
resulting in arrays of coefficients of the induced part of
the potential, QZ’kl (w) for all harmonics up to degree
N; (where N; is determined from the chosen horizon-
tal discretization of the 3-D model. Here N; = 45).

™ (w;) is the field of degree k and order / that is in-
duced by a magnetospheric source, Y," (¢, ¢), of de-
gree n and order m.

4) The arrays Qzlkl (w;) are spline interpolated from the
coarse logarithmically-spaced frequency set w; to the
actual (denser) frequency set w;, and the resulting
coefficients arrays i (w;) (k = 1,2,..,N;, | =
—k, —k + 1, ..., k) are calculated as (Olsen, 1999)

N, n
G) =YY" Onl@)e) (@),

n=1 m=—n

e))

where
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This step gives frequency domain coefficients of the
induced part of the potential produced by given exter-
nal coefficients ).

5) The complex coefficients ti (w;) are transformed
to the real coefficients gi (w;) and ﬁi(wi) k =
1,2,..,N;, [ = 0,1,..,k) as g8 = ' + ¢ and
R = —i(! — i) forl #0,and g =i forl = 0.
Then, the coefficients g,ﬁ (w) and fzi(a)) are Fourier
transformed to the time domain, resulting in time se-
ries of hourly values of the coefficients g,’c (1) and hi(t)
of the induced part of the potential.

6) The obtained hourly values of coefficients of external
and induced parts of the potential, g™, s™ and g}, h’,
are linearly interpolated to the time instants (sampling
interval of 1 min and 5 sec, respectively) of the Swarm
satellite positions.

7) Finally the magnetic field B = —VV at the position of
the Swarm satellites is obtained from the scalar mag-
netic potential V', which is approximated by the spher-
ical harmonic expansion

Ne n
V=a Z Z [(q,’l”(t) cosme

n=1 m=0

+ 5, (¢) sinme) <£>n] P (cos ¥)

k
> [(gi(t) cos g

=0

Ni
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k=1

+ k@) sinlgo)(g)k+lj| P!(cos 9),
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with a= 6371.2 km as the mean Earth’s radius, & and
¢ as geographic colatitude and longitude and P, Pk[
as associated Legendre functions.

The most complicated and time consuming part of the
scheme is the frequency-domain 3-D EM simulations (step
2). Each simulation on an adopted mesh N, x Ny x N, =
4x90x 180 (for a given frequency and elementary spherical
harmonic) takes about 30 CPU minutes on 2.1 GHz PC.

Note, however, that once the simulations have been per-
formed for a given 3-D model, one can calculate magnetic
signals induced in the specific 3-D model for any constella-
tion scenario and any external excitation.

The magnetic field at the position of the Swarm satellites,
as well as time series of the coefficients ¢, (), s, (¢), and
g,’< (1), hi (t) are used in subsequent sections to infer global
maps of C-responses.

4. C-responses
Conventionally, the geomagnetic depth sounding (GDS)
method (Schmucker, 1985) is used to infer 1-D mantle
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Fig. 4. Time series of B, (left panel) and Vi - By (right panel) for year 2000, obtained at a site located in Central Eurasia.

conductivity-depth profiles and to detect lateral variations
of conductivity. The GDS method is based on the deter-
mination and interpretation of response functions like C,
which is defined as

B.(w, 1,9, )

Clw,r, 0, ¢) =—
(a) ' (p) VH'BH((!),V, 295(/))

(3)
with

Vu -By(w,r, 9, ¢) =

'1 {B(B,y sin ¥) n 8&} @
r sin ¥ a9 ap

being the horizontal divergence of the horizontal compo-
nent, By. If the conductivity of the Earth has a radially-
symmetric distribution and the excitation current is of large
scale (i.e., described by low degree spherical harmonics),
the C-response is asymptotically independent of the source
geometry (cf. Schmucker, 1985) and depends only on fre-
quency and the conductivity distribution of the Earth. In
this case, |C| can be considered as a measure of the “ef-
fective” depth of penetration of the EM field into the con-
ducting Earth. Determining C-responses at a number of

frequencies (by means of signal processing of the corre-
sponding time series of B, and Vy - By at specific sites)
allows for the determination of conductivity-depth profiles
(cf. Olsen, 1998) beneath these sites. Recognizing that the
periods used in the GDS method typically span a few hours
to months, the derived C-responses probe upper and mid-
mantle conductivities in the depth range of 1001000 km
or so. As an example, Fig. 3 shows the real (left panel)
and imaginary (right panel) parts of the C-responses in the
period range between 1 and 39 days for three sites with
different conductivity vs. depth profiles beneath the sites
(the location of these sites are shown in the upper panel of
Fig. 1 by green circles). Note, that these C-responses come
from a 1-D quasi-analytic solution. The solid curves repre-
sent C-responses for a continental 1-D conductivity profile,
whereas the dotted and dashed curves show responses for
1-D conductivity profiles in oceanic regions with and with-
out the deep-seated conductor, respectively. As can be seen
from the Figure, the maximum difference between conti-
nental and oceanic responses is at the shortest considered
period (1 day), where the relative difference between the re-
sponses reaches 130%. It is also seen that the real, Re{C},
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Fig. 5. Real (left panels) and imaginary (right panels) parts of reference C-responses at periods of 1.8, 7.8, 15 and 29.5 days (from the top to the
bottom), obtained from given time series ¢/ (), s (t) and gk (¢), 1% (r).
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and imaginary, Im{C}, parts of the oceanic C-responses
show different behaviour concerning the inclusion of the
deep conductor in the oceanic 1-D profile. At a period of
1 day the manifestation of the deep conductor in Re{C} is
weak; Re{C} of the oceanic 1-D profiles with and with-
out the deep conductor almost coincide. At longer peri-
ods Re{C} of the oceanic 1-D profile without the deep con-
ductor reaches that of the continental site: at a period of
14 days their difference does not exceed 7%. With increas-
ing period, the relative difference between Re{C} from 1-D
profiles with and without a deep conductor increases, reach-
ing a maximum value of 40% (compared with Re{C} of the
oceanic profile with deep conductor) at a period of 7 days.
In general, Re{C} is—in the considered period range (a
few days or more)—at least three times larger compared
to Im{C}, and more sensitive to the presence of the deep
conductor.

These 1-D results illustrate that if one succeeds in deter-
mining C-responses on some regular grid at the surface of
the Earth, it is quite plausible to suppose that the deep con-
ductor (see lower panel of Fig. 1) might be seen in the re-
sulting C-responses maps at periods larger than a few days.
It should be stressed, however, that the results depicted in
Fig. 3 are obtained using 1-D conductivity models excited
by a source geometry given by the first zonal harmonic, PIO.

Another remark to be made is that for the existing sparse
and irregular distribution of observatories it is difficult to
determine the horizontal field gradients accurately, at least
on a global scale. Only satellites have the potential to ac-
complish this. However, since satellites measure a mixture
of temporal and spatial changes of the magnetic field, the
recovery of C-response from satellite data is a nontrivial
task.

5. Deriving the Reference C-responses

In this section we derive the reference (also called the
“true”) C-responses from given time series g, (¢), s, (t)
and g,l< (1), hi(t) of external and internal expansion co-
efficients, respectively (recovering these time series from
Swarm observations will be discussed in the next sections).
First we calculate time series of B, and Vy - By on a reg-
ular grid of 5° x 5° resolution (this grid will be used in
all presented model studies) using the following equation
for VH . BH

1 N¢ n
Vy By = ;ZZ |:n(n+ 1)(q™(t) cos mg

n=1 m=0

o\ n—1
+ 57 (1) sinme) (%) i| P (cos ¥)

Nk

> |:k(k + 1)(gk (1) coslg

k=1 [=0

N e

+

a k+2
+hlk(r)smz¢;)(—) }P,f(cosz?).
-
&)

The sampling interval, A¢, and the length of the time se-
ries, L, were chosen to be 6 hours and 3 years (1999-2002)
respectively. To demonstrate the complexity and realism of
the signals, Figure 4 presents time series of B, (left panel)
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and Vg - By (right panel) for the year 2000, obtained at a
site located in Central Eurasia (shown in the upper panel of
Fig. 1 by a green circle).

After signal processing the time series of B,(f) and
Vi - By () (using the scheme presented by Olsen (1998)),
C-responses have been estimated on a regular grid for peri-
ods between 1.8 and 29.5 days. By estimating C-responses
we follow the conventional approach that is based on the
processing of continuous time-series without discriminat-
ing between storm-time and quiet-time intervals. Moreover,
since we work with realistic but still synthetic data (which,
in particular, means that the magnetospheric signal has been
successfully isolated from ionospheric contribution), it is
not so important to distinguish between day-time and night-
time data subsets. Figure 5 shows maps of the real and
imaginary parts of C for periods of 1.8, 7.8, 15, and 29.5
days. The anomalous behavior of the C-responses near the
magnetic equator is due to the fact that B, as well as V -By
are close to zero here (since source geometry is dominated
by Pl0 in geomagnetic coordinates), which makes the esti-
mation of C-responses unstable in this region. The squared
coherency of time series B, (t) and Vy - By (¢) are below
0.6 here, which means that the response functions in this
region should either be rejected or taken with extreme cau-
tion. Nevertheless the figure undoubtedly demonstrates that
the deep regional structure beneath the Pacific plate can be
detected and mapped. The most prominent manifestation
of the anomaly (the geometry of which is shown by the red
line) is observed in Re{C'} at a period of 7.8 days, with grad-
ual decay of the effect towards longer periods. It is also
seen that at a period of 1.8 days the deep regional anomaly
is masked by the ocean.

These results have been obtained using all N;(N; + 2),
N; = 45 internal coefficients. However, it is probably
difficult to resolve coefficients up to such a high degree.
Figure 6 presents maps of C-responses at a period of 7.8
days obtained using different truncation levels of the in-
duced fields when constructing B, and Vy - By. The upper
and lower panels present maps for maximum degree, N;, of
9 and 35, respectively. Decreasing N; from 45 to 9 yields
results that are rather close to those obtained with all coef-
ficients (cf. second from the top panels for a period of 7.8
days on Fig. 5). Even for N; = 5 the regional anomaly is
clearly identified in the C-responses.

There is no manifestation of the local subsurface conduc-
tors (plums and subduction zone; cf. middle panel of Fig. 1)
in the derived C-responses. The main reason for this is that
it is difficult to resolve structures in the depth range between
a few to a few hundred km with the periods in consideration.

6. C-responses from Satellite Data that Contain
Only Magnetospheric Contribution

In this section we present results obtained from satellite
data that contain only magnetospheric primary and induced
fields, but no other contributions (such as from the core
field, lithosphere field, ionospheric variations as well as
payload noise). The aim of these studies is to investigate
whether one can recover C-response maps from single- or
multiple-satellite data which are consistent with the true C-
responses obtained in the previous section.
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Fig. 6. Real (left panels) and imaginary (right panels) parts of C-responses at period of 7.8 days, obtained with N; = 9 (upper panels) and N; = 5
(lower panels), respectively.
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Fig. 7. Real (left panels) and imaginary (right panels) parts of C-responses at period of 7.8 days, which were estimated from satellite data that contain
only magnetospheric contribution. Upper and lower panels present respectively the results when single satellite (A) data and data from constellation
of satellites (A+B+C) were used for recovery (with N; = 5, A¢ = 6 hours).
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Let magnetic signals from magnetospheric sources,
(B,fs), Bl(;), B;s)) at time instant f# and position
(ri(s), ﬁi(s), (pi(s)), be provided by a constellation of satellites.
Here t;, = iAp,i = 1,2,...,Np,s = 1,2, ..., Ng, where
Ap is sampling interval, and Np and Ng are the number of
samples and satellites, respectively.

Assuming that no electric currents exist at satellite alti-
tude, the magnetic field can be derived from a scalar mag-
netic potential. It means, in particular, that one can in prin-
ciple reconstruct time series (with some sampling interval,
Ac) of the external and induced coefficients from magnetic
signals using a least-square approach. Note that this scheme
of reconstruction of the coefficients has been successfully
applied by Olsen et al. (2002) to calculate global 1-D re-
sponse. Once the coefficients, g (¢), s (t) and g,i ), hi,(t),
have been determined, time series of B, and Vg - By (with
the same sampling interval A¢) are reconstructed on a reg-
ular grid at the surface of the Earth by spherical harmonic
synthesis. Signal processing of B, and Vj - By allows for
an estimation of C (w, r, ¥, ¢) using Eq. (3).

Figure 7 presents maps of the C-response for a period
of 7.8 days obtained using data from one satellite (A; upper
panel) and from a constellation of three satellites (A+B+-C;
lower panel), respectively. The details of the orbit evolu-
tions of satellites A, B and C are discussed in the com-
panion paper of Olsen et al. (2006). We used data of 1
min sampling interval (experiments with 5 sec sampling in-
terval did not improve the results). The sampling interval
of the resulting coefficients, the length of the time series,
and the number of internal coefficients were chosen to be
6 hours, 3 years (1999-2002) and 35 (N; = 5), respec-
tively. It is clearly seen that only a constellation allows for
the recovery of the C-responses. From comparing the lower
panels of Figs. 6 and 7 one can conclude that the recov-
ered C-responses are consistent in geometry with the true
C-responses. The key is the availability of simultaneous
observations of the magnetic field variation at different lo-
cal times, i.e. a spatio-temporal coverage sufficient to repro-
duce the magnetic fields induced by magnetospheric source.

Figure 8 confirms this quantitatively. Shown are the rel-
ative differences, |C — C¥|/|C®|, between the recov-
ered, C, and the true responses, C ® in the period range
between 4 and 15 days for the same three sites that were
used in Section 4. The differences (i.e., the relative error)
are about 20% for the North Pacific Ocean site, and about
15% for the sites located in the South Indian Ocean and in
Central Eurasia. For comparison, relative differences are
presented for the case of response estimation using single
satellite data. In that case the relative differences are unsat-
isfactory large, exceeding 100% at a period of 4 days and
still remaining about 30% at a period of 15 days. The re-
sults obtained using single satellite data are closer to those
from multiple satellites data as the period increases because
the 3-D effect in C-responses weakens at longer periods.
Thus they are more 1-D like, a situation that can be treated
using single satellite data. It should be especially noted that
even for the case when data from a constellation have been
used the relative difference between recovered and true re-
sponses is 15-20%. This is most likely due to the fact
that the time series of spherical harmonic coefficients (es-
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pecially of higher orders) could not be recovered without
some alising, due to the complicated spatio-temporal char-
acteristics of satellite data.

Next we attempt to improve the image of the deep con-
ductor in the C-responses by using more internal coeffi-
cients for description of B,(¢) and Vg - By (t). However
there is a counterbalance between the number of coeffi-
cients to be resolved, and the sampling interval of the re-
sulting series. If we want to resolve coefficients with higher
degree k and order /, we have to choose a longer sampling
interval, A¢, in order to provide sufficient spatial cover-
age of the satellite data. So in this series of calculations
the sampling interval was chosen to be 12 hours (instead
of 6 hours of the previous example) and the number of in-
ternal coefficients was 99 (N; = 9) with the same length
(3 years; 1999-2002 period) of the time series analysed.
Figure 9 shows the C-responses at a period of 8 days (the
slight shift in the period compared to the previous results
is due to different sampling interval). The geometry of the
anomaly in South Pacific Ocean is more clearly identified
with these new sampling interval and number of coefficients
(cf. lower panels on Fig. 7). Choosing the old sampling in-
terval of 6 hours with the new (larger) number of internal
coefficients resulted in C-responses (not shown here) that
are worse compared to the case of 12 hours sampling inter-
val.

7. C-responses from Satellite Data that Contain
All Modelled Contributions

Finally we demonstrate the possibility to recover C-
responses from satellite data that contain, along with the
magnetospheric signals, realistic contributions from all
other sources modelled - from core and crustal fields, iono-
spheric variations, as well as payload noise (see details of
the forward modelling of these contributions in the com-
panion paper of Olsen et al. (2006)). Time series of the co-
efficients g, (¢), s’ (¢) and g,{, (1), hi (t) were obtained using
Comprehensive Inversion, as described in the companion
paper of Sabaka and Olsen (2006). The sampling interval,
the length of the time series, and the number of internal co-
efficients were chosen to be 6 hours, 3 years (1999-2002)
and 35 (with N; = 5), respectively, and three satellites
(Swarm A+B+C) have been used for the recovery. Fig-
ure 10 shows maps of the recovered C-responses at a pe-
riod of 7.8 days. It is remarkable that the results happened
to be in rather good agreement with those obtained from
the satellite data that contain only magnetospheric field (cf.
lower panels on Fig. 7).

8. Conclusions

In this paper we present an approach to detect large-scale
conductivity anomalies deeply embeddeded in the mantle
by analysis of magnetic signals from low-Earth-orbiting
satellites. The approach deals with recovery of C-responses
on a regular spatial grid and starts with a determination
of time series of external and internal coefficients of the
magnetic potential. From the coefficients, time series of
magnetic vertical component and the horizontal derivatives
of the horizontal components are synthesized on the grid
and the C-responses are determined by means of signal
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Fig. 8. Relative difference, |C") — C¥|/|C "], in %, between recovered,
C™, and true responses, C*), for the period range from 4 to 15 days for
three sites with essentially different conductivity vs. depth profiles be-
neath the sites. Abbreviations “Swarm A” and “Swarm A+B+C” stand
for respective cases when data from single satellite (A) and from con-
stellation of satellites (A+B-+C) were used for recovery (with N; = 5,
Ac = 6 hours).

processing of the corresponding time series.

We demonstrate that global maps of C -responses are suc-
cessfully recovered from magnetic data collected by the
proposed Swarm constellation. For this demonstration we
use synthetic magnetic signals from a given realistic magne-
tospheric source distribution and realistic 3-D conductivity

Re C; sats = A+B+C; clean data; NI =9

Fig. 9. Real (left panel) and imaginary (right panel) parts of C-responses at period of 8 days, which were estimated from constellation (A+B+C) data
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model. To simulate the signals we apply an integral equa-
tion method to solve Maxwell’s equations in the frequency
domain and then obtain time-domain solutions by means of
an inverse Fourier transform.

We identify several areas where the developed recovery
scheme could be improved. Possible topics for future re-
search include a more accurate calculation of the external
and internal coefficients by using a robust least square ap-
proach with constraints, and utilization of improved signal
processing methods (cf. Riedel and Sidorenko, 1995).

Eventually, the C-responses recovered on a regularly
spaced grid at a set of periods could serve as input for a
rigorous 3-D inversion, yet to be developed, in order to re-
trieve 3-D models of the electrical conductivity distribution
in the Earth’s mantle.

The C-response approach described in this paper is only
one of several possible ways to attack the 3-D satellite in-
duction problem. The complicated spatio-temporal charac-
teristics of satellite data may favour the application of time-
domain techniques (cf. Everett and Martinec, 2003; Mar-
tinec and McCreadie, 2004; Velimsky et al., 2006; Kuvshi-
nov and Olsen, 2005a). For example there is a hope that
with the use of time-domain approach it would be possible
to resolve upper mantle local conductors that we failed to
see in global maps of C-responses.
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Im C; sats = A+B+C; clean data; N =9

that contain only magnetospheric contribution (with N; = 9, Ac = 12 hours).

Re C; sats = A+B+C; genuine data; NI =5

Fig. 10. Real (left panel) and imaginary (right panel) parts of C-responses at period of 7.8 days, which were estimated from constellation (A+B+C) data

that contain all modelled contributions (with N; = 5, A¢ = 6 hours).

Im C; sats = A+B+C; genuine data; NI =5
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