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We propose a scheme for calculating the magnetic field in a spherical shell, based on Earth’s outer core, using
the finite element method (FEM). The two most difficult problems for magnetohydrodynamics (MHD) simulations
in a rotating spherical shell with FEM are solving the magnetic field outside the fluid shell, and connecting the
magnetic field in the fluid shell to the exterior potential field at the boundary. To solve these problems, we extend
the finite element mesh beyond the fluid shell and compute the vector potential of the magnetic field. To verify
the present scheme, we consider three test case. First, we compare the FEM model with an analytical solution of
Laplace’s equation outside the fluid. Second, we evaluate free decay of a dipole field and compare the results with
a spectral solution. Finally, compare the results of a simple kinematic dynamo problem with a spectral solution.
The results suggest that the accuracy of the dipole field depends on the radius of the simulation domain, and that
this error becomes sufficiently small if the radius of the outer region is approximately 6 times larger than the radius
of the fluid shell.
Key words: Geodynamo, finite-element method, boundary conditions.

1. Introduction
It is widely accepted that the geomagnetic field is gen-

erated by the motion of an electrically conductive fluid in
Earth’s outer core, a phenomenon known as the geodynamo
process. The fluid motion is strongly influenced by the
Lorentz force and the Coriolis force, making the dynamo
process a complicated nonlinear system that requires three-
dimensional, time-dependent numerical simulations. Inves-
tigations of the generation of magnetic fields for Earth and
other planets entered a new phase in 1995 after several mag-
netohydrodynamic (MHD) simulations of a rotating spher-
ical shell were used to represent some basic characteristics
of the geomagnetic field (Glatzmaier and Roberts, 1995a, b;
Kageyama et al., 1995). Following this work, many simu-
lation studies of the geodynamo represented the strong and
dipole-like magnetic fields by which the geomagnetic field
is characterized (Kuang and Bloxham, 1997; Christensen
et al., 1999; Sakuraba and Kono, 1999). However, most
of these simulations utilize spherical harmonic expansions
in the azimuthal and elevation directions. This choice was
made because of the high spectral accuracy of this method
and because the magnetic fields in the spherical shell are
easily connected to the potential field outside the shell at
the boundary. Kageyama et al. (1995) used the finite dif-
ference method (FDM), but incorporated a magnetic bound-
ary condition at the shell boundaries that is different to that
assumed to exist at Earth’s Core–Mantle boundary (CMB).
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As noted, the use of spherical harmonic expansions has ap-
pealing advantages for geodynamo simulations, but it nev-
ertheless has some disadvantages. In particular, the spheri-
cal harmonics expansion is not suitable for massive parallel
computations because a significant number of global oper-
ations are required for the computation of nonlinear terms.
Kuang and Bloxham (1997) sub-divided the spherical shell
radially. However, the number of the processors used for the
simulation limits the model’s radial resolution. Clune et al.
(1999) introduced a method of parallel computation for fluid
motion in a rotating spherical shell using a spherical har-
monics expansion. Their scheme requires three decomposi-
tions of the model domain for time integration. Several other
schemes for simulating the fluid motion exist, namely the
finite-volume method (FVM), and the finite-element method
(FEM). These schemes are more suitable for parallel com-
putation because they consist of local operations. For the
present study, we choose the finite element method. Under
the FEM, any unstructured mesh can be used—that is, one
that is suitable for describing some complex geometry at the
CMB. Furthermore, local diffusivities are easily introduced
under the FEM platform because the operations are local.
However, the following problems remain to be solved:

• Solving for the magnetic field using the induction equa-
tion and the magnetic field conservation law. There are
four equations for the three components of the field.

• Connecting the magnetic field in the fluid shell to the
magnetic field outside the shell.
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• Determining the magnetic diffusion term that satisfies
the magnetic boundary condition on the CMB.

Chan et al. (2001a, b) solved a nonlinear kinematic dynamo
problem using the FEM platform. They used a finite-element
mesh not only for the fluid shell, but also for the exterior of
the shell, and they introduced an auxiliary pressure to the
magnetic induction equation, to solve for both the magnetic
field and the auxiliary pressure. The approach we adopt to
determine the magnetic field is different from that of Chan
et al. The principal differences between the two codes are as
follows:

• In the present model, the simulation domain is divided
into hexahedral elements, and all physical values in-
cluding the potential ϕ are interpolated by tri-linear
functions. On the other hand, Chan et al. used quadratic
shape functions to interpolate the magnetic field, and a
linear function to interpolate the auxiliary pressure in
tetrahedral elements.

• In the present model, the vector potential is solved for,
whereas the magnetic field is calculated in Chan et al.’s
model.

• In our model, the exterior of the fluid shell is assumed to
be an insulator and is represented by the Laplace equa-
tion, whereas Chan et al. assume that a region of large
magnetic diffusivity extends beyond the fluid shell.

As with the approach of Chan et al., a finite-element mesh
is required for both the fluid shell and the shell’s exterior,
but we can treat electrical insulators in the present model.
Here we propose a method based on the vector potential of
the magnetic field to perform geodynamo simulations in a
rotating spherical shell. We verify the present scheme with
three simple tests. The first test is, given a vector potential
in the fluid shell, to determine the potential magnetic field
outside the shell in order to investigate the required size of
the simulation domain. In the second test, the magnetic
diffusion in the fluid shell is computed and compared the
results with a spectral solution. Thirdly, a simple kinematic
dynamo problem is solved and the results are compared with
those obtained using a spherical harmonics expansion.

2. Simulation Model and Methods
2.1 Basic equations for the magnetic field

Consider a spherical shell modeled on Earth’s outer core.
The ratio of the inner boundary to the outer boundary of the
spherical shell is set to be 0.4. The shell is filled with an
electrically conducting fluid of constant conductivity σ . In
the case of the kinematic dynamo problem, the fluid has a
given velocity field u. The basic equations for the mag-
netic field, under the MHD approximation, are given by
Maxwell’s equations and Ohm’s law—that is:

∇ × E = −∂B
∂t

, (1)

∇ × B = μ0J, (2)

∇ · E = ρe

ε0
, (3)

∇ · B = 0, (4)

and

J = σ (E + u × B) , (5)

where B, E, J, μ0, and ρe are the magnetic field, electric
field, current density, magnetic permeability, and charge den-
sity, respectively. The vector potential of the magnetic field
A with the Coulomb gauge is considered in the present for-
mulation. The vector potential satisfies the following equa-
tions;

∇ × A = B, (6)

and

∇ · A = 0. (7)

Using Eqs. (1)–(7), the basic equations for the vector poten-
tial are found to be;

∂A
∂t

= −∇ϕ + η∇2A + u × B, (8)

∇ · A = 0, (9)

and

∇ × A = B, (10)

where η = 1/ (μ0σ) is the magnetic diffusivity, and ϕ is an
scalar potential.

These basic equations for A and ϕ (Eqs. (8) and (9)) are
similar to the basic equations for the velocity and pressure of
a Boussinesq fluid. Consequently, the same time integration
scheme can be applied for the vector potential as that for the
fluid motion.

A characteristic of the present simulation is that the vector
potential has to be determined outside the radius of the fluid
shell, which we denote by ro. The solution for the magnetic
field in the insulating region (r > ro) can be described by a
potential field

B = −∇W, (11)

where the potential W is expanded in spherical harmonics
Y m

l as

W =
inf∑

l=1

l∑
m=−l

(ro

r

)l+1
Cm

l Y m
l , (12)

and Cm
l are the scalar coefficients of the expansion. In a spec-

tral method, the magnetic boundary condition can be given
as Neumann boundary conditions for each scalar coefficient
in the expansion. However, we cannot apply such bound-
ary conditions here because the FEM is based on local op-
erations. Following Chan et al. (2001b), the finite element
mesh is extended outside the fluid shell. The basic equations
for the vector potential in the insulator are

Je = −∇2Ae = 0, (13)

and

∇ · Ae = 0, (14)

where Ae and Je are the vector potential and current density
in the insulator, respectively. In this formulation, Eqs. (8)
and (13) can be solved simultaneously because physical
properties can be defined for each element under the FEM
platform.
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2.2 Boundary conditions
The boundary conditions for the vector potential at the

fluid-insulator interface are specified by continuity of the
magnetic field and tangential components of the electric
field. The boundary conditions for the magnetic field are

(B − Be) · n̂ = 0, (15)

and

(B − Be) × n̂ = 0, (16)

where B, Be, and n̂ are the magnetic field in the fluid shell
and the insulator, and the normal vector of the boundary, re-
spectively. To satisfy these boundary conditions, we require
the following conditions on the vector potential,(

∂A
∂n

− ∂Ae

∂n

)
= 0, (17)

and

(A − Ae) = 0. (18)

The boundary condition on the electric field requires

(E − Ee) × n̂ = −
(

∂A
∂t

− ∂Ae

∂t

)
× n̂

− (∇ϕ − ∇ϕe) × n̂ = 0, (19)

where, Ee is the electric field in the insulator. In order to
ensure that ∇ϕ is define on the boundary, we require ϕ to be
continuous across the boundary. This requires

ϕ − ϕe = 0, (20)

and
(∇ϕ − ∇ϕe) × n̂ = 0. (21)

These boundary conditions (Eqs. (17)–(18), (20), and (21))
are easily implemented under the FEM platform. There are
no conditions on the normal component of E. Therefore,

(E − Ee) · n̂ = −
(

∂A
∂t

− ∂Ae

∂t

)
· n̂

−
(

∂ϕ

∂n
− ∂ϕe

∂n

)
· n̂ �= 0, (22)

Since (∂A/∂t − ∂Ae/∂t) = 0 by virtue of Eq. (18), the dis-
continuity of E · n̂ is due to a discontinuity in the normal gra-
dient of the scalar potential ∂ϕ/∂n. As a result ∂ϕ/∂n is dis-
continuous at the boundary when the conductivity changes
across the boundary.

We should impose boundary conditions at the infinite ra-
dius. In the present study, the following boundary condition
should be considered at infinity;

Ae = O(r−2). (23)

However, because we are dealing with a finite area divided
into a finite number of elements, we apply a modified bound-
ary condition,

Ae = 0, (24)

at the limit of the finite-element mesh r = rm in place
of Eq. (23). To approach the real solution of the vector
potential near the outer boundary of the fluid shell, rm should
be as large as possible. Furthermore, a boundary condition
for the scalar potential ϕe is also required at r = rm . ϕe

also approaches zero at the infinite radius. However, the
following condition is used as the boundary condition to
satisfy the Coulomb gauge, at r = rm :

∂ϕe

∂n
= 0. (25)

2.3 Time integration scheme
The present code is based on the thermal-hydraulic sub-

system of GeoFEM, which serves a parallel FEM platform
(Matsui and Okuda, 2002). We use the fractional step
scheme to solve for the vector potential, by solving Eqs. (8)
and (13) simultaneously. The Crank–Nicolson scheme is
used to determine the diffusion term, and the 2nd-order
Adams–Bashforth Scheme is used to find the induction term
in the time integration process. The potential ϕ and diffu-
sion term are solved using the Conjugate Gradient solver by
GeoFEM (Nakajima and Okuda, 1999).

The processes of time integration is described as follows:

1

�t

(
An+ 1

3 − An
)

= 3

2

(
un × Bn

)
−1

2

(
un−1 × Bn−1

)
, (26)

1

η�t
An+ 2

3 − 1

2
∇2An+ 2

3 = 1

η�t
An+ 1

3 + 1

2
∇2An, (27)

−�t∇2ϕn+1 = −∇ · An+ 2
3 , (28)

and

An+1 = An+ 2
3 − �t∇ϕn+1. (29)

Within the insulator, Eqs. (13) and (14) should be solved. To
solve these equations, we use the same treatment as that for
Eqs. (27)–(29). The time integration is given by

1

2
∇2A

n+ 2
3

e = 1

2
∇2An

e (= 0), (30)

−�t∇2ϕn+1
e = −∇ · An+ 2

3
e , (31)

and

An+1
e = A

n+ 2
3

e − �t∇ϕn+1
e . (32)

By this procedures, the current density at the next step satis-
fies Jn+1

e = ∇ × ∇ × An+2/3
e = ∇ (∇ · An+2/3

e

)
. The current

density Jn+1
e is not zero because ∇·An+2/3

e �= 0. However, the
magnetic field is not affected by the error of An+2/3

e because
this error consists of a potential field (see Eq. (31)). The cur-
rent density Jn+1

e is due to a change of the charge density on
the boundary between the insulator and conductive fluid, and
is neglected under the MHD approximation.

The simulation domain is divided into tri-linear hexahe-
dral elements. The vector potential, magnetic field, scalar
potential, velocity, and temperature are defined at each node
and interpolated by a tri-linear function Nβ in each element.
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Fig. 1. Finite element mesh for the present model. This finite element mesh consists of 1.48 × 105 nodes, and the size of the simulation domain in the
present figure is rm = 17.6.

The suffix for insulator e is omitted in the following equa-
tions. To describe the time evolution scheme in the weak
form, Eqs. (26) and (27) are multiplied by eight weighting
functions Nα . By connecting these equations in the conduc-
tive fluid and the insulator, the following matrix equations
are obtained:

∑
Fluid

∑
α

∑
β

M̄αβ

(
A

n+ 1
3

β − An
β

)

= �t
∑
Fluid

∑
α

∑
β

(
3

2
f n

A − 1

2
f n−1

A

)
, (33)

∑
Fluid

∑
α

∑
β

1

η�t
M̄αβ

(
A

n+ 2
3

β − A
n+ 1

3
β

)

= 1

2

[ ∑
Fluid

∑
α

∑
β

(
Sαβ − Lαβ

) (
A

n+ 2
3

β + An
β

)

+
∑
I ns

∑
α

∑
β

(
Sαβ − Lαβ

) (
A

n+ 2
3

β + An
β

)]
, (34)

−�t
∑

Entire

∑
α

∑
β

(
Sαβ − Lαβ

)
ϕn+1

β

= −
∑

Entire

∑
α

∑
β

Hαβ · An+ 2
3

β , (35)

and

∑
Entire

∑
α

∑
β

M̄αβ

(
An+1

β − A
n+ 2

3
β

)

= −
∑

Entire

∑
α

∑
β

Hαβϕn+1, (36)

where

f n
A = Mαβun

β × Bn
e . (37)

In the above equations, Be = V −1
e

∑
α

∫
e Bα NαdV is the

magnetic field averaged over each element, and
∑

Fluid ,∑
I ns , and

∑
Entire indicate integration in the fluid core, the

insulator, and the entire domain, respectively. The integra-
tions Mα,β , Lαβ , Sαβ , Hαβ , and M̄αβ are given by;

Mαβ =
∫

e
Nα NβdV, (38)

Lαβ =
∫

e

{
(∇Nα) · (∇Nβ

)}
dV, (39)

Sαβ =
∮

e
Nα

(∇Nβ

) · n̂d S, (40)

Hαβ =
∫

e
Nα

(∇Nβ

)
dV, (41)

and

M̄αβ =
⎧⎨
⎩

∑
β

Mαβ, α = β

0, α �= β

(42)

It is noted that the surface integration term at the CMB in
Eq. (34) can be omitted because of the boundary condition
for the vector potentialin Eq. (17).
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Fig. 2. Mesh pattern for the fluid shell given in Fig. 1. The finite elements for the outer core are white: the elements for the inner core and outside the shell
are gray.

2.4 Finite element mesh
The simulation domain is divided into tri-linear hexahe-

dral elements, as illustrated in Fig. 1. The radius of the sim-
ulation domain rm is varied to investigate the effects of size
on results. The mesh is constructed as follows.

• The sphere’s surface is divided into quadrilateral ele-
ments, which are stacked radially throughout most of
the problem domain.

• A divided cube is used at the model’s center.

• Connecting elements link the outer spherical shell and
the inner cubic mesh.

In the present study, the outer core is equally divided in the
radial direction, while the element sizes increase with radial
distance outside the core (see Fig. 1). As seen in Fig. 2, the
mesh becomes somewhat irregular around the cubic mesh.
These grid patterns may affect the simulation results, but any
such effects will be small because the magnetic field patterns
are simple near the center.
2.5 Parallelization

We performed the present simulations on a Hitachi
SR8000, which has eight computational nodes, where each
SMP node consists of eight processors. We choose OpenMP
for parallelization in each SMP node, and a domain de-
composition method for parallelization among SMP nodes.
There is a problem associated with the domain decomposi-
tion in the present study, because the number of computa-

8
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ee
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p
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10

2 3 4 5 6 7 8

Number of processes

 88992 elements
 202176 elements
 362880 elements
 832032 elements

Fig. 3. Parallel performance on a SR8000 system. The speedup is calcu-
lated from the elapsed time for 10 time steps.

tions is different for the conductive fluid and for the insulator.
To balance the computation for each domain, the simulation
domain is divided along azimuthal and elevation directions.

Figure 3 shows the parallel efficiency for 10 time steps
on the SR8000 using four different spatial resolutions. We
find that the parallel efficiency decreases when the number
of elements for each processor is small, because the ratio
of the communication time to computation time becomes
large in this case. This suggests that approximately 105 ele-
ments/(SMP node) are required to obtain an adequate paral-
lel performance on the SR8000.
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Table 1. Spatial resolution of the finite element mesh.

Name �r Num. of layer rm

for fluid in ro < r < rm

Mesh (a) 1/32 7 ∼ 9 5.635 ∼ 16.635

Mesh (b) 1/64 9 ∼ 11 5.667 ∼ 17.667

Mesh (c) 1/128 8 ∼ 12 2.667 ∼ 17.667
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Fig. 4. Ratio of the R.M.S. error in the magnetic field to the R.M.S. of
the magnetic field at r = ro as a function of the radius of the simulation
domain rm .

3. Results of Test Simulations
Three tests are performed to evaluate the present simula-

tion model:

• Analyze the vector potential outside the fluid shell to
examine the effects of different maximum simulation
radii.

• Solve the magnetic diffusion equation for an initial
dipole field.

• Solve a simple kinematic dynamo problem and compar-
ing the solution with the results of a spherical harmonics
expansion.

3.1 Accuracy tests for a magnetic field in the insulating
mantle

3.1.1 Effect of the radial resolution and size of simu-
lation domain Here we focus on the calculation of a mag-
netic field outside the fluid shell and investigate its accu-
racy. The magnetic vector potential is obtained by solving
a boundary problem (Eqs. (13) and (14) in the insulating do-
main. In this test we used the following magnetic field for
the fluid shell.)

A = ∇ × (
Bm

SlY
m
l r̂

)
, (43)

B = ∇ × ∇ × (
Bm

SlY
m
l r̂

)
, (44)

B0
Sl =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B0
Sl(r = ri )

(
r

ri

)l+1

for r < ri

cos (αlr − βl) for ri ≤ r ≤ ro

B0
Sl(r = ro)

(ro

r

)l
for r > ro

(45)

Table 2. Number of node and element of the finite-element mesh.

Name kgrid Num. of layer Range of rm

in ro < r < rm

Mesh (d) 1.2 21 ∼ 30 4.599 ∼ 17.058

Mesh (e) 1.5 13 ∼ 17 5.706 ∼ 22.177

Mesh (f) 2.0 9 ∼ 11 5.667 ∼ 17.667

Mesh (g) 2.5 7 ∼ 9 4.215 ∼ 17.57

where, Y m
l is the spherical harmonic, and αl and βl are cho-

sen to satisfy the following conditions;

αl tan (αlri − βl) = − l + 1

ri
, (46)

and

αl tan (αlro − βl) = l

ro
. (47)

This magnetic field connects to the field in the insulated
domain. The vector potential is given in the fluid shell, and
the vector potential outside the shell is solved by matching
the field on the boundaries of the shell. In the present test,
(l, m) = (1, 0), (3, 0), and (5, 0) is used, and the numerical
solution for the magnetic field intensity is compared with the
analytical solution.

As summarized in Table 1, three different radial resolu-
tions were considered, and a different size of simulation do-
main was used for each mesh. We fixed the horizontal reso-
lution in this test by setting the number of elements in each
sphere to 1944. The angular distance between each node at
the equatorial plane was 5◦. The thickness of the elements
�r outside the fluid shell was set as follows:

• The same �r as that in the fluid shell is used for the
next two layers to the outer boundary of the shell.

• For the other layers, �r at n-th layer �rn is defined by
the ratio kgrid = �rn/�rn−1 = 2.

The modeling error is estimated in terms of the intensity of
the magnetic field at the outer boundary of the fluid shell.
The ratio of the root mean square (R.M.S.) of the error in
the magnetic field to the R.M.S. of the magnetic field inten-
sity is plotted in Fig. 4. Only the dipole component (Y 0

1 )
has a dependence on rm when rm > 5.6. The accuracy of
the higher components depends on the radial resolution of
the finite element mesh. As seen from Eq. (45), the Y 0

3 and
Y 0

5 components approach zero rapidly. To obtain accurate
solutions for these higher degrees of the magnetic field, the
spatial resolution near the outer boundary of the fluid shell is
more important than the total size of the simulation domain.
In contrast, the accuracy of the dipole magnetic field has a
clear dependence on rm . It is noted that only the dipole com-
ponent tends to have large errors when the radial resolution
is good, suggesting that the accuracy of component is limited
by the size of the simulation domain. In the present case, the
error for the dipole component is 2.1% when rm = 9.667 in
Mesh (c). We consider this level of error to be acceptable
given the spatial resolution.
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Fig. 6. The same plot as Fig. 4 for investigation of dependence on horizontal
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3.1.2 Effect of the radial mesh pattern in the insula-
tor Next we investigate the effect of the mesh pattern out-
side the shell by changing the ratio of the width of the ad-
jacent elements kgrid = �rn/�rn−1. We changed the ratio
kgrid outside the fluid shell in Mesh (b), as described in the
previous section (see Table 2). The ratio of the R.M.S. er-
ror in the analytical solution to the R.M.S. of the analytical
solution for the axial dipole component was estimated in the
present test. The results are plotted in Fig. 5. The errors are
reduced by using small kgrid except for kgrid = 1.2 cases.
The error converges to 1% for the analytical solution with
large rm . We attribute this error to the horizontal discretiza-
tion. The magnitude of this error in this case is similar to that
in the case of rm > 10 with kgrid = 2.

3.1.3 Effect of horizontal resolution Finally, we esti-
mated the error due to horizontal resolution. We chose Mesh
(e) from the previous test, and changed the horizontal resolu-
tion at the equatorial plane from 5.0◦ to 3.75◦ and 2.5◦. The
results are plotted in Fig. 6. As seen in Fig. 6, the obtained
accuracy decreases with the horizontal resolution. The re-
sults suggest that the horizontal resolution is less important
for the dipole field than both the size of the simulation do-
main and the radial resolution outside the fluid shell.
3.2 Accuracy test of magnetic diffusion

In this test, we set η = 1.0 and u = 0 in Eqs. (8)–(10). In
the present simulation, we can maintain numerical stability
for the diffusion term because the Crank-Nicolson scheme
is used for the diffusion term. However, we set the length
of each time step to be less than 1/(�r)2, where �r is the
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Fig. 7. Time evolutions of the averaged magnetic energy (upper panel) and
growth rate of the magnetic energy (lower panel).

width of elements in the fluid shell, as follows:

�t = 2.5 × 10−3. (48)

As an initial value, we use an axial dipole field given by
Eqs. (43)–(45) with l = 1. The finite element mesh configu-
ration for the present test is given in Table 3; we performed
the test with three simulation domain sizes rm . In order to
verify the results, the same computation was performed us-
ing a spherical harmonics expansion in the azimuthal and
elevation directions, and a finite-difference method in the ra-
dial direction. In this scheme, 49 equally spaced grid points
were used in the radial direction. As seen in the upper panel
of Fig. 7, the magnetic energy averaged over the fluid shell
Emag decays exponentially in all cases. The growth rate of
the magnetic energy k given by Emag(t)/Emag(t − �t) =
exp (k�t) is plotted in the lower panel of Fig. 7. The growth
rate of the magnetic energy approaches a constant value in
each case, and this value is almost the same in the cases with
rm = 12.3 and rm = 23.4. The averaged magnetic energy
and the growth rate for t = 0.3 are given in Table 4. The
growth rate for the case of rm = 12.3 differs by only 0.13%
from that for rm = 23.0, while the error between these cases
and the spectral method is 6.4%. The discrepancy between
the FEM results and the spectral method result is presumably
related to spatial resolution in the azimuthal and elevation di-
rections for the FEM.
3.3 Accuracy test of kinematic dynamo problem

The velocity field of the conductive fluid is prescribed in
this problem. Because the problem is linear, a significant
number of studies of the kinematic dynamo problem have
been reported since the work of Bullard and Gillman (1954).
We consider a modified model of Lilley’s dynamo (Lilley,
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Table 3. Resolution of the finite element mesh.

Name Nelement �r rm

For inner core For fluid For external for fluid

Mesh (h) 42768 93312 15552 ∼ 19440 1/48 5.00 ∼ 23.0

Table 4. Magnetic energy Emag , its growth rate k, local magnetic field, and maximum zonal current density for t = 0.3.

rm Emag k Bz at r = (0, 0, ro) Bz at r = (ro, 0, 0) Max. Jφ

Spectral 8.75 × 10−4 −7.33 3.324 × 10−2 −1.624 × 10−2 0.1371

7.0 8.37 × 10−4 −7.47 3.202 × 10−2 −1.449 × 10−2 0.1449

12.3 8.48 × 10−4 −7.42 3.237 × 10−2 −1.492 × 10−2 0.1370

23.0 8.50 × 10−4 −7.41 3.244 × 10−2 −1.536 × 10−2 0.1370

Table 5. Magnetic energy Emag , its growth rate k, and local magnetic field for t = 100.

rm Emag k Bz at r = (0, 0, ro) Bz at r = (ro, 0, 0)

Spectral 4.69 × 10−3 −1.56 × 10−2 4.20 × 10−2 −2.34 × 10−2

FEM 4.77 × 10−3 −1.58 × 10−2 4.12 × 10−2 −2.25 × 10−2
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Fig. 8. Time evolutions of the averaged magnetic energy (upper panel) and
the magnetic energy growth rate (lower panel) for the kinematic dynamo
problem.

1970), which treated a sphere without the inner core. Here
the inner core is incorporated. In the present model, the
velocity field in the shell is given by

u = ∇ × ∇ × {(
U 0

S2 + U 2s
S2 + U 2c

S2

)
r̂
}

+∇ × (
U 0

T 1r̂
)

(49)

U 0
T 1 = 0.5 (r − ri )

2
{
1 − (r − ri )

2
}

Y 0
1 , (50)

U 0
S2 = 0.08 (r − ri )

6
{
1 − (r − ri )

2
}4

Y 0
2 , (51)

U 2s
S2 = 0.21 (r − ri )

4
{
1 − (r − ri )

2
}

Y 2s
2 , (52)

and

U 2c
S2 = 0.21 (r − ri )

4
{
1 − (r − ri )

2
}

Y 2c
2 . (53)

The initial value for the vector potential is the same as that
used in the magnetic diffusion test. We use Mesh (h) as de-
scribed in Table 3 with rm = 12.0. The magnetic diffusivity
η is 1/500 in the present simulation. As in the previous test
of the magnetic diffusion, the results are compared with the
results of the spectral technique. In Fig. 8, we plot the tempo-
ral evolution of the magnetic energy and its growth rate. The
magnetic energy increases at the beginning of the simulation
and decays at the end of the simulation. This behavior is ob-
served for both solutions. However, the magnetic energy in
the FEM case is slightly smaller, and diffuses slightly faster
than that in the spectral method case throughout the simula-
tion. Since similar behavior is also observed in the magnetic
diffusion test, this difference may be caused by the treatment
of magnetic diffusion. However, these errors are small: The
difference in the growth rates of the two cases is only 1.3%
as seen in Table 5.

Snapshots of the magnetic field and current density for
t = 100 are given in Fig. 9. The patterns of the magnetic
field and current density are almost the same in the two cases.
However, some current density is seen outside the fluid shell
in the FEM case. This small current is a numerical artifact
resulting from the spatial discretization. In Table 5, the z-
component of the magnetic field at specific points is given.
The magnetic field differs by approximately 4% between the
two cases at the equatorial plane.
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FEM

Spectral method

Fig. 9. Intensity of the z-component of the magnetic field (left panels) and the current density (right panels) in a cross section at z = 0.75 for t = 100.0.
The FEM result is given in the upper panels, and the results of the spectral method are given in the lower panels.

4. Discussion
As seen in the previous sections, the simulation approach

described here can represent the magnetic field to within 5%
of the analytical solutions or results obtained by the spec-
tral method. As described in Section 1, Chan et al. (2001a,
b) have developed a similar simulation code for the geody-
namo process. There are some principal differences as listed
in Section 1. Chan et al. also verified their model using
the magnetic diffusion and the kinematic dynamo model of
Zhang and Busse (1989). The model of Chan et al.’s model

has higher accuracy than the present model. For example,
rm > 9.67 = 5.8ro is required for the simulation domain
in the present study to obtain sufficient accuracy while only
rm = 3ro is required in the other model. However, in Chan
et al.’s model, insulator is replaced with a region of large
magnetic diffusivity and the field is determined by solving
the magnetic diffusion equation. The most significant ad-
vantage in the present model is that it can accommodate an
electrical insulator outside the fluid shell. We find small er-
rors in the present results from the spectral solution. How-
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ever, we consider that the accuracy of the FEM solution will
be increased by using a finer finite–element mesh than the
one utilized here. In addition, the introduction of infinite el-
ements may improve accuracy since Bz at the equator was
found to exhibit larger errors than those found with other so-
lution techniques, and this error decreases with increasing rm

(see Table 4).
We consider a treatment of boundaries between a conduc-

tive fluid and an insulator in the present study. The present
numerical program can treat any magnetic diffusivity. The
mantle can be either insulating or conducting. The inner core
can also have different diffusivity from that of the outer core.
In that case, Eq. (34) is solved with different magnetic dif-
fusion η for each layer. We plan to perform numerical sim-
ulations with different inner core diffusivity from that in the
outer core as a future study.

5. Conclusion
We have developed a code for MHD simulation in a ro-

tating spherical shell using a parallel FEM platform. With
this technique, tri-linear hexahedral elements are chosen for
the spatial discretization of both the conducting fluid shell
and the exterior insulator. All physical values are interpo-
lated using tri-linear functions. The vector potential of the
magnetic field with the Coulomb gauge is computed to ob-
tain the magnetic field, and the potential is determined to sat-
isfy the vector potential conservation law. For time integra-
tion, we use the fractional step scheme; the Crank-Nicolson
scheme is used for the diffusion term, and the 2nd-order
Adams-Bashforth scheme is used to solve the other terms.
The Laplace equation for the vector potential is solved in this
process simultaneously. The vector potential is set to zero at
the outer boundary of the simulation domain rm , instead of
the real boundary condition at an infinite radius. Our results
suggest that rm ≥ 9.667 = 5.8ro is required to obtain ade-
quate accuracy for the dipole field. The result also suggest
that the radial resolution around the boundary between the
fluid and the insulator is more important than the size of the
simulation domain in determining the accuracy of the higher
modes of the magnetic field mode. Throughout the present
tests, the differences between the results of the FEM calcula-
tion and a spectral method are approximately 2%, except for
the z-component of the magnetic field at the equator. This
component has errors as large as 5% at the equator, but we
consider that in order respects the new simulation code can
accurately represent the magnetic field.
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