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Abstract

The purpose of this paper is to characterize the conditions for the convergence of the implicit Mann iterative scheme
with error term to the unique fixed point of φ-hemicontractive mappings in a nonempty convex subset of an arbitrary
Banach space.
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Introduction
Let K be a nonempty subset of an arbitrary Banach space
X and X∗ be its dual space. Let T : D(T) ⊆ X → X be
a mapping. The symbols D(T), R(T), and F(T) stand for
the domain, the range, and the set of fixed points of T,
respectively (for a single-valued map T : X → X, x ∈ X is
called a fixed point of T if T(x) = x). We denote by J the
normalized duality mapping from X to 2X∗ defined by

J(x) =
{
f ∗ ∈ X∗ : 〈x, f ∗〉 = ‖x‖2 = ∥∥f ∗∥∥2} .

Definition 1. The mapping T is called Lipshitzian if
there exists L > 0 such that∥∥Tx − Ty

∥∥ � L
∥∥x − y

∥∥ ,
for all x, y ∈ K . If L = 1, then T is called nonexpansive,
and if 0 � L < 1,T is called contraction.

Definition 2. [1-4]

(i) T is said to be strongly pseudocontractive if there
exists t > 1 such that for each x, y ∈ D(T), there
exists j(x − y) ∈ J(x − y) satisfying

Re 〈Tx − Ty, j(x − y)〉 ≤ 1
t
‖x − y‖2.
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(ii) T is said to be strictly hemicontractive if
F(T) 
= ∅ and there exists a t > 1 such that for each
x ∈ D(T) and q ∈ F(T), there exists j(x − y) ∈
J(x − y) satisfying

Re 〈Tx − q, j(x − q)〉 ≤ 1
t
‖x − q‖2.

(iii) T is said to be φ-strongly pseudocontractive if
there exists a strictly increasing function φ :[ 0,∞) →
[ 0,∞) with φ(0) = 0 such that for each x, y ∈ D(T),
there exists j(x − y) ∈ J(x − y) satisfying

Re 〈Tx−Ty, j(x−y)〉 ≤ ‖x−y‖2−φ(‖x−y‖)‖x−y‖.
(iv) T is said to be φ-hemicontractive if F(T) 
= ∅
and there exists a strictly increasing function
φ :[ 0,∞) →[ 0,∞) with φ(0) = 0 such that for each
x ∈ D(T) and q ∈ F(T), there exists j(x−y) ∈ J(x−y)
satisfying

Re 〈Tx−q, j(x−q)〉 ≤ ‖x−q‖2−φ(‖x−q‖)‖x−q‖.

Clearly, each strictly hemicontractive operator is φ-
hemicontractive.
Chidume [1] established that the Mann iteration

sequence converges strongly to the unique fixed point of T
in case T is a Lipschitz strongly pseudocontractive map-
ping from a bounded closed convex subset of Lp (orlp) into
itself. Afterwards, several authors generalized this result
of Chidume in various directions [2,4-11].
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In 2001, Xu and Ori [12] introduced the following
implicit iteration process for a finite family of nonexpan-
sive mappings {Ti : i ∈ I} (here, I = {1, 2, . . . ,N}), with
{αn} a real sequence in (0, 1), and an initial point x0 ∈ K :

x1 = (1 − α1)x0 + α1T1x1,
x2 = (1 − α2)x1 + α2T2x2,

...
xN = (1 − αN )xN−1 + αNTNxN ,

xN+1 = (1 − αN+1)xN + αN+1TN+1xN+1,
...

which can be written in the following compact form:

xn = (1 − αn)xn−1 + αnTnxn, for all n ≥ 1, (XO)

where Tn = Tn (modN) (here, the mod N function takes
the values in I). Xu and Ori [12] proved the weak conver-
gence of this process to a common fixed point of the finite
family of nonexpansive mappings defined in a Hilbert
space. They further remarked that it is yet unclear what
assumptions on the mappings and/or the parameters {αn}
are sufficient to guarantee the strong convergence of the
sequence {xn}.
In [13], Chidume et al. proved the following results:

Lemma 3. [13] Let E be a real Banach space. Let K be a
nonempty closed and convex subset of E. Let T : K → K
be a strictly pseudocontractive map in the sense of Browder
and Petryshyn. Let x∗ ∈ F(T). For a fixed x0 ∈ K, define a
sequence {xn} by

xn+1 = (1 − αn)xn + αnTxn,

where {αn} is a real sequence in [ 0, 1] satisfying the follow-
ing conditions: (i)

∑∞
n=1 αn = ∞ and (ii)

∑∞
n=1 α2

n < ∞.
Then, (a) lim infn→∞ ‖xn − Txn‖ = 0, (b) {xn} is bounded
and limn→∞ ‖xn − x∗‖ exists.

Theorem 4. [13] Let E be a real Banach space. Let K be
a nonempty closed and convex subset of E. Let T : K → K
be a strictly pseudocontractive map in the sense of Browder
and Petryshyn with F(T) := {x ∈ K : Tx = x} 
= ∅. For a
fixed x0 ∈ K, define a sequence {xn} by

xn+1 = (1 − αn)xn + αnTxn,

where {αn} is a real sequence satisfying the following con-
ditions: (i)

∑
αn = ∞ and (ii)

∑
α2
n < ∞. If T is

demicompact, then {xn} converges strongly to some fixed
point of T in K.

In [14], Osilike proved the following results:

Theorem 5. Let E be a real Banach space and K be a
nonempty closed convex subset of E. Let {Ti : i ∈ I} be

N strictly pseudocontractive self-mappings of K with F =
N⋂
i=1

F(Ti) 
= ∅. Let {αn}∞n=1 be a real sequence satisfying the

following conditions:

(i) 0 < αn < 1,

(ii)
∞∑
n=1

(1 − αn) = ∞,

(iii)
∞∑
n=1

(1 − αn)
2 < ∞.

From arbitrary x0 ∈ K, define the sequence {xn} by the
implicit iteration process (XO). Then, {xn} converges
strongly to a common fixed point of the mappings
{Ti : i ∈ I} if and only if lim

n→∞ inf d(xn, F) = 0.

In [15], Su and Li proved the following results:

Theorem 6. [15] Let E be a real Banach space and K
be a nonempty closed and convex subset of E. Let {Ti}Ni=1
be N strictly pseudocontractive self-maps of K in the sense

of Browder and Petryshyn such that F =
N⋂
i=1

F(Ti) 
= φ,

where F(Ti) = {x ∈ K : Tix = x}. For a fixed x0 ∈ K,
define a sequence {xn}∞n=1 by

xn = αnxn + (1 − αn)Tyn,
yn = βnxn + (1 − βn)Tyn,

where Tn = TnmodN and {αn}∞n=1, {βn}∞n=1 be real sequen–
ces in [ 0, 1] satisfying the following conditions: (i)∑∞

n=1(1 − αn) = ∞, (ii)
∑∞

n=1(1 − αn)2 < ∞, (iii)∑∞
n=1(1−βn) < ∞, and (iv) (1−αn)(1−βn)L2 < 1. Then,

(a) lim infn→∞ ‖xn−Tnxn‖ = 0 and (b) limn→∞ ‖xn − x∗‖
exist for all x∗ ∈ F .

Remark 7. (i) One can easily see that for
αn = 1− 1

n
1
2
,
∑

(1− αn)2 = ∞ .Hence, the results of
Osilike [14] and Su and Li [15] are to be improved.
(ii) Proofs of Chidume et al. [13] main results based
on φ−1 : Let us define φ :[ 0,∞) →[ 0,∞) by
φ(α) = 3α−1

3α+1 , then it can be easily seen that (i) φ is
increasing and (ii) φ(0) = 0, but lim

α→∞ φ(α) = 1 and
φ−1(2) make no sense.

The purpose of this paper is to characterize the condi-
tions for the convergence of the implicit iterative scheme
with error term in the sense of [16-18] to the unique
fixed point of φ-hemicontractive mappings in a nonempty
convex subset of an arbitrary Banach space. Our results
extend and improve most of the results in recent literature
[7,12-14,19-22].



RafiqMathematical Sciences 2013, 7:9 Page 3 of 7
http://www.iaumath.com/content/7/1/9

Preliminaries
The following results are now well known:

Lemma 8. [23] For all x, y ∈ X and j(x + y) ∈ J(x + y),

‖x + y‖2 ≤ ‖x‖2 + 2Re 〈y, j(x + y)〉.

Main results
Now, we prove our main results.

Theorem 9. Let K be a nonempty closed convex sub-
set of an arbitrary Banach space X and let T : K → K
be a uniformly continuous and φ-hemicontractive map-
ping. Suppose that {un}∞n=1 is a bounded sequence in K and
{a′

n}∞n=1, {b′
n}∞n=1, and {c′n}∞n=1 are sequences in [ 0, 1] satis-

fying conditions (i) a′
n + b′

n + c′n = 1, (ii) lim
n→∞ b′

n = 0, (iii)
c′n = o(b′

n), and (iv)
∑∞

n=1 b′
n = ∞. For a sequence {vn}∞n=1

in K, suppose that {xn}∞n=1 is the sequence generated from
an arbitrary x0 ∈ K by

xn = a′
nxn−1 + b′

nTvn + c′nun, n ≥ 1, (3.1)

and satisfying lim
n→∞ ‖vn − xn‖ = 0. Then, the following

conditions are equivalent:

(a) {xn}∞n=1 converges strongly to the unique fixed
point q of T,
(b) {Txn}∞n=1 is bounded.

Proof. From (iii), we have c′n = tnb′
n, where tn → 0 as

n → ∞.
Since T is φ-hemicontractive, it follows that F(T) is a

singleton. Let F(T) = {q} for some q ∈ K .
Suppose that lim

n→∞ xn = q, then the uniform continuity
of T yields that

lim
n→∞Txn = q.

Therefore, {Txn}∞n=1 is bounded.
Note that lim

n→∞ ‖vn − xn‖ = 0 and the continuity of T
imply that

lim
n→∞ ‖Tvn − Txn‖ = 0. (3.2)

Put

M1 = ‖x0 − q‖ + sup
n≥1

‖Txn − q‖ + sup
n≥1

‖un − q‖

+ sup
n≥1

‖Tvn − Txn‖.
(3.3)

It is clear that ||x0−q|| ≤ M1. Let ||xn−1−q|| ≤ M1. Next,
we will prove that ||xn − q|| ≤ M1.

Consider

‖xn − q‖ = ∥∥a′
nxn−1 + b′

nTvn + c′nun − q
∥∥

= ∥∥a′
n(xn−1 − q) + b′

n(Tvn − q) + c′n(un − q)
∥∥

≤ (
1 − b′

n
) ‖xn−1 − q‖ + b′

n‖Tvn − q‖ + c′n‖un − q‖
≤ (

1 − b′
n
)
M1 + b′

n(‖Tvn − Txn‖ + ‖Txn − q‖)
+ c′n‖un − q‖

= (
1 − b′

n
) [

‖x0 − q‖ + sup
n≥1

‖Txn − q‖

+ sup
n≥1

‖un − q‖ + sup
n≥1

‖Tvn − Txn‖
]

+ b′
n(‖Tvn − Txn‖ + ‖Txn − q‖) + c′n‖un − q‖

≤ ‖x0 − q‖

+
((

1 − b′
n
)
sup
n≥1

‖Txn − q‖ + b′
n‖Txn − q‖

)

+
((

1 − b′
n
)
sup
n≥1

‖un − q‖ + b′
n‖un − q‖

)

+
((

1 − b′
n
)
sup
n≥1

‖Tvn − Txn‖ + b′
n‖Tvn − Txn‖

)

≤ ‖x0 − q‖

+
((

1 − b′
n
)
sup
n≥1

‖Txn − q‖ + b′
n sup
n≥1

‖Txn − q‖
)

+
((

1 − b′
n
)
sup
n≥1

‖un − q‖ + b′
n sup
n≥1

‖un − q‖
)

+
((
1 − b′

n
)
sup
n≥1

‖Tvn−Txn‖+b′
n sup
n≥1

‖Tvn−Txn‖
)

= ‖x0 − q‖ + sup
n≥1

‖Txn − q‖ + sup
n≥1

‖un − q‖

+ sup
n≥1

‖Tvn − Txn‖

= M1.

So, from the above discussion, we can conclude that the
sequence {xn−q}n≥1 is bounded. Thus, there is a constant
M > 0 satisfying

M = sup
n≥1

‖xn − q‖ + sup
n≥1

‖Txn − q‖ + sup
n≥1

‖un − q‖

+ sup
n≥1

‖Tvn − Txn‖ .
(3.4)

Obviously,M < ∞. Consider

‖Tvn − q‖ ≤ ‖Tvn − Txn‖ + ‖Txn − q‖
≤ sup

n≥1
‖Tvn − Txn‖ + sup

n≥1
‖Txn − q‖

≤ M.

(3.5)
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By virtue of Lemma 4 and (3.1), we infer that

‖xn − q‖2=∥∥a′
nxn−1 + b′

nTvn + c′nun − q
∥∥2

=∥∥a′
n(xn−1 − q) + b′

n(Tvn − q) + c′n(un − q)
∥∥2

≤(
1− b′

n
)2 ‖xn−1 − q‖2+2b′

nRe 〈Tvn− q, j(xn − q)〉
+ 2c′nRe 〈un − q, j(xn − q)〉

≤(
1−b′

n
)2 ‖xn−1−q‖2+2b′

nRe 〈Tvn−Txn, j(xn − q)〉
+2b′

nRe 〈Txn−q, j(xn−q)〉+2c′n‖un − q‖‖xn − q‖
≤(

1−b′
n
)2 ‖xn−1 − q‖2 + 2b′

n‖Tvn − Txn‖‖xn − q‖
+2b′

n‖xn−q‖2−2b′
nφ(‖xn−q‖)‖xn − q‖+2M2c′n

=(
1−b′

n
)2 ‖xn−1 − q‖2 + 2Mb′

nwn + 2b′
n‖xn − q‖2

− 2b′
nφ(‖xn − q‖)‖xn − q‖ + 2M2c′n,

(3.6)

where

wn = ‖Tvn − Txn‖. (3.7)

Consider

‖xn − q‖2 = ∥∥a′
nxn−1 + b′

nTvn + c′nun − q
∥∥2

= ∥∥a′
n(xn−1−q) + b′

n(Tvn − q) + c′n(un − q)
∥∥2

≤ a′
n‖xn−1−q‖2+b′

n‖Tvn − q‖2+c′n‖un − q‖2
≤ ‖xn−1 − q‖2 + M2 (

b′
n + c′n

)
,

(3.8)

where the first inequality holds by the convexity of ‖.‖2.
Substituting (3.8) in (3.6), we get

‖xn − q‖2 ≤
[(
1 − b′

n
)2 + 2b′

n

]
‖xn−1 − q‖2

+ 2Mb′
n
(
wn + M

(
b′
n + 2tn

) )
− 2b′

nφ(‖xn − q‖)‖xn − q‖
=

(
1 + b′2

n

)
‖xn−1 − q‖2

+ 2Mb′
n
(
wn + Mb′

n + 2tn
)
)

− 2b′
nφ(‖xn − q‖)‖xn − q‖

≤ ‖xn−1 − q‖2
+ Mb′

n
(
3Mb′

n + 2(wn + 2Mtn)
)

− 2b′
nφ(‖xn − q‖)‖xn − q‖

= ‖xn−1 − q‖2 + b′
nln

− 2b′
nφ(‖xn − q‖)‖xn − q‖,

(3.9)

where

ln = M
(
3Mb′

n + 2 (wn + 2Mtn)
) → 0, (3.10)

as n → ∞.
Let δ = inf{‖xn+1 − q‖ : n ≥ 0}. We claim that δ = 0.

Otherwise δ > 0. Thus, (3.10) implies that there exists a

positive integer N1 > N0 such that ln < φ(δ)δ for each
n ≥ N1. In view of (3.9), we conclude that

‖xn+1 − q‖2 ≤ ‖xn − q‖2 − φ(δ)δb′
n, n ≥ N1,

which implies that

φ(δ)δ

∞∑
n=N1

b′
n ≤ ‖xN1 − q‖2, (3.11)

which contradicts (iv). Therefore, δ = 0. Thus, there
exists a subsequence {xni+1}∞n=0 of {xn+1}∞n=0 such that

lim
i→∞ xni+1 = q. (3.12)

Let ε > 0 be a fixed number. By virtue of (3.10) and (3.12),
we can select a positive integer i0 > N1 such that∥∥∥xni0+1 − q

∥∥∥ < ε, ln < φ(ε)ε, n ≥ ni0 . (3.13)

Let p = ni0 . By induction, we show that

‖xp+m − q‖ < ε,m ≥ 1. (3.14)

Observe that (3.13) means that (3.14) is true for m = 1.
Suppose that (3.14) is true for some m ≥ 1. If ‖xp+m+1 −
q‖ ≥ ε, by (3.9) and (3.13), we know that

ε2 ≤ ‖xp+m+1 − q‖2

≤ ‖xp+m − q‖2 + b′
p+mlp+m

1 − 2b′
p+m

− 2b′
p+m

1 − 2b′
p+m

φ(‖xp+m+1 − q‖)‖xp+m+1 − q‖

< ε2 + b′
p+mφ(ε)ε

1 − 2b′
p+m

− 2b′
p+mφ(ε)ε

1 − 2b′
p+m

< ε2,
which is impossible . Hence, ‖xp+m+1 − q‖ < ε. That
is, (3.14) holds for all m ≥ 1. Thus, (3.14) ensures that
lim
n→∞ xn = q. This completes the proof.

Using the method of proofs in Theorem 6, we have the
following result:

Theorem 10. Let X,K ,T , {un}∞n=1, {vn}∞n=1, and {xn}∞n=1
be as in Theorem 9. Suppose that {a′

n}∞n=1, {b′
n}∞n=1, and{c′n}∞n=1 are sequences in [ 0, 1] satisfying conditions (i), (ii),

(iv), and
∞∑
n=1

c′n < ∞.

Then, the conclusion of Theorem 9 holds.

Corollary 11. Let K be a nonempty closed convex sub-
set of an arbitrary Banach space X and let T : K → K
be a uniformly continuous and φ-hemicontractive map-
ping. Suppose that {un}∞n=1 is a bounded sequence in K, and
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{a′
n}∞n=1 , {b′

n}∞n=1, and {c′n}∞n=1 are sequences in [ 0, 1] satis-
fying conditions (i) a′

n + b′
n + c′n = 1, (ii) lim

n→∞ b′
n = 0, (iii)

c′n = 0(b′
n), and (iv)

∑∞
n=1 b′

n = ∞. Suppose that {xn}∞n=1
is the sequence generated from an arbitrary x0 ∈ K by

xn = a′
nxn−1 + b′

nTxn + c′nun, n ≥ 1.

Then, the following conditions are equivalent:

(a) {xn}∞n=1 converges strongly to the unique fixed
point q of T,
(b) {Txn}∞n=1 is bounded.

Corollary 12. Let X,K ,T , {un}∞n=1, and {xn}∞n=1 be as in
Corollary 11. Suppose that {a′

n}∞n=1, {b′
n}∞n=1, and {c′n}∞n=1

are sequences in [ 0, 1] satisfying conditions (i), (ii), (iv)
and

∞∑
n=1

c′n < ∞.

Then, the conclusion of Corollary 12 holds.

Corollary 13. Let K be a nonempty closed convex sub-
set of an arbitrary Banach space X and let T : K → K be
a uniformly continuous and φ-hemicontractive mapping.
Suppose that {αn}∞n=1 be any sequence in [ 0, 1] satisfy-
ing (i) lim

n→∞ αn = 0 and (ii)
∑∞

n=1 αn = ∞. For a
sequence {vn}∞n=1 in K, suppose that {xn}∞n=1 is the sequence
generated from an arbitrary x0 ∈ K by

xn = αnxn−1 + (1 − αn)Tvn, n ≥ 1

and satisfying lim
n→∞ ‖vn − xn‖ = 0. Then, the following

conditions are equivalent:

(a) {xn}∞n=1 converges strongly to the unique fixed
point q of T,
(b) {Txn}∞n=1 is bounded .

Corollary 14. Let K be a nonempty closed convex subset
of an arbitrary Banach space X and let T : K → K be
a uniformly continuous and φ-hemicontractive mapping.
Suppose that {αn}∞n=1 be any sequence in [ 0, 1] satisfying
(i) lim

n→∞ αn = 0 and (ii)
∑∞

n=1 αn = ∞. For any xo ∈ K,
define the sequence {xn}∞n=1 inductively as follows:

xn = αnxn−1 + (1 − αn)Txn, n ≥ 1.

Then the following conditions are equivalent:

(a) {xn}∞n=1 converges strongly to the unique fixed
point q of T,
(b) {Txn}∞n=1 is bounded.

Remark 15. All of the above results are also valid for
Lipschitz φ-hemicontractive mappings.

Multi-step implicit fixed point iterations
Let K be a nonempty closed convex subset of a real
normed space X and T1,T2, . . . ,Tp : K → K(p ≥ 2) be a
family of self-mappings.

Algorithm 1. For a given x0 ∈ K, compute the sequence
{xn} by the implicit iteration process of arbitrary fixed
order p ≥ 2,

xn = a′
nxn−1 + b′

nT1y1n + c′nun,
yin = ainxn−1+ binTi+1yi+1

n + cinv
i
n; i = 1, 2, . . . , p −2,

yp−1
n = ap−1

n xn−1 + bp−1
n Tpxn + cp−1

n vp−1
n , n ≥ 0,

(4.1)

which is called the multi-step implicit iteration process,
where {an}, {bn}, {cn}, {ain}, {bin}, {cin} ⊂ [ 0, 1]; a′

n + b′
n +

c′n = 1 = ain + bin + cin; and {un} and {vin} are arbitrary
sequences in K provided i = 1, 2, . . . , p − 1.

For p = 3, we obtain the following three-step implicit
iteration process:

Algorithm 2. For a given x0 ∈ K, compute the sequence
{xn} by the iteration process

xn = a′
nxn−1 + b′

nT1y1n + c′nun,
y1n = a1nxn−1 + b1nT2y2n + c1nv

1
n,

y2n = a2nxn−1 + b2nT3xn + c2nv2n, n ≥ 0,
(4.2)

where {a′
n}, {b′

n}, {c′n}, {ain}, {bin}, {cin} ⊂ [ 0, 1]; a′
n + b′

n +
c′n = 1 = ain + bin + cin; and {un} and {vin} are arbitrary
sequences in K provided i = 1, 2.

For p = 2, we obtain the following two-step implicit
iteration process:

Algorithm 3. For a given x0 ∈ K, compute the sequence
{xn} by the iteration process

xn = a′
nxn−1 + b′

nT1y1n + c′nun,
y1n = a1nxn−1 + b1nT2xn + c1nv1n, n ≥ 0,

(4.3)

where {a′
n}, {b′

n}, {c′n}, {a1n}, {b1n}, {c1n} ⊂ [ 0, 1]; a′
n + b′

n +
c′n = 1 = a1n + b1n + c1n; and {un} and {v1n} are arbitrary
sequences in K.

If T1 = T ,T2 = I, b1n = 1, and c1n = 0 in (4.3), we obtain
the implicit Mann iteration process:

Algorithm 4. [2] For any given x0 ∈ K, compute the
sequence {xn} by the iteration process

xn = a′
nxn−1 + b′

nTxn + c′nun, n ≥ 0, (4.4)
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where {a′
n}, {b′

n}, {c′n} ⊂ [ 0, 1]; a′
n + b′

n + c′n = 1; and {un}
is an arbitrary sequence in K.

Theorem 16. Let K be a nonempty closed convex sub-
set of an arbitrary Banach space X and T1,T2, . . . ,Tp (p ≥
2) be self-mappings of K. Let T1 be a continuous φ-
hemicontractive mapping and R(T2) is bounded. Let {a′

n},
{b′

n}, {c′n}, {ain}, {bin}, {cin} be real sequences in [ 0, 1]; a′
n +

b′
n + c′n = 1 = ain + bin + cin, i = 1, 2, . . . , p − 1 satisfying

(i) lim
n→∞ b′

n = 0, (ii) c′n = 0(b′
n), and (iii)

∑∞
n=1 b′

n = ∞,
lim
n→∞ b1n = 0 = lim

n→∞ c1n. For arbitrary x0 ∈ K , define the
sequence {xn} by (4.1). Then, {xn} converges strongly to the
common fixed point of

p⋂
i=1

F(Ti) 
= ∅.

Proof. By applying Theorem 9 under the assumption
that T1 is continuous φ- hemicontractive, we obtain
Theorem 16 which proves strong convergence of the iter-
ation process defined by (4.1). Consider the following
estimates by taking T1 = T and vn = y1n,

‖vn − xn‖ ≤ ‖vn − xn−1‖ + ‖xn−1 − xn‖, (4.5)

‖vn − xn−1‖ = ∥∥a1nxn−1 + b1nT2y2n + c1nv
1
n − xn−1

∥∥
= ∥∥b1n (

T2y2n − xn−1
) + c1n

(
v1n − xn−1

)∥∥
≤ b1n

∥∥T2y2n − xn−1
∥∥ + c1n

∥∥v1n − xn−1
∥∥

≤ 2M
(
b1n + c1n

)
,

(4.6)

‖xn−1 − xn‖ = ∥∥xn−1 − a′
nxn−1 − b′

nTvn − c′nun
∥∥

= ∥∥b′
n(xn−1 − Tvn) − c′n(un − xn−1)

∥∥
≤ b′

n‖xn−1 − Tvn‖ + c′n‖un − xn−1‖
≤ 2M(b′

n + c′n).
(4.7)

Substituting (4.6 to 4.7) in (4.5), we have

‖vn − xn‖ ≤ 2M(b1n + c1n + b′
n + c′n)

→ 0,

as n → ∞.

Corollary 17. Let K be a nonempty closed convex subset
of an arbitrary Banach space X and T1,T2, . . . ,Tp(p ≥ 2)
be self-mappings of K. Let T1 be a Lipschitz φ-
hemicontractive mapping, and R(T2) is bounded. Let
{a′

n}, {b′
n}, {c′n}, {ain}, {bin}, and {cin} be real sequences in

[ 0, 1] ; a′
n + b′

n + c′n = 1 = ain + bin + cin, i = 1, 2, . . . , p− 1
satisfying (i) lim

n→∞ b′
n = 0, (ii) c′n = 0(b′

n), and (iii)
∑∞

n=1

b′
n = ∞, lim

n→∞ b1n = 0 = lim
n→∞ c1n. For arbitrary x0 ∈

K , define the sequence {xn} by (4.1). Then, {xn} converges
strongly to the common fixed point of

p⋂
i=1

F(Ti) 
= ∅.
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