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A wave equation describing the generation of field-aligned current (FAC) in the magnetosphere is derived. The
equation has four source terms. The first and second terms represent the effects of inhomogeneous Alfvén speed
(VA) and curvilinear magnetic field line, respectively. The perpendicular perturbation inertial current produces the
perturbation FAC via these effects. Around the magnetic equator in the region of dipolar magnetic field where VA
is inversely proportional to the power of the radial distance from the Earth’s center, the first and second terms have
magnitudes of the same order and their signs are identical. The first term dominates over the second one around the
region where the gradient of VA is sharp and vice versa around the position where the stretched field line intersects
the magnetic equator. The third and fourth terms are related to the diamagnetic current. When the unperturbed
magnetic pressure has an inhomogeneous distribution, the perpendicular diamagnetic current due to the perturbation
of the plasma pressure yields the perturbation FAC (third term). When the perpendicular diamagnetic current flows
in the unperturbed state, the perturbations of the magnetic and plasma pressures also bring about the perturbation
FAC (fourth term). In the case of β ∼ 1, the third and fourth terms have magnitudes of the same order. If the
disturbance bears a diamagnetic property, this would be especially the case. However, if the disturbance propagates
perpendicularly to the ambient magnetic field, the perturbation FAC would be little generated by the fourth term.

1. Introduction
The field-aligned current (FAC) is a key element in the

magnetosphere–ionosphere coupling and the elucidation of
its generation mechanism is one of the most important sub-
jects in magnetospheric physics. In the magnetohydrody-
namic (MHD) limit, the FAC is not constrained by dynamical
conditions describingmotion along themagnetic field. Since
the electron parallel mobility is assumed to be infinite, the
FAC is simply determined by a current closure requirement
that the divergence of current density vanishes everywhere.
After most of theoretical works on the FAC (Hasegawa and
Sato, 1979; Sato and Iijima, 1979; Sato, 1982; Vasyliunas,
1984), such a requirement also becomes the starting point
along with the momentum equation in the present study.
In a warm magnetized plasma there exist three fundamen-

tal MHD waves (Dungey, 1968). One is a shear Alfvén
wave, and others are fast and slowmagnetosonic waves. The
FAC is carried only by the shear Alfvén wave. Owing to
the effects of inhomogeneous medium and curvilinear mag-
netic field line, however, these three waves are generally
coupled in the magnetosphere. Therefore, the generation of
FAC is strongly connected with the generation and propaga-
tion ofmagnetosonic disturbances. Southwood andSaunders
(1985) investigated the curvature coupling of slow magne-
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tosonic and shear Alfvén waves in the magnetotail. Ohtani
et al. (1989) derived a system of ordinary differential equa-
tions describing the coupling between shear Alfvén and slow
magnetosonic waves. They paid attention to the combined
effect between pressure gradient and field-line curvature as
a coupling mechanism. Southwood and Kivelson (1991)
presented an equation describing the time evolution of FAC
illustrating the very direct relationship between the transport
of FAC and the intermediate (Alfvén) MHD mode. They
identified two important categories of FAC’s. One is driven
by the perpendicular inertial current and the other by the
perpendicular pressure gradient. These works treat partially
the coupling of FAC (or shear Alfvén wave) with magne-
tosonic waves. However, it has not been comprehensively
studied the way how the effects of inhomogeneous medium
and curvilinear magnetic field line produce such a coupling.
In the present paper we will derive a wave equation de-

scribing the generation of FAC in the warm magnetized
plasma. This is a generalization of the equation given by
Itonaga and Yoshikawa (1996) for the cold plasma. The de-
rived wave equation presents a deep insight into the coupling
of the FAC with the inertial and diamagnetic currents as-
sociated with magnetosonic disturbances via the effects of
inhomogeneous medium and curvilinear magnetic field line.
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2. Wave Equation
In the present study it is assumed that themagnetosphere is

filled with a warm magnetized plasma. In the warm plasma
linearized one-fluid equations become

ρ
∂ δu
∂t

= −∇δp + j (d)
⊥ × δB + δj⊥ × B, (1)

∇ × δE⊥ = −∂ δB
∂t

, (2)

∇ × δB = μ0 δj, (3)

δE⊥ + δu⊥ × B = 0, (4)

where δu, δE, δB, δj and δp are the perturbation flow veloc-
ity, electric field, magnetic field, current density and plasma
pressure, respectively. In the present paper the perturbation
quantity is denoted with the prefix δ. Further, ρ andB are the
unperturbed plasma density and magnetic field, andμ0 is the
permeability of vacuum. The subscript ⊥ stands for a vector
component perpendicular to B. It is assumed in Eq. (1) that
the flow velocity u disappears and the perpendicular diamag-
netic current j (d)

⊥ flows in the unperturbed state, where j (d)
⊥ is

given by

j (d)
⊥ = 1

B2
B × ∇⊥ p (5)

with p and B denoting the unperturbed plasma pressure and
the magnitude of B, respectively. It is also supposed that
the FAC vanishes in the unperturbed state (or ∇ · j (d)

⊥ = 0).
Then, the ambient magnetic field B can be represented by
Euler potentials (Stern, 1967). The vanishing of ∇ · j (d)

⊥
means that ∇⊥ p is parallel to ∇⊥ pB , where pB = B2/2μ0

is the unperturbed magnetic pressure.
Taking the vector product between each side of Eq. (1) and

B, we have

δj⊥ = δj (i)
⊥ + δj (d)

⊥ − 1

2pB
δpB j

(d)
⊥ , (6)

where δpB = B δB‖/μ0 is the perturbation magnetic pres-
sure. The subscript ‖ stands for a scalar component parallel
to B. Further, δj (i)

⊥ and δj (d)
⊥ are the perturbation inertial and

diamagnetic currents, which are given by

δj (i)
⊥ = 1

B2
B ×

(

ρ
∂ δu⊥

∂t

)

, (7)

δj (d)
⊥ = 1

B2
B × ∇⊥δp, (8)

flowing perpendicularly toB. The third term in the righthand
side of Eq. (6) is also the diamagnetic current due to the
perturbation of themagnetic pressure, while δj (d)

⊥ arises from
that of the plasma pressure. From ∇ · δj = 0 we have

∇ · δj⊥ = −B
∂

∂s

(
δ j‖
B

)

,

where the variable s is a distance measured along the mag-
netic field line and increases in the direction of B. Taking
the divergence of both sides of Eq. (6), then, we obtain

B
∂

∂s

(
δ j‖
B

)

= −∇ · δj (i)
⊥ − ∇ ·

(

δj (d)
⊥ − 1

2pB
δpB j

(d)
⊥

)

.

(9)

Using ∇ × B = μ0 j
(d)
⊥ , we acquire

∇ · δj (d)
⊥ = 1

2pB
∇⊥δp · j (d)

⊥ − 1

pB
∇⊥ pB · δj (d)

⊥

from the divergence of both sides of Eq. (8). Further, noting
that ∇⊥ pB is parallel to ∇⊥ p, we have

∇ ·
(

1

2pB
δpB j

(d)
⊥

)

= 1

2pB
∇⊥δpB · j (d)

⊥ .

From these equations the divergence of the perpendicular
perturbation diamagnetic current, δj (d)

⊥ − δpB j
(d)
⊥ /2pB , be-

comes

∇ ·
(

δj (d)
⊥ − 1

2pB
δpB j

(d)
⊥

)

= − 1

pB
∇⊥ pB · δj (d)

⊥ − 1

2pB
∇⊥ (δpB − δp) · j (d)

⊥ . (10)

In order to derive a wave equation describing the gener-
ation of FAC in the magnetosphere, we consider the time
derivative of parallel component of Eq. (3), that is,

∂ δ j‖
∂t

= 1

μ0

[

− ∂

∂s
(∇ · δE⊥) + (∇2δE⊥

)
‖

]

, (11)

where Eq. (2) has been used to eliminate ∂ δB/∂t . Further,
taking the time derivative of Eq. (4) and using Eq. (7), we
obtain

∂ δE⊥
∂t

= μ0VA
2δj (i)

⊥ , (12)

where VA = B/
√

μ0ρ is the Alfvén speed. Then, the time
derivative of Eq. (11) along with Eq. (12) results in

∂2δ j‖
∂t2

= − ∂

∂s

[
∇ ·

(
VA

2δj (i)
⊥

)]
+

[
∇2

(
VA

2δj (i)
⊥

)]

‖
. (13)

Using Eqs. (9) and (10), we have

∇ ·
(
VA

2δj (i)
⊥

)
= VA

2∇ · δj (i)
⊥ + ∇⊥VA

2 · δj (i)
⊥

= −VA
2B

∂

∂s

(
δ j‖
B

)

+ VA
2

pB
∇⊥ pB · δj (d)

⊥

+ VA
2

2pB
∇⊥ (δpB − δp) · j (d)

⊥

+ ∇⊥VA
2 · δj (i)

⊥ .

The combination of the above equation and Eq. (13) gives
rise to

1

VA
2

∂2δ j‖
∂t2

− 1

VA
2

∂

∂s

[

VA
2B

∂

∂s

(
δ j‖
B

)]

= − 1

VA
2

∂

∂s

(
∇⊥VA

2 · δj (i)
⊥

)

+ 1

VA
2

[
∇2

(
VA

2δj (i)
⊥

)]

‖

− 1

VA
2

∂

∂s

(
VA

2

pB
∇⊥ pB · δj (d)

⊥

)

− 1

VA
2

∂

∂s

[
VA

2

2pB
∇⊥ (δpB − δp) · j (d)

⊥

]

.(14)
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Fig. 1. Schematic diagram for the generation of perturbation FAC. When the Alfvén speed is inhomogeneous (∇⊥VA �= 0) and the magnetic field line is
curvilinear (Rc �= ∞), the perpendicular perturbation inertial current δj (i)

⊥ produces the perturbation FAC δ j (i)
‖ . When the perturbation magnetic pressure

is inhomogeneous (∇⊥ pB �= 0), the perpendicular perturbation diamagnetic current δj (d)
⊥ yields the perturbation FAC δ j (d)

‖ . When the perpendicular

diamagnetic current j (d)
⊥ flows in the unperturbed state, the perturbations of the magnetic and plasma pressures (∇⊥(δpB − δp) �= 0) also bring about

the perturbation FAC δ j (d)
‖ . The perturbation FAC δ j‖ consists of δ j (i)

‖ and δ j (d)
‖ due to the perpendicular perturbation inertial and diamagnetic currents.

This is the desired wave equation for the perturbation FAC
δ j‖ with four source terms and describes an aspect that δ j‖
is successively generated owing to the source terms. Here,
it should be noted that Eq. (14) has been never derived to
solve the coupling problem ofMHDwaves self-consistently.
When we have some knowledges of the distribution of δj (i)

⊥
and/or those of δp and δpB , we can say something about the
generation of FAC using Eq. (14). The usage of Eq. (14) is
similar to that of the expression put forward by Hasegawa
and Sato (1979). In the cold plasma, because of j (d)

⊥ =
δj (d)

⊥ = 0, Eq. (14) leads to the equation given by Itonaga
and Yoshikawa (1996).

3. Discussion
The first and second terms in the righthand side of Eq. (14)

indicate the effects of inhomogeneous Alfvén speed and
curvilinearmagneticfield line, respectively. The second term
vanishes in the case of straight field line or Rc = ∞, where
Rc denotes the radius of curvature of the magnetic field line.
When there exist the inhomogeneity of the Alfvén speed
and the curvature of the magnetic field line, the perturbation
FAC δ j‖ is produced by the perpendicular perturbation iner-
tial current δj (i)

⊥ . On the other hand, the third term shows
that δ j‖ is caused by the perpendicular perturbation diamag-
netic current δj (d)

⊥ in case of the existence of inhomogeneity
of the unperturbed magnetic pressure. The generation of
FAC via the third term was investigated by Southwood and
Kivelson (1991) in a quite different form. Further, when the
perpendicular diamagnetic current flows in the unperturbed
state, the perturbations of the magnetic and plasma pressures
bring about δ j‖, as seen from the fourth term. Figure 1 is a
schematic diagram for the generation of perturbation FAC.
The cold plasma approximation is suitable for the near-

Earth region such as the plasmasphere. In such a region the
inertial current plays an essential role in the generation of
FAC. Itonaga and Yoshikawa (1996) considered the inertial

current in case of the dipolar magnetic field. In the present
study, introducing Euler potentials,  and φ (Stern, 1967;
Southwood and Kivelson, 1991), we represent the ambient
magnetic field B with

B = ∇ × ∇φ.

We can require ∇ ·∇φ = 0 without loss of generality. The
Euler potentials  and φ are constant along each magnetic
field line and label themeridional and longitudinal directions,
respectively. Further, we introduce an orthogonal coordinate
system (, φ, χ) based on the Euler potentials, where χ

varies along each magnetic field line and increases in the
direction of B. Figure 2 illustrates the orthogonal coordinate
system. The scale factors of , φ and χ are denoted by h,
hφ and hχ , respectively.
In the following it is assumed that the characteristic length

in spatial variation of the perturbation quantity is much
smaller than those of the scale factors and the Alfvén speed.

Fig. 2. Orthogonal coordinate system (, φ, χ). The Euler potentials
 and φ, which are constant along each magnetic field line, label the
meridional and longitudinal directions, repectively, while χ varies along
each field line and increases in the direction of the ambient magnetic field
B.
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Fig. 3. Adjacent magnetic field lines designated by  and  + δ in a
plane. The point C is the center and Rc is the radius of curvature of the
field line designated by  at the position χ . If δχ and δ are fully small,
the length of the portion between χ and χ + δχ is hχ δχ for the field line
designated by  and (hχ + δ ∂hχ /∂)δχ for that by  + δ.

Then, we can obtain

1

VA
2

[
∇2

(
VA

2δj (i)
⊥

)]

‖

� −2

(
1

h

1

hχ

∂h

∂χ

1

h

∂ δ j (i)


∂

− 1

hχ

1

h

∂hχ

∂

1

hχ

∂ δ j (i)


∂χ

)

− 2

(
1

hφ

1

hχ

∂hφ

∂χ

1

hφ

∂ δ j (i)
φ

∂φ

− 1

hχ

1

hφ

∂hχ

∂φ

1

hχ

∂ δ j (i)
φ

∂χ

)

.

If the scale factors are symmetric about the magnetic equator
(χ = 0) and their φ–dependences are negligibly small, the
above equation leads to

1

VA
2

[
∇2

(
VA

2δj (i)
⊥

)]

‖
� 2

1

hχ

1

h

∂hχ

∂

1

hχ

∂ δ j (i)


∂χ
(15)

around the magnetic equator. Further, assuming that the φ–
dependence of VA is also negligibly small, we have

− 1

VA
2

∂

∂s

(
∇⊥VA

2 · δj (i)
⊥

)

� − 1

VA
2

1

h

∂VA
2

∂

1

hχ

∂ δ j (i)


∂χ
. (16)

Around the magnetic equator in most regions of the mag-
netosphere, VA decreases as the position goes away from
the Earth (or  increases), that is, ∂VA

2/∂ < 0. On the
other hand, ∂hχ/∂ has generally a positive value. As seen
from Eqs. (15) and (16), thus, the first and second terms in
the righthand side of Eq. (14) have the same sign. Assum-
ing that the meridian (or the surface at which φ is constant)
is a plane, we consider two magnetic field lines designated
by  and  + δ lying in a meridian (Fig. 3). If δχ and

δ are fully small, the length of the portion between χ and
χ + δχ is hχδχ for the magnetic field line designated by 

and (hχ + δ ∂hχ/∂)δχ for that by  + δ. Then, from

hχδχ

Rc
= (hχ + δ ∂hχ/∂)δχ

Rc + hδ

where Rc denotes the radius of curvature of the magnetic
field line designated by  (Fig. 3), we have

1

hχ

1

h

∂hχ

∂
= 1

Rc
.

In the region of dipolar magnetic field, Rc ∼ r , where r
is the radial distance of the position from the Earth’s center.
Then, if VA is inversely proportional to the power of r around
the magnetic equator, the first and second terms will have
magnitudes of the same order there.
Around the position where the stretched magnetic field

line intersects the magnetic equator, as in the magnetotail,
Rc is very small and so the second term in the righthand
side of Eq. (14) will dominate over the first one. Southwood
and Saunders (1985) investigated the curvature coupling of
slow magnetosonic and shear Alfvén waves in the magne-
totail. Ohtani et al. (1989) also found that the combined
effect between the plasma pressure gradient and the field
line curvature can be a free energy source of ballooning-
interchange instability for exciting the coupled oscillation of
shear Alfvén and slow magnetosonic modes. The diamag-
netic current associated with the slow magnetosonic wave
would certainly play an important role in the generation of
FAC (or shearAlfvénwave) in themagnetotail. As seen from
Eq. (14), however, it is not the diamagnetic current but the
inertial current that produces the FAC via the curvature effect
of magnetic field line. Just inside the plasmapause, on the
other hand, VA has a sharp positive gradient and so the first
term in the righthand side of Eq. (14) will be predominant
over the second one. The gradient of VA in the  direction
has opposite signs just inside the plasmapause and in its sur-
rounding regions. This might cause a 180◦ phase shift in
the H component of Pi 2 pulsations around the plasmapause
(Itonaga and Yoshikawa, 1996).
In the region where the pressure gradient plays an impor-

tant role in the plasma motion, the third and fourth terms in
the righthand side of Eq. (14) might become comparable to
the first and second ones in magnitude, as seen from

∣
∣
∣
∣
third term

first term

∣
∣
∣
∣ ∼ |∇⊥δp|

|ρ ∂δu⊥/∂t | .

In the case of β ∼ 1 where β = p/pB , the third and fourth
terms have magnitudes of the same order, because

∣
∣
∣
∣
third term

fourth term

∣
∣
∣
∣ ∼ 2

β

∣
∣
∣
∣

δp

δpB − δp

∣
∣
∣
∣ .

In a uniform plasma the relation

δpB =
(
VA

Vs

)2

δp

holds for the fast magnetosonic wave propagating perpen-
dicularly to B, where Vs is the sound speed. If VA ∼ Vs (or
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β ∼ 1), δpB and δp are in phase and have magnitudes of
the same order. Also for the real magnetosphere, when the
disturbance propagates perpendicularly to B in the region of
β ∼ 1, this might be the case. Then, the perturbation FAC
would be little generated by the fourth term. On the other
hand, when the disturbance has a diamagnetic property that
the phase difference between δpB and δp is nearly 180◦, the
fourth term would play an important role in the generation
of perturbation FAC as well as the third one.

4. Concluding Remarks
In general, there exist plasma convections or flows in the

magnetosphere. Then, it might be inappropriate to assume
that the flow velocity u disappears in the unperturbed state.
If so, the perpendicular inertial current

j (i)
⊥ = 1

B2
B × [ρ (u · ∇) u]

flows and its divergence will give rise to the unperturbed
FAC. However, it can be easily shown that Eqs. (1) and (4)
also hold under the condition of u/

√
VA

2 + Vs
2 � 1, where

u is the magnitude of u, even if u does not get zero in the
unperturbed state. This means that Eq. (14) is effective even
if the unperturbed FAC due to the divergence of j (i)

⊥ flows.
Since the convective speed due to the Earth rotation is only
3 km/s or so even at L = 6, the above condition will be
sure to hold in the region of dipolar magnetic field relatively
near the Earth. In the distant magnetosphere, however, it is
thought that the flow speed ismuch larger than the convective
speed. Then, the validity of the condition must be carefully
examined in such a region. This is a future subject.
Equation (14) is a linear formula and so it cannot be applied

to such a highly nonlinear process as the formation of sub-
storm currentwedgewith a time scale of about 30 to 60min in
themagnetosphere. The nonlinear process is nowadays stud-
ied directly with numerical simulations (e.g., Tanaka, 1995).
It is thought that some small-amplitude quasi-oscillatory cur-
rents with time scales of about 1 to 2 min superposed on
the large-amplitude slowly-varying wedge current cause Pi 2
pulsations (Lester et al., 1983; Itonaga and Yumoto, 1998).
The cross-tail portion of the quasi-oscillatory current wedge
generates a fast magnetosonic wave. During its passage
within the magnetosphere the magnetosonic wave excites
shear Alfvén waves owing to the effects of inhomogeneous
medium and curvilinear magnetic field line. Since the for-
mation of quasi-oscillatory wedge current and the associated
process have not been yet simulated numerically, the use of

Eq. (14) will be of great advantage to their theoretical stud-
ies. In the present study the magnitude of each source term
is roughly estimated. However, more precise estimations
based on some magnetic field models, such as the Tsyga-
nenko models, and satellite observations are indispensable
for the detailed discussion of FAC generation. This is also
an important future subject.
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