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Pitch angle diffusion of electrons at the boundary of the lunar wake
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Velocity distribution of the solar wind electrons that penetrate through the lunar wake boundary is investigated
by calculating orbits of the electrons injected into model structures of layers of electric fields. Only the electrons
with sufficient energy to overcome the potential difference penetrate through the wake boundary. The electrons
injected along the magnetic field lines which intersect the model structure undergo pitch angle scattering due
to electric field component perpendicular to the magnetic field. After the passage through the electric field, the
electrons have significant perpendicular component of velocity as well as the parallel component larger than
a lower limit, which is dependent on the electric potential of the wake boundary. The velocity distribution
can account for the cyclotron resonance with sunward-propagating whistler mode waves that were detected by
GEOTAIL at 27 lunar radii upstream of the moon on October 25, 1994.
Key words: Lunar wake, pitch angle diffusion, electric field, wake potential structure, electron distribution
function.

1. Introduction
The lunar wake is a plasma cavity in the solar wind left

on the anti-solar side of the moon as the solar wind particles
are absorbed by the body of the moon (Schubert and Licht-
enstein, 1974). The magnetic and plasma fluctuations char-
acteristic of the lunar wake were extensively examined by
Explorer 35 (Colburn et al., 1967; Ness et al., 1968). The
knowledge on the lunar wake has been refined by WIND
spacecraft which traversed the wake at ∼6.8 lunar radii
downstream of the moon (Owen et al., 1996). According to
the observation by WIND, the plasma density was reduced
from ambient solar wind value of about 5–10 [cm−3] down
to 0.5 [cm−3] (Ogilvie et al., 1996; Bosqued et al., 1996).
Lunar Prospector also entered into the plasma void repeat-
edly, and observed depression of the flux of 40-eV electrons
by nearly three orders of magnitude (Lin et al., 1998).

At the boundary of the wake, solar wind ions and elec-
trons are thought to rush into the void region at different
speeds, producing ambipolar electric field structure. Fig-
ure 1 shows a schematic illustration of the structure of the
electric potential at the wake boundary. The velocity dif-
ference between ions and electrons causes negative excess
of charge in the inner region of the wake boundary and
positive excess of charge in the outer region of the bound-
ary. These charges produce layers of electric field. When
viewed from electrons coming from outside, the potential
structure seems as outside traps and inside barrier walls.

Although no direct measurement of such ambipolar elec-
tric field has been made, the presence of the ambipolar elec-
tric field is suggested by numerical experiments (Farrell et
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al., 1998; Birch and Chapman, 2002). On the basis of a sim-
ple one-dimensional (1-D) kinetic simulation, Farrell et al.
(1998) presented the ambipolar electric field on the flanks
of the wake within 5 lunar radii of the moon. In 2 1

2 D sim-
ulations in the solar wind rest frame, Birch and Chapman
(2002) showed the ambipolar electric field pointing radially
inward. Similar structure is observed in figure 1 of Guio
and Pécseli (2004), although their simulation is not for su-
personic flow.

Particle measurements from WIND and NOZOMI also
suggest the presence of the ambipolar electric field. In the
upstream region of the wake, WIND and NOZOMI detected
enhancements of backstreaming electrons with energy of
about 500 [eV] that are supposed to be reflected at the
lunar wake (Farrell et al., 1996; Futaana et al. 2001).
During the passage through the wake, WIND detected field-
aligned, cold ion beams refilling the lunar cavity, which
were accelerated by an electric field of the order of 2×10−4

[V/m] (Ogilvie et al., 1996).
Associated with the potential structure at the wake

boundary, ULF activities were detected by Explorer 35
(Ness and Shatten, 1969), WIND (Farrell et al., 1996) and
GEOTAIL (Nakagawa et al., 2003) on field lines connected
to the wake penumbra. From the variation of the observed
frequency of the ULF wave that was Doppler-shifted by
variable solar wind speed, Farrell et al. (1996) obtained the
angular frequency ω � −12 [rad s−1] and the wave num-
ber k � 6 × 10−5 [m−1] in the solar wind frame of ref-
erence. They concluded that it was a whistler mode wave
excited through the cyclotron resonance with reflected elec-
trons. The energy of the resonant electrons was calculated
to be 500–1500 [eV]. WIND detected simultaneous en-
hancement of the backstreaming electrons of the energy of
482 [eV].
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Fig. 1. A schematic illustration of the wake structure. The density profile
n along a pass (dashed line) through the wake has a plasma void in the
umbra. Different entry speeds of ions and electrons into the void will
cause local inequality of ion density ni and electron density ne at the
wake boundary, resulting in local inequality of electric charge q, which
produces electric potential φ structure. Viewed from electrons coming
from outside, the potential structure looks like a combination of an outer
trap and an inner wall.

GEOTAIL detected similar but left-handed, circularly
polarized ULF waves with frequency of 0.3–1.1 [Hz] at 27
lunar radii upstream of the moon when it was magnetically
connected with the lunar wake (Nakagawa et al., 2003). The
ULF wave was propagating upstream in the direction nearly
parallel to the background magnetic field which intersected
the model lunar wake at an angle of 20 degrees. The spec-
trum of the wave activity had clear, constant upper cutoff
at 1.1 [Hz] and variable lower boundary whose frequency
was within the range between 0.3 and 1.1 [Hz]. The upper
cutoff frequency corresponds to the lower limit of the group
velocity that can overcome the solar wind velocity to prop-
agate upstream, while the lower boundary seems to indicate
the lowest energy of the resonant particles.

The frequency and polarization of the ULF wave are
explained by polarity reversal of right-handed, sunward-
propagating electron whistler waves, which were excited
through the interaction with electron beams flowing in anti-
sunward direction downstream of the lunar wake (Naka-
gawa et al., 2003). The angular frequency ω in the so-
lar wind frame of reference was calculated to be 0.82 ×
10−2�e < ω < 2.3 × 10−2�e.

The anti-sunward flow of electron beam was explained

Fig. 2. A schematic illustration of velocity distributions of incoming,
reflected, and penetrating electrons. Essentially identical with figure 9
of Nakagawa et al. (2003).

by filtering effect of the potential drop at the boundary of
the lunar wake. Figure 2 illustrates the idea. Low-energy
components of electrons are reflected back by the poten-
tial drop, and the high-energy components, which can over-
take the electric potential barrier, can penetrate through the
wake. The velocity distribution of downstream electrons
would be modified to have some bump or shoulder in en-
ergy range, which is likely to excite whistler mode wave
through cyclotron resonance. The lowest energy of the res-
onant electrons was estimated to be 0.96–2.5 [keV] from
the lower boundary of the detected frequency (Nakagawa et
al., 2003).

In the resonant interactions between waves and electrons,
energy can be exchanged between the waves and the parti-
cles. The direction of energy transport depends on the initial
pitch angle of the electrons. Cyclotron resonance excites
whistler mode wave when the electron beam has significant
perpendicular component v⊥ in velocity space. In the frame
of reference of the wave, the energy of resonant electrons is
constant, and the resonant electrons move in the v‖ − v⊥
space along the orbit

(v‖ − vph)
2 + v2

⊥ = const., (1)

as represented by the circular orbit centered at (vph, 0) in
velocity space in Fig. 3. Here (vph, 0) is the phase veloc-
ity of the wave, and the value of vph is negative in Fig. 3.
If a resonant electron starts with no perpendicular compo-
nent v⊥ and moves along the orbit in Fig. 3(a), its energy
increases when viewed from the rest frame. Such electrons
extract wave energy, and the wave damps. On the other
hand, if the electrons start with significant v⊥ (Fig. 3(b)),
their energy decreases to excite the wave. In order to excite
whistler mode wave, it is required for electrons to have sig-
nificant velocity component v⊥ perpendicular to the mag-
netic field, as illustrated in Fig. 3(b).

The present paper is going to show that the electrons
which penetrate through the lunar wake boundary obtain
significant perpendicular component v⊥ after the passage
through the wake boundary. It will be also shown that the
velocity distribution of the penetrating electrons exhibits
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Fig. 3. Resonant conditions in which (a) wave damps or (b) wave is amplified.
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Fig. 4. A simplified model of electric structure at the boundary of the lunar wake. Top: Electric potential φ and direction of electric field (arrows).
Bottom: Layers of electric field at the boundary of the wake.

lower limit in v‖, as expected from GEOTAIL observation
of the ULF waves associated with the lunar wake.

2. Test Particle Simulation
We follow the motion of an electron as a test particle

injected into a model structure of electric field by solving
the equation of motion

m
dv
dt

= q(E + v × B) (2)

together with
dr
dt

= v, (3)

where m, q, v, r are the mass, charge, velocity and position
of the electron, respectively, B is the background magnetic
field, and E is the electric field at the wake boundary.

The actual lunar wake is likely to have a cylindrical con-
figuration, but we can safely assume a two-dimensional
structure of the electric field if the field is confined in very
thin regions with respect to the diameter of the moon. Such
confined electric field is observed in Plate 2 of Farrell et al.
(1996), and recognized in the potential structures presented
in Figure 3 of Birch and Chapman (2001) or in Figure 1
of Guio and Pécseli (2004), in which the electric potential
varies in short distance relative to the diameter of the moon.
Thus we assume two-dimensional electric field structure in
this study.

The electric field is assumed to have layered structure as
illustrated in Fig. 4, which corresponds to an expansion of

Fig. 1. Because of the charge inequality, negative excess
of charge appears at inner region around ‘d’ in Fig. 4, and
positive charge at outer region around ‘b’, producing elec-
tric fields directed away from ‘b’ toward ‘d’. The electric
field layers are assumed to be parallel to the wake bound-
ary and the electric field E is perpendicular to the surface
of the layers. In this model, the electric field is confined in
between ‘a’ and ‘e’, and no electric field is assumed outside
the layers. The magnetic field is set to intersect the layers
at an angle of 20◦, which reproduces the configuration of
interplanetary magnetic field at the time of GEOTAIL ob-
servation of ULF waves (Nakagawa et al., 2003).

We take Cartesian coordinates with its x-axis in the di-
rection of the magnetic field B = (B0, 0, 0), and select z-
axis so that the y-component of electric field vanishes as
E = (Ex , 0, Ez). Here Ex corresponds to the electric field
component E‖ parallel to the magnetic field, and Ez cor-
responds to the perpendicular component E⊥. The electric
field vector is assumed to be

E = ±E0eE , (4)

where eE = (sin 20◦, 0, cos 20◦) is the unit vector of elec-
tric field direction, which is perpendicular to the surface of
the wake boundary. The positive/negative sign depends on
which layer the electrons is in: it is negative in the layer be-
tween ‘a’ and ‘b’, or between ‘d’ and ‘e’, while it is positive
in the layer between ‘b’ and ‘d’. The intensity of the electric
field E0 is assumed to be constant just because of the sim-
plicity. It is likely that there is spatial variation in magnitude
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of the electric field in actual lunar wake boundary.
First, we concentrate on the inner two layers between ‘c’

and ‘e’ of electric field produced by negative charge, as it
seems to play an essential role in filtering electrons accord-
ing as their energy. Figure 5(a) illustrates the setting of
the electric field structure. It is a barrier for electrons in-
jected from the left-hand side of Fig. 5(a). After examining
electron behavior in double layered electric field, we pro-
ceed to the model structure with three layers as illustrated
in Fig. 5(b) to see the role of outer layers between ‘a’ and
‘c’.

Prior to calculation, Equations (2) and (3) are normalized
by the speed u = E0/B0, the time �−1

e , and the length
L = u�−1

e , where �e ≡ |qB|/m is the electron cyclotron
frequency.

3. Double Layered Model of Electric Field
First, we observe variation of velocity of electrons in a

double-layered structure of electric field

E =
{+E0eE ( 0 < r · eE < d )

−E0eE ( d < r · eE < 2d )
(5)

as illustrated in Fig. 5(a). Thickness of each layer d is set
to be 1.5L for this example.

Figure 6 shows an example orbit of an electron injected
into the double-layered structure along the background
magnetic field B. Left two panels of Fig. 6 show the trajec-
tory in velocity space, and the right two panels are for con-
figuration space. As the initial velocity v0 = (2.5u, 0, 0) is
parallel to B, the test particle is on the origin in vy−vz space
at the beginning. Here red color indicates that the electron
is in the outer layer of inward electric field, while blue color
is for the inner layer of outward electric field. Green color
is for regions of no electric field.

As the test particle enters into the layer of inward electric
field (red), it starts drift motion with drift speed uD =
E⊥/B0 = u cos 20◦, getting perpendicular component v⊥
of velocity. Due to the perpendicular component v⊥, the
electron begins to gyrate around the magnetic field, and
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Fig. 5. (a) The setting of the double-layered model structure of the inward
electric field in the outer layer and the outward electric field in the inner
layer, which corresponds to layers between ‘c’ and ‘e’ in Fig. 4. (b)
The triple-layered structure of electric field which corresponds to layers
between ‘a’ and ‘e’ in Fig. 4. The intensity of the electric field E0 is
assumed to be constant just because of the simplicity. Electrons are
injected from the left-hand side.

traces a circular orbit centered at (uD, 0) with radius uD

in vy − vz space. The perpendicular speed v⊥ may become
as much as 2uD after (2n + 1)π gyration (n = 0, 1, 2, . . .).
The magnitude of v⊥ gained by the electron in this layer
depends on the phase of gyration at the moment of exit from
this layer.

At the same time, the parallel component E‖ of the elec-
tric field acts on the electron to decelerate it in x direction.
The second left panel of Fig. 6 shows decrease of v‖ and
increase of v⊥ in the layer of the inward electric field (red).
From the conservation of energy

1

2
mv2

0 = q�φ + 1

2
mv2, (6)

the speed v of the electron becomes minimum

v =
√

v2
0 − v2

c (7)

at the moment when it reached the end of the first layer with
potential drop �φ. Here

vc =
√

2q�φ

m
, (8)

is the critical speed to climb up the potential difference �φ.
For the present case, v0 = 2.5u and �φ = E0d = 1.5LE0,
the critical speed vc is

√
3u, and the minimum speed v is

about 1.8u.
The electron that has climbed up the potential difference

then enters the second layer of outward-directed electric
field (blue), where the drift speed becomes negative. The
electron begins to gyrate around (−uD ,0) in vy − vz space,
and the perpendicular speed v⊥ increases.

At the same time, the electron is accelerated in x direc-
tion because of the presence of the parallel component E‖
of electric field. The electron regains the kinetic energy that
was converted into potential energy.

After gyrating about π/4 in the second layer, the electron
gets out of the electric field with significant perpendicular
speed v⊥. After a shallow entry into the second layer,
it leaves the boundary and enters the central void of the
wake. The final velocity of the electron is v⊥ = 2.06u and
v‖ = 1.42u, that is, v = 2.5 with the pitch angle of 55◦.
The pitch angle is largely diffused, while the kinetic energy
is conserved.

Similar calculations are made for a number of electrons
with various initial speeds and pitch angles. Figure 7 shows
initial and final velocity distributions. The electrons are
injected into the double-layered electric field nearly along
the magnetic field with various initial velocities

v0 = v0

⎛⎝ cos θ0

sin θ0 cos φ0

sin θ0 sin φ0

⎞⎠ , (9)

where v0 is the initial speed ranging from 0.02u to 5u, and
the initial pitch angle θ0 ranges from 0◦ to 10◦ as measured
from the direction of the magnetic field. The initial phase
of gyration, φ0, ranges from 0◦ to 180◦. Each of the test
particles represents electrons in each solid angle 0.04u ×
1◦ × 1◦. After calculation of their orbits, the number of test
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Fig. 6. An example of the trajectory of an electron with initial velocity v0 = (2.5u, 0, 0), injected into a double layered model with d = 1.5L along the
magnetic field line. From left to right: the trajectory in velocity space vy − vz perpendicular to the magnetic field, the trajectory in v‖ − v⊥ space, the
orbit in configuration space y − z perpendicular to the magnetic field, and that in configuration space x − z where x axis is parallel to the magnetic
field line. Red color indicates that the test particle is in the first layer of electric field, while blue color in the second layer of the reversed electric
field. Green color indicates that the particle is out of the electric fields.
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Fig. 7. Velocity distributions of the incident electrons (left panel), of the electrons reflected by the electric field (center panel), and of the electrons
which passed through the double layered model electric field (right panel). The electric field is represented by Eq. (5). The initial speed is in the
range 0.02u–5u and the pitch angle is between 0◦ and 10◦ from the direction of the magnetic field.
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Fig. 8. Same as Fig. 7 but the initial pitch angles are distributed wider, between 0◦ and 90◦ from the magnetic field.

particles multiplied by each solid angle is counted for each
bins of 0.2u × 1◦ × 1◦.

The final velocity distribution is presented separately in
two panels, one is for electrons reflected back by the poten-
tial barrier (middle panel of Fig. 7), and the other is for those
which penetrate through the wake boundary (right panel of
Fig. 7). During the passage through the second layer, the
electrons that penetrate through the wake regain the kinetic
energy that was converted into potential energy, and their
speed become larger than the critical speed (vc = √

3u
for this case) in the downstream of the boundary. As they
are accelerated in x direction in the second layer due to the
presence of E‖, they obtain non-zero v‖ in the downstream
region. We observe a lower limit of v‖ at around 1.2u in the
right panel of Fig. 7. At the same time, the pitch angle is
largely diffused from the initial state. The penetrating elec-
trons gain perpendicular component v⊥ as much as 2.5u.

The lower limit of v‖ is clearer in Fig. 8, which shows
the results for electrons with wider range of initial pitch an-
gle. During the passage through the second layer of outward
electric field, the penetrating electrons are accelerated in x
direction, and obtain a finite v‖. Slowest particle stays for
longest time in the layer being accelerated, thus the elec-
trons have significant v‖ downstream of the wake boundary.

4. Triple Layered Model of Electric Field Struc-
ture

Next we proceed to the model of triple-layered structure

E =
⎧⎨⎩

+E0eE ( 0 < r · eE < d )

−E0eE ( d < r · eE < 3d )

+E0eE (3d < r · eE < 4d )

(10)

as illustrated in Fig. 5(b). Again the thickness d is set to
be 1.5L . Figure 9 compares trajectories of an electron in
the triple-layered structure and in the double-layered struc-
ture. The initial speed v0 is 3.5u and the initial pitch an-
gle is 10◦. In the double-layered model (upper panels), the
perpendicular component v⊥ becomes 1.5u after the pas-
sage through the layered electric fields, while in the triple-
layered model (lower panels), the electron gains v⊥ as much
as 2.6u. Entering into the first layer of outward electric
field (blue) of the triple-layered model, the electron begins
to rotate around (−uD, 0) in vy − vz space. It gives the
electron a chance to obtain larger speed with respect to the
point (uD, 0), the center of gyration of the next layer. In the
second layer of inward electric field (red), it rotates around
(uD, 0) with the large relative speed gained in the first layer.
Finally it enters into the last layer (blue) with v⊥ ∼ 2.3u
and gyrate around (−uD, 0), then exit with large v⊥ ∼ 2.6u.
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Fig. 9. Comparison of electron trajectories in double-layered and triple-layered structure of electric field, with the same initial speed v0 = 3.5u and
pitch angle 10◦. The format is the same as that of Fig. 6.
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Fig. 10. Velocity distributions of the incident electrons (left panel), of the electrons reflected by the electric field (center panel), and of the electrons
which passed through the triple layered model electric field (right panel). The electric field is represented by Equation (10). The initial speed is in the
range 0.02u–5u and the pitch angle is between 0◦ and 10◦ from the direction of the magnetic field.
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Fig. 11. The final speeds versus the initial speeds of test-particle electrons
after the passage through the triple-layered structure of the electric field.
This plot is produced by calculating velocity of particles for various
speed 0.05u < v0 < 5u (�v0 = 0.05u), pitch angle 0 < θ < 10◦
(�θ = 1◦) and phase angle 0 < φ < 180◦ (�φ = 2◦).

Figure 10 shows final states of electrons injected into
triple-layered electric fields with various initial speeds rang-
ing from 0.02u to 5u and pitch angle between 0◦ and 10◦.
The pitch angle becomes larger in the triple-layered struc-
ture than in the double-layered electric fields in Fig. 7. It
is also recognized that the lower limit of v‖ is higher in
the triple layered model than in the double layered model.
The outer trapping electric field contributes to the pitch an-

gle diffusion by giving another chance of transition between
layers of different drift velocities.

The initial kinetic energy of test-particle electron is con-
served after the passage through the layered structure of the
electric field. Figure 11 shows the final speeds of the elec-
trons that passed though the triple-layered electric field, as
a function of their initial speeds ranging from 0.05u to 5u
with initial pitch angles of 0◦–10◦. The conservation of
the kinetic energy is recognized. The blank area of low-
energy range is for the particles reflected back, not pene-
trating through the layers.

5. Thickness of the Layers of Electric Fields
Figure 12 shows the velocity distribution of the electrons

after the passage through the triple-layered models of vari-
ous thickness d = 0.3L , 0.6L , L , 2L , or 3L . Test particles
are injected nearly parallel to the magnetic field, with pitch
angle of 0◦–10◦.

In the thin layered models with d = 0.3L or 0.6L , few
electrons obtain large v⊥. The electrons easily get out of
the layer before they gyrate significant phase angle to obtain
large v⊥. The lower limit of v‖ is not very clear, either.

In the electric field model with each layer as thick as
d ∼ L , the electrons spend longer time in each layer than
in the thin models, and gyrate larger angle in cyclotron
motion. Some of the slow-starting electrons gyrate as much
phase angle as π by the time they exit the layer, and obtain
maximum perpendicular speed v⊥ in the layer.

In thicker models, e.g., d > 2L , the slowest electrons
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can gyrate by the phase angle of 2π , getting back to the
origin in vy − vz space. According as the phase angle of
the gyration becomes 3π , 4π , 5π , . . ., the perpendicular
speed of electrons becomes maximum, 0, maximum, . . .,
alternately. The dependence of v⊥ on v‖ is recognized in
the bottom 2 panels of Fig. 12. The electrons with large v⊥
is clustered in some bands of v‖. If such electrons excite
waves which are to be observed by GEOTAIL, it is likely
that the whistler mode wave has some band structure in its
spectrum. As far as the waves observed by GEOTAIL is
concerned, no such signature has been detected.

It is also recognized in Fig. 12 that the lower limit of
v‖ increases with the thickness of the electric field struc-
ture. The relationship between the lower limit of v‖ and the
thickness is summarized in Table 1, which shows that the
lower limit of v‖ is of the order of the critical speed vc.

6. Discussion
6.1 Summary of experiment

The results of the test-particle simulation are summarized
as follows:
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Fig. 12. Effect of variation of the thickness of the layer of electric
field. Top panel shows the initial states, and the followings show the
final states of electrons that are reflected by, or penetrating through
triple-layered structures with thickness of d = 0.3L , 0.6L , 1.0L , 2.0L ,
and 3.0L .

Table 1. Lower limit of v‖ after the passage through the triple layered
electric fields of various thickness.

thickness d lower limt v‖ vc

0.1L 0.5u 0.4u

0.3L 0.7u 0.8u

0.4L 0.7u 0.9u

0.7L 0.7u 1.2u

0.8L 1.0u 1.3u

L 1.2u 1.4u

1.5L 1.6u 1.7u

2L 1.3u 2.0u

3L 2.0u 2.4u

4L 2.5u 2.8u

i) The inward electric field produced by negative excess
of charge first decelerates incoming electrons and re-
flects those with less energy than that of potential en-
ergy. The electric field structure at the lunar wake
boundary behaves like a filter which allows only high
energy electrons to pass through and retard low energy
electrons.

ii) In the inner layer, the component E‖ of the outward-
directed electric field produced by negative excess of
charge then accelerates the electrons which penetrate
through the wake boundary toward the central void.
Thus the electrons regain the kinetic energy which was
spent in climbing the potential difference. Thus in
the downstream, the parallel component v‖ of electron
velocity becomes larger than a lower limit.

iii) The electric field component E⊥ perpendicular to the
magnetic field causes E × B drift of electrons in the
wake boundary. The electrons obtain significant ve-
locity component v⊥ due to the electric-field drift.

iv) Through the transition between layers of electric field
with different drift speed, some of the penetrating elec-
trons obtain more perpendicular speed v⊥.

v) The electric field produced by positive charge in the
outer layer of the lunar wake contribute to larger diffu-
sion of pitch angle of electrons, by giving more chance
of transit between layers of different drift speeds.

6.2 Origin of the penetrating electrons
The present simulation shows that the initial kinetic en-

ergy of electrons are conserved after the passage through
the wake boundary. On the other hand, the GEOTAIL ob-
servation suggested that the minimum energy of the pene-
trating electrons was in the range from 0.96 [keV] to 2.5
[keV] (Nakagawa et al., 2003). Thus the incident electrons
are expected to have as much energy.

The electrons of such energy range are often observed
in the solar wind and referred to as the halo component
(Feldman et al., 1975; Gosling et al., 1987). When the
halo component flowing outward from the sun is narrowly
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Fig. 13. An example of the velocity distribution of the solar wind electrons obtained by GEOTAIL/LEP on October 25, 1994, 16:54:52–16:55:52 UT.
Left panels show contours of the distribution function in v‖ −v⊥ planes, where the upper left panel shows v⊥ in the direction of electric field E, while
the lower left panel shows v⊥ in the direction of the convection velocity E × B. Observation of low energy components in the energy regime of core
electrons was not carried out in the sweep mode (RAM-A), as indicated by the central blank area in the left panels. Upper right panel shows cut of
the distribution function along the v‖ axis indicated by the vertical dashed line in the lower-left panel, while the lower right panel is the cut at the v⊥
axis indicated by the horizontal dashed line in the lower-left panel. Green curves in the right panels show the one-count limits, that is, the least level
required for incoming electrons to produce the least bit signal. In the upper right panel, an enhancement of strahl component is observed at around
1.5×104–2.0×104 [km/s] which corresponds to 1.0–1.8 [keV], as marked with an arrow. In this panel, positive v‖ corresponds to electron flow away
from the sun, since the magnetic field was directed away from the sun.

distributed along the magnetic field, it is referred to as the
strahl component (Pilipp et al., 1987; Phillips et al., 1989;
McComas et al., 1989).

During the period of GEOTAIL detection of ULF waves
associated with the lunar wake boundary, the spacecraft
observed halo electrons with its peaks at around 1 [keV]
in the solar wind far upstream of the moon (27 lunar radii).
Figure 13 is one of the examples of the electron distribution
function obtained by GEOTAIL/LEP during the detection
of the ULF wave. It shows only halo components because
the lowest energy step of the operation mode (RAM-A) of
LEP is centered at 60 [eV] (Mukai et al., 1994). The left
panels show cross sections of the distribution function in
v‖ − v⊥ planes, and the right two panels show profiles of
the distribution function along one of the dashed lines in
the lower left panel. In the upper right panel, the strahl
component is recognized at around v‖ ∼ 1.5 × 104 − 2.0 ×
104 [km/s], which corresponds to 1.0 [keV]–1.8 [keV]. As
the magnetic field was directed away from the sun at this
time, positive v‖ corresponds to electron flow away from
the sun, in agreement with the antisunward flow of strahl
electrons along the magnetic field. On the other hand, no

such enhancement is seen in the cut along the v⊥ axis in
the lower right panel. Thus the origin of the penetrating
electrons is thought to be the strahl component of solar wind
electrons flowing downstream along the magnetic field.
6.3 An attempt to estimate the thickness of the layer

The energy of electrons that penetrate through the wake
boundary is estimated from the lower cutoff frequency of
the ULF waves detected by GEOTAIL (Nakagawa et al.,
2003). The lower limit of v‖, which is of the order of vc,
gives a measure of �φ, but it gives no restriction on the
thickness d of the boundary layer.

In order to estimate the thickness of the wake boundary
structure, we re-examine the velocity distribution in Fig. 12.
Excitation of wave through cyclotron resonance requires
significant perpendicular speed v⊥, while the electrons do
not gain much perpendicular speed v⊥ in thin models of
d < L . Thus it seems that the thickness of each layer of the
lunar wake boundary is larger than L .

As the layer becomes thicker, d > 2L , the lower limit
of v‖ becomes higher, but the upper limit of v⊥ is restricted
around 4uD for the case of the triple layered model. Thus
in the thicker model, we cannot expect high v⊥/v‖ ratio
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which is important for wave excitation through cyclotron
resonance. Thus it seems likely that the thickness of the
boundary was between the range from d ∼ L to 2L for the
GEOTAIL observation.

The most effective thickness d ∼ 1 − 2L for pitch angle
diffusion, where L = u�−1

e , is nearly equal to the Larmor
radius rL = v⊥�−1

e of the penetrating electrons that was
initially injected nearly parallel to the magnetic field, as
v⊥ is of the order of uD–3uD (typical value recognized in
Fig. 10).

As the length L = u�−1
e = E0B

−1
0 �−1

e is related with
the electric field, and the electric field is written in the form
of

E0 = �φ

d
, (11)

our estimation of the thickness d = (1 ∼ 2)L turns to be

d = (1 ∼ 2)
�φ

B0�ed
, (12)

and we obtain

d =
√

(1 ∼ 2)
�φ

B0�e
. (13)

According to the GEOTAIL observation, B0 = 6 [nT],
�e = 2π × 174 [Hz], and �φ = 0.96–2.5 [keV], we
obtain the thickness of a single layer about 12–28 [km]
and the whole thickness of multi-structure about 48–110
[km]. The magnitude of the electric field is calculated to be
around 80 [mV/m]. Assuming that the potential structure is
a result of velocity difference of ions and core components
of electrons, with thermal speeds of 50 [km/s] (20 [eV]) and
5000 [km/s] (80 [eV]), respectively, it takes only 0.01–0.02
sec for the electrons to traverse the distance into the void,
and during the time the solar wind flows by 500 [km/s] ×
(0.01–0.02) [sec] = 5–10 [km]. Thus, the wake potential
structure which disturbed high energy electrons to excite
whistler wave detected by GEOTAIL is supposed to be in
close vicinity (∼10 [km]) of the moon.

7. Conclusion
The layered structure of electric field at the boundary of

the lunar wake modifies the velocity distribution of incom-
ing electrons to exhibit lower limit of parallel component v‖
and to have significant perpendicular component v⊥ which
is expected to excite waves through cyclotron resonance.
The velocity distribution obtained in this study is favorable
to the generation of the whistler mode wave observed by
GEOTAIL in association with the magnetic connection with
the lunar wake (Nakagawa et al., 2003).

The electric field component E‖ parallel to the magnetic
field contributes to reflection of low-energy electrons and
modification of the electron distribution function to exhibit
lower limit in v‖, while the electric field component E⊥ per-
pendicular to the magnetic field contributes to the pitch an-
gle diffusion through the electric field drift. In the absence
of the electric field component E‖ parallel to the magnetic
field, there will be no lower limit in the distribution of v‖.
Even in such a case, the pitch angle diffusion in E⊥ makes
it possible for electrons with such a ring-shaped velocity
distribution function to excite a wave.

In this study, we assumed double- or triple-layered struc-
tures of electric field with equal amount of potential drop
and potential rise, resulting in equal electric potential be-
tween the solar wind and the central part of the wake. At
the real wake boundary, it is likely that the magnitude of
the electric field as well as the thickness of the electric field
layer is different for each layer. For example, if inward elec-
tric field dominates outward directed fields, and the electric
potential in the central wake is negative, the kinetic energy
of the penetrating electrons would be smaller than that of
the solar wind, and the low-energy cutoff in v‖ would be
less significant. The pitch angle diffusion is again effective
even in such cases.

One might think that the field-aligned electric field can
easily be cancelled by cold component of the plasma, but
it takes time for the electrons to fulfill the void while the
solar wind plasma flows down, thus there is an electric
field component perpendicular to the solar wind flow in
close vicinity of the moon. When the magnetic field is not
parallel to the solar wind flow, as in the case of GEOTAIL
observation (Nakagawa et al., 2003), there must be the
electric field component E‖ parallel to the magnetic field.
The proximity of the region of the electric field is consistent
with the discussion in Section 6.3.

On the other hand, if the magnetic field happens to be
parallel to the solar wind flow, entry of suprathermal elec-
trons along the magnetic field is not expected. In such cases,
difference of gyroradii of ions and electrons might be essen-
tial. Thus the direction of magnetic field is thought to be of
great importance for the electric field structure at the wake
boundary.

Although Nakagawa et al. (2003) assumed a whistler
mode wave excited in the wake, it is not known what wave
mode is really excited. The wave detected by GEOTAIL
matched the profile of the whistler mode wave for the very
parameters of the solar wind observed by GEOTAIL, on the
other hand, previous observations in the lunar wake showed
that the plasma density was depressed in the wake. Thus the
dispersion relation of the whistler mode in the wake must
be different from that in the solar wind. Whatever mode
in the wake is, a wave, once launched upstream into the
solar wind, propagates as the whistler mode wave only if
the wave frequency at the boundary of the wake is in the
range allowed for the whistler mode wave in the solar wind
frame. For the case of GEOTAIL observation, the range of
angular frequency is 0.82 × 10−2�e < ω < 2.3 × 10−2�e.
Mode conversion may occur at the boundary. Thus knowing
the mode of the wave excited in the wake is subject to the
future work.
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