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On the calibration of a vectorial 4He pumped magnetometer
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The prototype of a 4He pumped vector magnetometer is presented. Large auxiliary coils systems used in pre-
viously developed apparatus to allow vector measurements from a scalar (atomic or nuclear resonance) sensor
are replaced by a light triaxial modulation system associated with advanced techniques of signal processing. The
performances of the helium scalar sensor are first briefly recalled; then the principle of the vector measurement,
obtained by adding three (approximately) orthogonal modulations of different frequencies (all of the order of 10
Hz) is explained. Afterwards a second part of the paper is devoted to the calibration process, and a first estimate
of the performances of the vector magnetometer is obtained. They confirm that this instrument could be a good
candidate for an automatic absolute magnetic observatory: after the calibration process completion and a proper
installation, it would provide by itself the absolute value of three orthogonal components of the field. In addition to
that, the 4He vector magnetometer appears to be also promising for space applications.

1. Introduction
The idea of designing a vector magnetometer based on

an atomic or nuclear resonance sensor—delivering by itself
only measurements of intensity of the magnetic field—by
adding auxiliary equipment is not new. A pioneering re-
alization was the automatic standard magnetic observatory
(ASMO) of L. R. Alldredge (1960–1964) (Alldredge, 1960;
Alldredge and Saldukas, 1964) built around a rubidium va-
por self oscillating magnetometer. The auxiliary equipment
consisted of two mutually perpendicular pairs of coils which
controlled bias fields in a plane perpendicular to the mean
magnetic field vector. Such an instrument was installed at
Fredericksburg observatory.
Following it, several “absolute” vector magnetometers

were built from a proton or atomic resonance sensor and a
system of coils. Some of them were commercialized (such
as the ELSEC), many were constructed by scientists work-
ing in scientific institutions and magnetic observatories (as
the big coils system of Kasmmer in Kakioka observatory).
In fact, most of these magnetometers were used only for
sporadic absolute measurements the way the classical induc-
tometers and theodolites (with the Gauss-Lamont method to
measure the horizontal component) used to be. Their perfor-
mances, according to our experience, were reasonably good
(except for the measurement of the component perpendic-
ular to the geographic meridian). The introduction in the
early 80’s of D.I. flux (D for declination, I for inclination,
flux for fluxgate) theodolite, very easy to handle, coupled
with a proton or atomic resonance scalar sensor, reduced the
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interest for such systems.
In any case, the objective of an automatic observatory

combining—according to the views of Alldredge—“the
measurement of magnetic variations and absolute values”,
has been abandoned almost everywhere. The main reason is
that, without an independent absolute control, the systems
made of a scalar sensor and a coils system are subject to im-
portant drifts. And, as soon as regular independent absolute
measurements are required, it is much more practical to use
fluxgate (for example) variometers.
Nevertheless, the project of an automatic (standard) mag-

netic observatory has conserved all its interest. The number
of magnetic observatories operated at the Earth’s surface is
dramatically insufficient, with furthermore a very poor geo-
graphical distribution (which raises the question of sea bot-
tom observatories). The availability of an automatic obser-
vatory would greatly help to improve the situation. Let us
recall the performances that such an equipment should reach
(adopting Intermagnet, Trigg and Coles (1999) claimed
standards for classical observatories): provide the absolute
values of three components of the magnetic field with an
accuracy of the order of 1 nT, without independent abso-
lute control (or more probably with a control by indepen-
dent long spaced absolute measurements, for example once
a year; no strict rule is to be given there).
The present helium pumped vector magnetometer chal-

lenges such an objective. Its main originality is that it re-
places complicated mechanical devices such as large coils
systems with drift prone axes by a light triaxial modulation
system associated with advanced techniques of signal pro-
cessing. Furthermore, whereas ASMO was a pulsed mag-
netometer, the helium magnetometer is a continuous instru-
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Fig. 1. 4He energy diagram.

ment, which allows a perfect control of the noise spectrum
and prevents from aliasing problems.
Efforts to conceive and realize automatic magnetic obser-

vatories (with the objective of requesting only long spaced
absolute measurements) are unfortunately rather few. Let us
quote the system presently developed at the Institut Royal
météorologique in Belgium (Rasson, 1994) which consists
of an automated DI flux theodolite intended indeed for mak-
ing unattended measurements of the declination and inclina-
tion in an observatory environment. Rasson’s magnetome-
ter is also planned for sea-bottom observations. Let us quote
also the �I�D system (delta I delta D) presently developed
in Hungary, France and US, although its objective is more
to allow interpolations between classical absolute measure-
ments than to construct a genuine automatic observatory.

2. Principle of the Helium Vector Magnetometer
The magnetometer which will be described in this paper,

together with its calibration technique—which we will fo-
cus on—intends to provide an absolute measurement of the
intensity of the magnetic field together with its components
along three stable axes simultaneously and at the same place.
This type of sensor delivers redundant information in the
sense that the calculated modulus obtained thanks to the vec-
tor measurements can be compared with the direct intensity
(scalar) measurement. The idea of this paper is to use this re-
dundancy to estimate the calibration parameters needed for
the vector measurement. This method has been applied for a
long time to calibrate space magnetometers (Merayo et al.,
2000); it will be used here in an original way.
2.1 The scalar helium pumped magnetometer. Princi-

ples of operation and description
Over the past few years, CEA/LETI has been involved in

the development of an isotropic 4He pumped magnetometer
(Guttin et al., 1993).
Helium magnetometers are based on an electronic mag-

netic resonance whose effects are amplified by a laser pump-
ing process. The first step is to excite a fraction of the he-
lium atoms to the 23S1 metastable state by means of a high
frequency discharge. This energy level it split by the static
magnetic field Ho into three Zeeman sublevels (Colegrove
and Schearer, 1961). The measurement of their energy sep-
aration provides then a very convenient means to determine
the earth field.
This is performed thanks to a magnetic resonance exper-

iment. Hence, the second step is to induce transitions be-
tween the sublevels in order to detect the resonance. If the
applied radiofrequency field matches the Larmor frequency
of the Zeeman sublevels, transitions between these sublevels
occur and tend to equalize their populations. However, the
resonance signal amplitude is very low since at thermal equi-
librium the sublevels are almost equally populated and no
significant change subsequently results from the resonance.
So the third step is to modify the repartition of the atoms
within the three sublevels (alignment or polarization of the
metastable state). This is accomplished by optically pump-
ing helium atoms with a tuned laser: atoms in the 23S1
metastable state absorb the laser light with different prob-
abilities for each sublevel and are thus selectively excited to
the 23P0 state (Fig. 1). From there, they undergo a spon-
taneous emission back to the metastable state. Thanks to
this process, the resonance signal amplitude is enhanced by
several orders of magnitude.
The resonance can be detected by monitoring the trans-

mitted laser intensity: when the resonance condition is met,
the polarization of the metastable state created as a result of
the optical pumping process is reduced by the RF field so
that the helium cell transparency decreases. The RF field
frequency is then phase locked by an electronic loop to the
Larmor frequency, resulting in a field/frequency transducer
which can be used as a high sensitivity magnetometer.
Principles of the scalar helium magnetometer are illus-
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Fig. 2. Architecture of the scalar 4He pumped magnetometer.

trated by Fig. 2. The apparatus has the following perfor-
mances.

a) Very high sensitivity: of the order of 1 pT/
√
Hz.

The r.m.s noise results from the integration of the noise
density over the sensor bandwith (see below):
B (nTrms) = √

�B × B (nT/
√
Hz); taking �B =

1 Hz, a 1 pT/
√
Hz noise density is equivalent to a 1 pT

noise level.

b) Bandwidth: DC to 200–300 Hz.

c) Absolute accuracy: better than 100 pT. The absolute
accuracy takes into account various phenomena such
as thermal drift, uncertainties on the exact value of the
metastable helium gyromagnetic ratio, measurement
offsets induced by the sensor head materials. For com-
parison, the NMR scalar magnetometers which have
been developed by LETI for the Ørsted and Champ
satellite missions were specified for an absolute accu-
racy of ±250 pT.

d) Range of measured field: [5μT, 100μT] with no signal
to noise ratio variation.

2.2 Principle of the vector measurement
Thanks to the combination of characteristics a and b, it

is possible to design a continuous vector magnetometer by
adding three orthogonal modulations β1, β2, β3 (1,2,3 refer
to the axes of the triaxial coil system {�e1, �e2, �e3} used to gen-
erate these modulations) to the geomagnetic field �B seen by
the sensing cell. Characteristics a and b are indeed neces-

sary to design a continuous vector magnetometer based on a
scalar sensor. It is indeed requested to

i) use permanent modulations to avoid aliasing,

ii) make sure that the magnetometer adequately follows
the magnetic field variations resulting from these mod-
ulations; this constraint implies a high bandwith of the
scalar sensor,

iii) use a very sensitive scalar magnetometer to obtain good
vector measurements since these latter measurements
are much less sensitive than the scalar ones (see expla-
nation below formula (2)).

The scalar magnetometer measures the modulus of the re-
sulting field:

|�Btot| =
∣∣∣∣∣�B +

3∑
j=1

β j cos(ω j t)�e j
∣∣∣∣∣ (1)

where ω j are the modulation pulsations.
The vector measurement is obtained by processing the 32

bits numerical output of the scalar measurement (1). This
scalar output contains several spectral components as can be
seen on Fig. 3:

• a DC component

• principal harmonics at ω j pulsations

• second order harmonics at pulsations 2ω j and ω j ±ω j ′ .
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Fig. 3. Spectral density of the signal obtained with the modulated scalar
4He pumped magnetometer when the sensor is submitted to the three
modulations (modulations ω j at 9 Hz, 16 Hz and 20 Hz).

In the hypothesis of a slowly varying magnetic field �B
(varying with time constants small with respect to the mod-
ulation frequencies), and modulation amplitudes of the or-
der of 10−3|�B|, the DC component can be interpreted as a
measurement of the magnetic field modulus b = |�B| (but
see Subsection 2.3), and principal harmonics h1, h2 and h3

(which denote the measured amplitudes) are proportional to
the projections of the vector �B onto the 3 axes of modula-
tion:

h j = β j (�B · �e j )
b

(2)

A first objective of the vector magnetometer is to retrieve
�B · �e j , ( j = 1, 2, 3) from the scalar data b, h j . From the
above formula (2), this is possible once the β j are known.
Attention has to be paid to the fact that the projection �B · �e j
will be deduced through a very high noise amplification fac-
tor b/β ∼= 103: a noise of 1 pT/

√
Hz on h j will be inter-

preted as a noise of 1 nT/
√
Hz on the projection. Therefore,

very high precision and sensitivity are needed in the mea-
surements of the h j ’s. Moreover, if β j fluctuates of say 10
ppm, this will be interpreted by the vector instrument as a 10
ppm fluctuation of B j = �B·�e j . Modulation amplitudes must
therefore be well known and controlled in order to make ac-
curate measurements. To avoid fluctuations, special care has
been taken to realize the modulation coils set and the modu-
lation current generator:

• High purity silica has been used for the coils supports,
resulting in a mechanical stability of 5 × 10−7 K−1

• A highly stable electronics has been designed (with a
temperature dependence smaller than 10−6 K−1)

In any case, the direct knowledge of the coils transfer
functions and of the electrical current source characteristics
does not provide the β j with a sufficient accuracy: a calibra-
tion is necessary.
Projections �B ·�e j on the sensor frame axes {�e1, �e2, �e3} will

be then available. But again the �e j are only approximately
known. In order to take benefit of the 1 nT/

√
Hz noise on

the vector measurement (see above), a precision of 10−5rad

is required on the modulation directions �e j determination,
which cannot be guaranteed by construction. A calibration
process is once more necessary to determine the �e j with the
required precision. In fact, concerning the directional cali-
bration in the present paper, we will limit ourselves to the
accurate determination of the angles between the axes of the
sensor frame (see Section 4).
It might be said that we are faced with the need of a

“strain” calibration (the β j ) and a directional calibration (the
�e j ). Before presenting in detail the calibration process, let
us note that the vector measurement delivered by such a sen-
sor is free of offsets, which is an important advantage over
fluxgate directional magnetometers (Nielsen et al., 1995),
for which in fact three additional parameters must also be
estimated during the calibration process.
2.3 Consequence of the modulations on the scalar ab-

solute measurement
The DC component of the output is taken as the mea-

surement of the modulus b = |�B|. Note nevertheless that
any modulation not aligned with the static magnetic field �B
induces an aliasing of the second order harmonics (whose
amplitudes are noted h2 j , 2 j standing for the double of the
modulation frequency on the j axis) onto the continuous
level DC; therefore, in fact:

DC = b −
∑

j=1,2,3

h2 j (3)

with:

h2 j = (β j )2

4b

⎡⎣1 −
( �B · �e j

b

)2
⎤⎦

In the case of a perfect triorthogonal coils set and identical
modulation amplitudes (β1 = β2 = β3 = β) along the three
axes, the aliasing term remains independent of the direction
of the field. Moreover, its magnitude is very low in a 50 μT
magnetic field:

∑
j=1,2,3

h2 j = (β)2

4b

⎡⎣3 −
∑

j=1,2,3

( �B · �e j
b

)2
⎤⎦

= 1

2

(β)2

b
∼= 25 pT.

In practice, skewness in the axes and differences between the
β j ’s may occur and thus may cause the aliasing to vary with
the direction of �B. However, the average value of this error is
very small (25 pT) and its variations will be smaller by sev-
eral orders of magnitude, and therefore negligible (remem-
ber that the values of β j have to be stable up to 1 ppm·K−1).
Actually this aliasing is safely neglected in the calibration
algorithm. But one must keep its existence in mind as it in-
duces a systematic error (which can however be easily sys-
tematically corrected if necessary), on the scalar absolute
measurement.

3. Description of the Calibration Problem
3.1 Notations
Let us consider the magnetic field vector �B defined in the

3-dimensional real vector space R3 equipped with a carte-
sian frame with unit vectors {�u1, �u2, �u3} (which would be
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Fig. 4. Triaxial vector helium pumped sensor developed at LETI. (length 30 cm; diameter 6 cm)

for example the geophysical frame: horizontal North, hori-
zontal East, downwards vertical).
We list the notations in use for measured and unknown

quantities:

b = |�B| is the measurement of the magnetic field modulus
(neglecting the second order aliasing);

�e j is the unit vector of the corresponding modulation direc-
tion (unknown);

β j denotes the modulation amplitude (unknown positive
value) along the corresponding direction; � = �∗ is
the matrix of modulation amplitudes (∗ is for transpo-
sition):

� =
β1 0 0

0 β2 0

0 0 β3

(4)

B j = �B · �e j is the projection of �B on the direction �e j ; we
denote �B the triplet (B1,B2,B3) of such projections
(unknown).

We shall use the subscript index for the sequence of mod-
ulus measurements bk , sequence of harmonics

h j
k = β jB j

k

bk
(5)

and sequences of related quantities �Bk , B j
k etc. Thus we are

given the basic data set
{
bk, �Hk

}
= {

bk, h1k, h
2
k, h

3
k

}
, k =

1, . . . N . The matricial version of expression (5) is:

�Bk = bk · �Hk · �−1 (6)

3.2 The problem
We aim first to recover from the data the unknown inter-

nal parameters of the magnetometer—the modulation am-
plitudes β j and the corresponding directions �e j—. The sec-
ond problem is to recover the available information about
the vectors �Bk , k = 1, . . . N . Let us consider both these
problems in more details.
The complete description of the vector �Bk (for a given

k) consists in its decomposition in the given cartesian frame
{�u1, �u2, �u3} or (which is equivalent) its decomposition in any
other frame for which the coordinates transformation to the
{�u j } is known. In fact, for a given data set

{
bk, h1k, h

2
k, h

3
k

}
,

even with known parameters β1, β2 and β3, but without any
other additional measurements, there is no chance for the
unit vectors �e1, �e2 and �e3 to be absolutely recovered with
respect to the cartesian frame {�u1, �u2, �u3}. This is because
we can always rotate rigidly the system made of the three
modulation directions and vector �B. This means that we
have to look at most for the angles �̂ek�e j (or scalar products
�ek · �e j = cos(�̂ek�e j )) and for the corresponding linear decom-
position of �B in this frame. In other words, we only consider
the internal calibration problem.
3.3 Auxiliary formulas
3.3.1 The expression of components versus projec-

tions Let B1, B2, B3 be the components of the linear de-
composition �B = B1�e1 + B2�e2 + B3�e3 of the vector �B in the
non-orthogonal sensor frame �e j . The three equations link-
ing the components B1

k , B
2
k and B3

k and the projections B1
k ,
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B2
k and B3

k of the vector �B onto the non-orthogonal frame
axes {�e1, �e2, �e3} are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3∑
j=1

B j
k (�e j · �e1) = B1

k

3∑
j=1

B j
k (�e j · �e2) = B2

k

3∑
j=1

B j
k (�e j · �e3) = B3

k

(7)

This may be expressed in a matrix form if we denote A
the 3 × 3-matrix of the scalar products �ek · �e j = cos(�̂ek�e j ):

�Bk · A = �Bk (8)
�Bk = �Bk · A−1

where A−1 is for the inverse of matrix A. So, to determine
the components B j

k in the non-cartesian frame it is enough to
know the projections B j

k onto the axes of this frame and ma-
trix A. Let C be the matrix mapping the frame {�u1, �u2, �u3}
onto the {�e1, �e2, �e3} one:

�e1
�e2
�e3

= C
�u1
�u2
�u3.

(9)

From (7), (9), as {�u1, �u2, �u3} is orthonormal, it comes

A = CC∗

Note that A depends only on departures of
{�e j}-frame from

orthogonality; this means—as said earlier—that
{�e j}-frame

can be recovered only within a solid rotation.
3.3.2 The expressions of the modulus Let us express

the relation between the modulus of vector �Bk and its pro-
jections (onto the axes of the non-cartesian frame). Using
Eqs. (8) and

|�Bk |2 = �Bk · A · �B∗
k

we get

|�Bk |2 = �Bk · A−1 · �B∗
k (10)

where �B∗, �B∗ are for the transposed vectors.
3.4 The basic relation and the solution algorithm
From Eqs. (5) and (10) we get a system of linear equations

for the entries of matrix G:⎧⎪⎪⎪⎨⎪⎪⎪⎩
�H1G �H∗

1 = 1
�H2G �H∗

2 = 1

. . .

�HNG �H∗
N = 1

(11)

with

G−1 = �A�∗.

We may assume this system to be overdetermined (let N
be large enough) and solve it through the Singular Value
Decomposition approach (Press et al., 1996).

Let us recall that A depends only on the departures of{�e j}-frame from orthogonality. Therefore we can choose
the mapping matrix C (in expression A = CC∗) as follows:

C =
1 0 0

− sinα cosα 0

C31 C32 C33

with

C31 = tan θ√
1 + tan2 θ + tan2 γ

C32 = tan γ√
1 + tan2 θ + tan2 γ

C33 = 1√
1 + tan2 θ + tan2 γ

which comes down to consider the orthonormal
{�u j

}
-frame

such that �e1 coincides with �u1, �e2 is in the (�u1, �u2)-plane and
makes angle α with �u2, projections of �e3 onto the
(�u1, �u3) and (�u2, �u3) planes make angles θ and γ with �u3.
The absolute orientation of

{�u j
}
remains unknown as well

as the
{�e j} ones. This �u j frame can be called the orthonor-

mal frame of the sensor.
Nowwe can explicitly express the entries of C and� from

the entries of

G−1 = �A�∗ = �CC∗�∗

and finally determine uniquely the values of α, θ , γ , β1, β2,
β3 (details in Appendix A). This closes the internal calibra-
tion process.
3.5 Remarks
Before presenting an application, we will make some gen-

eral comments and warnings.

I) As clear from Eqs. (11) we need only the
{

�Hk

}
part of

the initial data
{
bk, �Hk

}
to determine the internal cal-

ibration parameters cos(�̂ek�e j ) and β j . However, to re-
cover the components of the �Bk , we need the complete
set of data.

II) Considering the linear system (11), it appears that the
accuracy on the entries of the matrixG cannot be better

than the accuracy on the
{

�Hk

}
part of the initial data.

Taking into account that internal angles �̂ek�e j and β j are
computed from these entries, we get an obvious limi-
tation for the accuracy of the answer to the first part of
the calibration problem.

III) Since A can be assumed not far from unit matrix, lin-
ear relation (8) shows that the significant digits in deci-
mal representations of �B and �B = (B1,B2,B3

)
are the

same. In contrast, as already pointed out in Subsection
2.2, relations (5) and/or (6) show that magnitude orders
of h j and B j are different due to the coefficients b−1β j .
The number of significant digits in the answer for B j

cannot exceed the corresponding number of significant
digits in the decimal representation of h j . Therefore,
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having b-value in pT—with eight significant digits and
of the order of 5 · 107—, and assuming that we want
also the values of �B in pT, we need the h-values with
at least eight significant digits. With six digits in data
precision and calculations the vectorial magnetic field
measurements accuracy can be at best 0.1 nT.
According to this observation, the algorithm must be

tested against several possible accuracy levels in data
and the amount of data involved.
We tested the algorithm using synthetic data sets of

20 or 40 records
{
bk, �Hk

}
, assuming the precision of

�Hk to be six significant digits. The resulting absolute
errors for the recovered β j and recovered mutual an-
gles between the sensor axes appear to be independent
of the values of the angles (the deformation). For 20
records the β j errors are less than 1.0 · 10−4 nT, the er-
rors on mutual angles are less than 2.5 · 10−6 rad (let
us recall than the β j are of the order of 50 nT). The
corresponding error bounds for 40 records are approx-
imately 1.5-times smaller, i.e. 7.0 · 10−5 and 1.5 · 10−6.
Taking into account that there are only six significant
digits in the decimal representation of h j , we can con-
clude that 40 records are enough to provide the suitable
precision for the internal calibration.

4. Processing Actual Data Delivered by the Mag-
netometer

When processing the data, we distinguish two types of
errors that might occur in our measurements bk , h1k , h

2
k , h

3
k :

I) Some measurements
{
bk, h1k, h

2
k, h

3
k

}
(for few excep-

tional k) appear to be completely out of range.

II) Some noise is present in each measurement; we may
treat it as an additional random summand with a small
mean and a variance of the order of, say, 1 nT.

When the calibration process uses a relatively small
amount of data, the resulting uncertainties in the final an-
swer due to these two different types of errors are not of the
same order. Note indeed that a few bad lines in the sense
of type I present in the data may cause large effects since
the actual calibration algorithm uses a linear scheme. In the
first tests of the magnetometer, a number of type I lines were
affecting the measurements. It is no longer the case. Never-
theless we present in Appendix B the scheme (which could
be of more general application) used to get rid of type I er-
rors. This test is based on a simple statistical comparison of
several independent calibrations.
In order to test the algorithm with respect to type II errors,

a sequence of synthetic perfect measurements was prepared
and then distorted by adding various levels of white noise.
Tests on this simulated data showed that the algorithm is sta-
ble with respect to errors of type II, namely that the result-
ing uncertainty on the field components has the same order
of magnitude as the noise level on the h measurements (in
relative values). This looks natural since the calibration al-
gorithm is based on two linear procedures: singular value
decomposition and inversion of a matrix which is not far
from the unit matrix.

5. Preliminary Experimental Results
In order to validate the calibration procedure on experi-

mental data, it is necessary to record a statistically relevant
dataset (i.e. a data set corresponding to a large and homo-
geneous enough distribution of directions of the �B vector
with respect to the sensor axes to recover accurately the an-
gles between these axes) Indeed, for a given orientation, the
quantity of information contained in the corresponding line
of data may be quite different for the different directions �ei .
Two ways can be used to get such a dataset. We can artifi-
cially rotate the field around the sensor, or rotate the sensor
itself in the geomagnetic field.
5.1 Rotating the magnetic field
Using an external coils system, it is possible to rotate

the field seen by the sensing cell relatively to the modu-
lation axes. As we just need to control approximately the
field modulus and direction (we only use the measurements
bk, h

j
k of the helium sensor in this internal calibration pro-

cess), such a device is easy to build. Starting from the
knowledge of the mean value of the geomagnetic field, one
cancels (still approximately) this field and adds the rotating
one. The only constraint is that the direction of the result-
ing field has to cover a large range of directions. Moreover
this technique allows to build automatic procedures where
the generation of the rotating field and its measurement are
simultaneous and continuous. Unfortunately, this method
presents serious drawbacks in our case. An extra noise of
5 pT/

√
Hz is indeed introduced by the external coils set (a

stable current source is used; the field generated by the coils
is of the same order as the geomagnetic field, a few tens of
μT). This noise in the frequency domain of the modulations
results in a 103 higher noise, i.e. 5 nT/

√
Hz, on the compo-

nents measurement, due to the respective values of b and β,
as explained in Subsection 2.1. This therefore deteriorates
seriously the performances of the vector magnetometer and,
consequently, the effectiveness of the corresponding calibra-
tion procedure.
5.2 Rotating the sensor
Data used in the following section have been obtained by

rotating the sensor itself relatively to the geomagnetic field.
The sensor output has been recorded with the magnetome-
ter in a number of different orientations obtained by succes-
sive rotations: first rotations R(φ, ��1) around a vertical axis��1 (φ = 0, 20, 40, . . . 340o), then around a vector ��2 in-
clined by 20o from the vertical, followed by a third set of
rotations around ��3 coplanar with ( ��1, ��2) and 20o from
��2, and so on till ��9, 10

o away from the vertical. We use
then 180 orientations of the sensor, and make some 75 mea-
surements in each of them. As a result, a data set of some
15000 data

{
bk, �Hk

}
can be used for the calibration process

which lasted approximately three hours.
A relevant and classical criterion to estimate the quality of

the parameters reconstruction is the magnitude of the mod-
ulus residual, that is to say the difference between the mea-
sured modulus b and the reconstructed modulus Brec using
the vector measurements. A good estimate of the six param-

eters (β j , (�̂ei , �e j )) is obtained when this difference is stable
over the whole dataset, i.e. when no fluctuation of its mean
value is observed while the magnetometer is rotated.
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Fig. 5. Experimental modulus residual (difference between the reconstructed modulus and the measured one) obtained when rotating the sensor in the
earth magnetic field. In abscissae, the number of the measurement.

In order to appreciate the results, we have first to exam-
ine the following question: suppose the algorithm has found
the optimum solution, i.e. the right calibration parameters,
what peak to peak residual will be seen on the modulus dif-
ference? If the peak to peak value of the noise νi on the
measurements Bi is small compared to the value of b, the
residual r = Brec − b will be:

r = Brec − b =
√√√√ 3∑

i=1

(Bi + νi )2 − b ∼
3∑

i=1

Bi

b
νi (12)

(the noise on b is much smaller)
Considering νi as three identical centered white noises

(same variance σ 2
ν ), the variance of the residual may be writ-

ten as the sum of the variances of the three distributions
νi Bi/b:

σ 2
r =

3∑
i=1

(
Bi

b

)2

σ 2
ν . (13)

Hence, the vector resolution being 1 nT/
√
Hz with a 1 Hz

bandwidth (as discussed in Subsection 2.2), the RMS noise
on the scalar residual will be σr ∼= 1 nT. The peak to peak
noise is six times this value:

(Brec − b)p−p
∼= 6 nT. (14)

Experimentally, the observed peak to peak value is close to
6 nT (see Fig. 5). Looking closer to Fig. 5, one can see in-
deed that locally the peak to peak value is of the order of the
calculated limit. Thus the parameter set obtained is not far
from the optimum. However, a low frequency fluctuation re-
mains on the scalar residual which reflects small fluctuations
in the vector measurements. A tentative explanation of such
variations is that bandwidth fluctuations affect the scalar he-
lium pumped magnetometer so that transfer functions seen
by the three modulations vary slightly with time. Further
possible improvements can be imagined. First of all, those

bandwidth fluctuations could be reduced by working on the
stability of the resonance excitation mechanism (laser or ra-
dio frequency oscillator). The bandwidth itself could be en-
larged (working on the electronics frequency together with
a new operating point in terms of RF amplitude and light
power) in such a way that the influence of the fluctuations at
the modulation frequencies would be reduced. But the most
efficient way of getting rid of this low frequency noise is to
correct its effect by modeling the scalar bandwidth and then
forcing the scalar residual to zero in order to estimate the
scalar cutoff frequency.
The accuracy of the so obtained β i , α, θ, γ values has

been also estimated by drawing randomly 200 subsets of
1000 data

{
b, h1, h2, h3

}
quadruplets from the 16000 ones

available, and studying the dispersion of the corresponding
200 calibrations. Results are the following;
Departures from orthogonality are, in degrees:

α = −0.1479◦, θ = 0.0015◦, γ = 0.0026◦,

with an uncertainty of 4 · 10−4 deg = 7 · 10−6 rad. Modula-
tion values β are of the order of 50 000 pT with an accuracy
of .2 pT (compare with the 1.5 ·10−6rad and 7 ·10−5 nT val-
ues of Subsection 3.5 for the case of synthetic data). These
accuracies are close to the ones requested to obtain the Bi

components with six significant digits.

6. Conclusion
In the introduction we presented the vector 4He pumped

magnetometer as a possible candidate for an automatic abso-
lute magnetic observatory. Results obtained up to now and
presented here lead us to think that the corresponding re-
quested performances—see Introduction—should likely be
obtained. Efforts are still to be made, mainly to reduce
the long bandwidth fluctuations which affect the scalar he-
lium magnetometer. Tests of a possible compensation of
these fluctuations (the best solution to mitigate them as said
above) are currently performed, with encouraging results.
Coming back to the calibration process, the method re-
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tained here appears efficient. Let us stress again that we
solve the problem using a linear algorithm. This algorithm
can be extended to the calibration of satellite magnetome-
ters as the Ørsted one (made of three fluxgate sensors and
one scalar RMN) (Olsen et al., 2000); apparently the linear-
ity of the problem was not seen before. As already stressed,
the data used in the calibration process allow an “internal”
calibration: angles between the physical axes of the sensor
are determined. Determining the exact orientation of these
axes with respect to the geographical axes (OX-North, OY-
East, OZ-downward vertical) should not be too difficult in
a magnetic observatory where independent absolute mea-
surements are available, but not trivial. Recall indeed that,
contrarily to variometers operated in classical observatories,
which measure only small relative variations of the field
components, an absolute automatic magnetometer measures
these full components, and consequently its axes must be
known with a high accuracy. Of course, we have not ad-
dressed here the problem of the stability of pillars.
Now, providing a new version of ASMO is not our only

objective. The 4He vector magnetometer might also be ad-
vantageously used in space. Indeed, the resulting instru-
ment has reasonable dimensions (size, weight and power
consumption). Its main advantage is the replacement of the
actual classical combination of a standard classical fluxgate
vector magnetomer plus an absolute scalar magnetometer.
The scalar and vector measurements are obtained continu-
ously, simultaneously and at the same point, which might
simplify the design of a satellite carrying this sensor, and
the treatment of the resulting data. Thus, this vector helium
pumped magnetometer seems very well suited for the needs
of a satellite instrument.
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Appendix A. Recovering � and A
We consider the composition �C of the stretching matrix

� =
λ11 0 0

0 λ22 0

0 0 λ33

(here λi i = β i > 0) and the deformation matrix C

C =
1 0 0

− sinα cosα 0

C31 C32 C33

with

C31 = tan θ√
1 + tan2 θ + tan2 γ

C32 = tan γ√
1 + tan2 θ + tan2 γ

C33 = 1√
1 + tan2 θ + tan2 γ

.

The last step of the internal calibration problem consists
in recovering angles α, θ , γ and coefficients λ11, λ22, λ33

from the (already known – see Subsection 3.4) entries of the
matrix G−1 = (�CC∗�∗). The entries of the 3 × 3 matrix
G−1 = CC∗ are:

λ2
11 −λ11λ22 sinα

(
G−1

)
13

−λ11λ22 sinα λ2
22

(
G−1

)
23(

G−1
)
31

(
G−1

)
32 λ2

33

with (
G−1)

13 = λ11λ33 tan θ√
1 + tan2 θ + tan2 γ(

G−1)
23 = λ22λ33 (cosα tan γ − sinα tan θ)√

1 + tan2 θ + tan2 γ(
G−1)

31 = λ11λ33 tan θ√
1 + tan2 θ + tan2 γ(

G−1)
32 = λ22λ33 (cosα tan γ − sinα tan θ)√

1 + tan2 θ + tan2 γ
.

So, after computing the entries of the matrix G−1, we
straightforwardly get unique (positive) values of λ11, λ22,
λ33 and sinα. Taking into account that α < π

2 we find cosα

and then (after substitution and simplification) get the fol-
lowing elementary system of equations:⎧⎪⎪⎨⎪⎪⎩

tan θ√
1 + tan2 θ + tan2 γ

= p

tan γ√
1 + tan2 θ + tan2 γ

= q

where q and p are known values since λ11, λ22, λ33 and α

are known. It has the explicit solution⎧⎪⎪⎨⎪⎪⎩
tan2 θ = p2

1 − p2 − q2

tan2 γ = q2

1 − p2 − q2

.

For θ, γ < π
2 this provides an unique solution. The simple

numerical algorithm for calibration is clear from above.

Appendix B. Case of a Few Bad Lines in the Data
The dataset is made of N vectors (bk , h1k , h

2
k , h

3
k), and

we may assume that m 	 N indices k out of N corre-
spond to error measurements. First recall that N ∼ 50 typ-
ically is enough to provide a reasonable precision answer
(see Remarks 3.5). If N 
 102 we can make several cali-
brations based on random subsets of indexes {k1, . . . kn} ⊂
{1, . . . N }, n ∼ 102. The probability p that the random sub-
set {k1, . . . kn} does not include any “bad” index is

p = p(n,m, N ) =

(
N − m

n

)
(
N

n

)

= (N − m)(N − m − 1) . . . (N − m − n + 1)

N (N − 1) . . . (N − n + 1)

=
(
1 − m

N

) (
1 − m

N − 1

)
. . .

(
1 − m

N − n + 1

)
.
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Then 0 < p < 1 for n + m � N . Fix n and consider

l <

(
N

n

)
calibrations corresponding to random subsets

{k1, . . . kn} ⊂ {1, . . . N }. Then (from the binomial distri-
bution) the probability P that there are at least two proper
(i.e. free of error data) calibrations is given by

P = P(l, p) = 1 − (1 − p)l − l · p(1 − p)
l−1

.

If m 	 N is small and N large enough, one can easily
find the corresponding values for n and l ensuring a proba-
bility P statistically significant. Then in a statistical sense
we will have at least two proper (and therefore close to each
other, up to a given precision) calibrations. Taking into ac-
count that non-proper (i.e. based on data including bad lines)
calibrations will present strong deviations from each other
and from the true calibration, we have only to find two close
enough answers out of l.
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