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Introduction

Let K be a nonempty subset of an arbitrary Banach space
X and X* be its dual space. Let T : D(T) € X — X be
a mapping. The symbols D(T'), R(T), and F(T) stand for
the domain, the range, and the set of fixed points of T,
respectively (for a single-valuedmap T : X — X, x € X is
called a fixed point of T if T'(x) = x). We denote by J the
normalized duality mapping from X to 2X" defined by

= Il = [}

Definition 1. The mapping T is called Lipshitzian if
there exists L > 0 such that

J@) = {1 e X" )

|7e - ] <Ll

for allx,y € K.If L = 1, then T is called nonexpansive,
and if 0 < L < 1, T is called contraction.

Definition 2. [1-4]

(i) T is said to be strongly pseudocontractive if there
exists ¢ > 1 such that for each x, y € D(T), there
exists j(x — y) € J(x — y) satisfying

1
Re (T — Ty,j(x — ) < L lIx —yl*
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(ii) T is said to be strictly hemicontractive if
F(T) # ¥ and there exists a t > 1 such that for each
x € D(T) and g € F(T), there exists j(x — y) €
J(x — y) satisfying
. 1 2

Re(Tx —q,j(x — q)) < ;le —qll*.
(ili) T is said to be ¢-strongly pseudocontractive if
there exists a strictly increasing function ¢ :[ 0, c0) —
[0, 00) with ¢(0) = 0 such that for each x, y € D(T),
there exists j(x — y) € J(x — y) satisfying

Re (Tx—Ty,j(x—)) < llx—ylI* = lx—yI) lx—yll.

(iv) T is said to be ¢-hemicontractive if F(T) # @
and there exists a strictly increasing function

¢ :[0,00) —[0, 00) with ¢ (0) = 0 such that for each
x € D(T) and g € F(T), there exists j(x—y) € J(x—)
satisfying

Re (Tx—q,j(x—q)) < llx—ql* - ¢ (lx—ql) lx—ql|.

Clearly, each strictly hemicontractive operator is ¢-
hemicontractive.

Chidume [1] established that the Mann iteration
sequence converges strongly to the unique fixed point of T
in case T is a Lipschitz strongly pseudocontractive map-
ping from a bounded closed convex subset of L, (orl,) into
itself. Afterwards, several authors generalized this result
of Chidume in various directions [2,4-11].
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In 2001, Xu and Ori [12] introduced the following
implicit iteration process for a finite family of nonexpan-
sive mappings {7; : i € I} (here, I = {1,2,...,N}), with
{a,} areal sequence in (0, 1), and an initial point xg € K:

x1 = (1 —ap)xo + ay Trx1,

x2 = (1 — a)x1 + axToxy,

xn = (1 —an)an-1 + anTnxn,

an+1 = (1 —ans1)an + anp1 TN 1N+ 1

which can be written in the following compact form:

xy = (1 —ap)xy—1+ ayTyxy, foralln > 1, (XO)

where T, = T (modnn (here, the mod N function takes
the values in 7). Xu and Ori [12] proved the weak conver-
gence of this process to a common fixed point of the finite
family of nonexpansive mappings defined in a Hilbert
space. They further remarked that it is yet unclear what
assumptions on the mappings and/or the parameters {«;,}
are sufficient to guarantee the strong convergence of the
sequence {x,}.
In [13], Chidume et al. proved the following results:

Lemma 3. [13] Let E be a real Banach space. Let K be a
nonempty closed and convex subset of E. Let T : K — K
be a strictly pseudocontractive map in the sense of Browder
and Petryshyn. Let x* € F(T). For a fixed xo € K, define a
sequence {x,} by

X1 = (L —ap)x, + oy Txy,
where {a,} is a real sequence in [ 0, 1] satisfying the follow-
ing conditions: (i) Y oo, oy = 00 and (ii) Y o a2 < oco.
Then, (a) liminf,_ » ||x, — Tx,|| = 0, (b) {x,,} is bounded
and lim,_, o %, — ™| exists.

Theorem 4. [13] Let E be a real Banach space. Let K be
a nonempty closed and convex subset of E. Let T : K — K
be a strictly pseudocontractive map in the sense of Browder
and Petryshyn with F(T) := {x € K : Tx = x} # (. For a
fixed xo € K, define a sequence {x,} by

X1 = (1 — ap)xy + anTxy,

where {a,} is a real sequence satisfying the following con-
ditions: (i) Y o, = 00 and (i) Y a2 < oo. If T is
demicompact, then {x,} converges strongly to some fixed
point of T'in K.

In [14], Osilike proved the following results:

Theorem 5. Let E be a real Banach space and K be a
nonempty closed convex subset of E. Let {T; : i € I} be
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N strictly pseudocontractive self-mappings of K with F =

N

(E(T;) # . Let {0} | be a real sequence satisfying the
i=1
Sfollowing conditions:

(i) O0<a,<l,

(D) D (1 —ay) =00,
n=1

(iii) Z(l —ay)? < oo

n=1

From arbitrary xy € K, define the sequence {x,} by the
implicit iteration process (XO). Then, {x,} converges
strongly to a common fixed point of the mappings
{T;:iel}ifand only lfnlgrolo infd(x,, F) = 0.

In [15], Su and Li proved the following results:

Theorem 6. [15] Let E be a real Banach space and K
be a nonempty closed and convex subset of E. Let {Ti}fi 1
be N strictly pseudocontractive self-maps of K in the sense

N
of Browder and Petryshyn such that F = (| F(T;) # ¢,

i=1
where F(T;) = {x € K : Tix = x}. For a fixed xy € K,
define a sequence {x,},> by

Xy = apXy + (1 — o) Tyy,
Yn = Buxn + (1 — Bu) Tyn,

where Ty, = Tyyoan and {au},2 1, {Bulse be real sequen—
ces in [0,1] satisfying the following conditions: (i)
Yo —ay) = 0o (il) Yoo (1 — an)? < oo, (iii)
3% (1—By) < 00,and (iv) 1 —ay,)(1—By)L? < 1. Then,
(@) liminfy,_, o |2, — Tpxy || = 0 and (b) limy, oo [, — x* ||
exist for all x* € F.

Remark 7. (i) One can easily see that for
o, =1-— %, > (1 — a,)? = 0o .Hence, the results of

2
Osilike [14n] and Su and Li [15] are to be improved.
(ii) Proofs of Chidume et al. [13] main results based
on ¢~ : Let us define ¢ :[ 0, 00) —[0,00) by
¢(a) = g:—jr}, then it can be easily seen that (i) ¢ is
increasing and (ii) ¢ (0) = 0, butaan;o ¢(x) =1 and

(ffl (2) make no sense.

The purpose of this paper is to characterize the condi-
tions for the convergence of the implicit iterative scheme
with error term in the sense of [16-18] to the unique
fixed point of ¢-hemicontractive mappings in a nonempty
convex subset of an arbitrary Banach space. Our results
extend and improve most of the results in recent literature
[7,12-14,19-22].



Rafig Mathematical Sciences 2013, 7:9
http://www.iaumath.com/content/7/1/9

Preliminaries
The following results are now well known:

Lemma 8. [23] Forallx,y € X and j(x +y) € J(x + y),
2+ y1I* < llxll* + 2Re (3, j(x + ).

Main results
Now, we prove our main results.

Theorem 9. Let K be a nonempty closed convex sub-
set of an arbitrary Banach space X and let T : K — K
be a uniformly continuous and ¢-hemicontractive map-
ping. Suppose that {u,},- | is a bounded sequence in K and
{a,}50 1, (b),}o2 1, and {c,}° | are sequences in [0, 1] satis-
Sfying conditions (i) a,, + b, + ¢, = 1, (ii) lim b, = 0, (iii)

n—0o0
¢, = o(b),), and (iv) Y, | b}, = 0o. For a sequence {v,}°°
in K, suppose that {x,}.° | is the sequence generated from
an arbitrary xy € K by

Xy = dpxy—1 + b, Tvy + iy, n > 1, (3.1)
and satisfying lim ||v, — x,|| = 0. Then, the following
n—oo

conditions are equivalent:

(a) {x4}52 | converges strongly to the unique fixed
point q of T,
(b) {Tx,};2, is bounded.

Proof. From (iii), we have ¢, = ¢,b,, where t, — 0 as
n— oo.

Since T is ¢-hemicontractive, it follows that F(T) is a
singleton. Let F(T) = {g} for some g € K.

Suppose that nli)rrgo X, = ¢, then the uniform continuity

of T yields that

lim Tx, = q.
n— o

Therefore, {Tx,};?° ; is bounded.

Note that lim ||v, — x| = 0 and the continuity of T
n— 00
imply that
lim ||Tv,, — Tx,| = 0. (3.2)
n—o0
Put
M = |lxo — qll + sup [| Tx, — gl + sup [|lun — gl
n>1 n>1
+ sup | T, — Tl
n>1
(3.3)

It is clear that ||xo —g|| < M. Let ||x,—1 —¢q|| < M;. Next,
we will prove that ||x, — ¢q|| < M.
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Consider

%0 — qll = || @) xn—1 + b, Tvn + clusn — q|
= ”“;(xnfl —q) + b;(Tv,, —q) + C;(u,, -9 ”
< (1= 80) It = g1l 4B} 1 Ton — gl + €, s —
< (1= by) My + B, (I Tvn — Taall + [ T, — )
+ cullun — qll

=(1-15}) [leo — gl +sup || Tx, — q||
n>1

n>1

+sup lluy — gl + sup | Tv, — Txnll}
n>1

+ b, (1 Tvi — Toull + 1 Txn — ql) + ¢, llun — 4

=< Ilxo — 4l

+ ((1 ~by) sup I Txn — qll + b, 1| Txn — qll)
nz

+ ((1 —by) sup lltn — qll + by, llun — qll)
n=

+ ((1 — b)) sup || Tvy — Txull + b, | Ty, — Txn||>
n>1
< llxo — ¢l

+ ((1 — b)) sup || Tx, — qll + b}, sup || Tx, — qll)
n>1 n>1

+ ((1 — by,) sup lluy — ql| + by, sup ||u, — qn)
n>1 n>1

+ ((1 — b},) sup || Tv,,— Tx, || + b}, sup ||Tvn—Tx,,||>
n>1 n>1
= |lwo — qll + sup [ Tx, — qll + sup llun — 4|
n>1 n>1
+sup | Tv, — Txull

n>1

= M;.

So, from the above discussion, we can conclude that the
sequence {x,, — q},>1 is bounded. Thus, there is a constant
M > 0 satisfying

M = sup X, — qll +sup || Txy — gl| + sup [lu, — 4l

n>1 n>1 n>1

~+ sup || Tv;, — Txy || .

n>1
(3.4)
Obviously, M < co. Consider

ITvn = qll < | Tvy — Taull + 1 Txn — 4|

IA

sup || Tvy — Tyl + sup | T, — qll (3.5
>1

n>1 n=

<M.
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By virtue of Lemma 4 and (3.1), we infer that

2
56w — qlI* = | ajxn—1 + b Tvy + cyun — q||
2
=|a,n-1 — @) + b,(Tvy — @) + ¢, (n — 9|
2 .
<(1-8})" lI%n—1 — qlI*+2b,Re (Tv, — q,j(xn — q))
+ 2¢,,Re (ty — q,j(xn — 9))
2 .
<(1-0,)" lltn—1—qlI*+2b,Re (Tv, — Ty, j(xn — q))
+2b),Re (Txp—q, j(xn—q)) +2¢,llun — gl 1%, — 4l
2
<(1=8) 1xn—1 — qll> + 28,1 Tvn — Tnll 1% — gl
+2b), ||y —q1I* — 25,6 (lxn —qI) % — gl +2M3C),
2
=(1-0})" %1 — qlI* + 2Mb},wy, + 2B, |1, — q|*
— 26, ¢ (lxn — g llxn — qll + 2M3c),,

(3.6)
where
Wy = [ Tvy — Txull. 3.7)
Consider

2
I%n — qll? = || @ xn—1 + b}, Tvy + cyun — q||
2
= |la,@n1—q) + b, (Tvy — q) + ¢, (tn — )
< @, 1%n—1—qI*+ B, Tvw — ql*+c,llun — gl
< [l%n—1 — qll* + M? (b, + c,),
(3.8)

where the first inequality holds by the convexity of |.||2.
Substituting (3.8) in (3.6), we get

ln = all? = [ (1= B,)" + 26, | a1 — ql?
+ 2Mb;, (wy 4 M (b, + 2t) )
= 2b,¢ (Ixn — gl 1%n — gl
= (1+8,) 01— ql?
+ 2MBb), (wy, + Mb;, + 2t,))

— 28, (% — qlD 1% — g (39)

< lln-1 — qll?
+ Mb), (3MDb;, + 2(wy, + 2Mty,))
— 28,0 (I%s — ql) 1% — 4l

= ll%n-1 — qll* + b,ln
—2b,¢(lxn — ql) 1% — 41,

where
Ly = M (3Mb), + 2 (w, + 2Mt,,)) — O, (3.10)

asn — oo.
Let § = inf{||lx,+1 — ¢l : n = 0}. We claim that § = 0.
Otherwise § > 0. Thus, (3.10) implies that there exists a
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positive integer Ny > Np such that /, < ¢(8)$ for each
n > Ni. In view of (3.9), we conclude that

l6ns1 — qli* < ll%n — qlI* — ¢ (8)8b),,
which implies that

n Zva

o
$()8 Y by, < llxn, —qll®, (3.11)
n=N1
which contradicts (iv). Therefore, § = 0. Thus, there
exists a subsequence {x,,11}50 of {x,11}5, such that

lim xy,41 = ¢q. (3.12)
1—> 0

Let € > 0 be a fixed number. By virtue of (3.10) and (3.12),
we can select a positive integer iy > Nj such that

Smg1 — 4| < €l < $@en = m, (3.13)
Let p = n;,. By induction, we show that
%p+m — qll <e€,m > 1. (3.14)

Observe that (3.13) means that (3.14) is true for m = 1.
Suppose that (3.14) is true for some m > 1. If ||xp4pmy1 —
qll = €, by (3.9) and (3.13), we know that

2 2
€ < Ixptm+1 — 4l

/
b p+mlp+m

< xptm — ql* +
1—2b,.,,

2b1/7+m

1-2b,,

s Dyrm®(e)e

1-2b,,,

O U1xp+m+1 — gD Xp+m+1 — 4l

2b;+m¢ (e)e

1-2b,.,

< 62,

which is impossible . Hence, [[xy1m11 — qll < €. That
is, (3.14) holds for all m > 1. Thus, (3.14) ensures that
lim x, = g. This completes the proof. O
n—oo

Using the method of proofs in Theorem 6, we have the
following result:

Theorem 10. Let X, K, T, {u, )52 1, {vn}o2 1, and {x,}52
be as in Theorem 9. Suppose that {a,}° ,{b,}>°,, and
{c,,}o2 | are sequences in [ 0, 1] satisfying conditions (i), (ii),
(iv), and

o
Zc’n < co.
n=1
Then, the conclusion of Theorem 9 holds.

Corollary 11. Let K be a nonempty closed convex sub-
set of an arbitrary Banach space X and let T : K — K
be a uniformly continuous and ¢-hemicontractive map-
ping. Suppose that {u,},> | is a bounded sequence in K, and
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(@, )50 1, {b),}02 1, and {c,}° | are sequences in [ 0, 1] satis-

fying conditions (i) a,, + b, + ¢, = 1, (ii) lim b, = 0, (iii)
n— 00

¢, = 0(b),), and (iv) Y_,7 1 b}, = co. Suppose that {x,}5°

is the sequence generated from an arbitrary xo € K by

Xy = a;xn_l + b/nTx,, + c;,u,,,n > 1.
Then, the following conditions are equivalent:

(a) {x4}52 | converges strongly to the unique fixed
point q of T,
(b) {Tx,},2, is bounded.

Corollary 12. Let X, K, T, {u,};° |, and {x,,},> ; be as in
Corollary 11. Suppose that {a,};° 1, {b,}52 1, and {c,}7°
are sequences in [0,1] satisfying conditions (i), (i), (iv)
and

oo
Zc; < 00.
n=1
Then, the conclusion of Corollary 12 holds.

Corollary 13. Let K be a nonempty closed convex sub-
set of an arbitrary Banach space X and let T : K — K be
a uniformly continuous and ¢-hemicontractive mapping.
Suppose that {ay,},° | be any sequence in [0,1] satisfy-
ing (i) nl;rr;o o, = 0 and (i) Y ;2 0, = o0. For a
sequence {v,},° | in K, suppose that {x,},° | is the sequence
generated from an arbitrary xy € K by

X = Apxp—1 + (1 —ay)Tvy,n > 1

and satisfying lim ||v, — x,|| = 0. Then, the following
n— o0

conditions are equivalent:

(a) {x4}52 | converges strongly to the unique fixed
point q of T,
(b) {Tx,};2 , is bounded .

Corollary 14. Let K be a nonempty closed convex subset
of an arbitrary Banach space X and let T : K — K be
a uniformly continuous and ¢-hemicontractive mapping.
Suppose that {a,)5° | be any sequence in [0, 1] satisfying
(i) nli)rr;ootn = 0 and (ii) Y o, oy = oo. For any x, € K,

define the sequence {x,,}° | inductively as follows:
Xy = ApXy—1 + (1 —ay)Txy,,n > 1.
Then the following conditions are equivalent:

(a) {xn};2 | converges strongly to the unique fixed
point q of T,
(b) {Tx,},2, is bounded.

Remark 15. All of the above results are also valid for
Lipschitz ¢p-hemicontractive mappings.
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Multi-step implicit fixed point iterations

Let K be a nonempty closed convex subset of a real
normed space X and T1, T,..., T, : K — K(p > 2) bea
family of self-mappings.

Algorithm 1. For a given xy € K, compute the sequence
{xn} by the implicit iteration process of arbitrary fixed
orderp > 2,

Xp = dxy_1 + b, Try: + cun,
o = aprn1+ Uy Ty, pvisi=1,2,..., p =2,
A = e+ T+ W iz 0,

(4.1)

which is called the multi-step implicit iteration process,
where {an), (b}, (ca), {al), (b)), 1} C (0,1} a + b, +
¢, =1=d,+b,+c;and {u,} and (v} are arbitrary
sequences in K provided i = 1,2,...,p — 1.

For p = 3, we obtain the following three-step implicit
iteration process:

Algorithm 2. For a given xo € K, compute the sequence
{x,} by the iteration process

X = dpXp—1 + by, T1yy + ¢yt
1_ 1 1o 2 4 101
Vi = p¥n_1+ b, Toy, + ¢, v, (4.2)

y2 = alxy_1 4+ b2 Tsx, + 22, n >0,
where {a},}, (b)), (¢}, {ai,), (b)), (¢} € [0,1]; @), + b}, +
¢, =1=d,+ b, +c;and {u,} and {V')} are arbitrary
sequences in K provided i = 1, 2.

For p = 2, we obtain the following two-step implicit
iteration process:

Algorithm 3. For a given xy € K, compute the sequence
{x,} by the iteration process
Xp = AXy—1 + b, Trys + iy, 43)
yt =alx, 1+ b Tox, + clvl, n >0, '
where {a,}, (b}, {c,}, {ay}, {by), {ep) € 10,1]; @), + by, +
¢, =1 =al +bl+cl;and (u,} and (v}} are arbitrary
sequences in K.

T, =T,T, =1, b}l =1, and c}l = 0in (4.3), we obtain
the implicit Mann iteration process:

Algorithm 4. [2] For any given xo € K, compute the
sequence {x,} by the iteration process

Xp = dyxy—1 + b}, Txy + by, 1> 0, (4.4)
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where {a,)}, (b}, {c,} C[0,1];a, + b, + ¢, = 1; and {u,)
is an arbitrary sequence in K.

Theorem 16. Let K be a nonempty closed convex sub-
set of an arbitrary Banach space X and T1, T, ..., T, (p =
2) be self-mappings of K. Let T1 be a continuous ¢-
hemicontractive mapping and R(T,) is bounded. Let {a),},
{B,), {c,), {al), (bi), {c)} be real sequences in [0, 1]; a, +
by+c,=1=a +b +c,i=12,...,p— 1satisfying
(i) lim b, =0, (ij) ¢, = 0(b,), and (iii) Yool b, = oo

. 1 _ _ . 1 .
nlirgo b, =0= nangO c,. For arbitrary xo € K, define the

sequence {x,} by (4.1). Then, {x,} converges strongly to the

p
common fixed point of (| F(T;) # .
i=1

Proof. By applying Theorem 9 under the assumption
that T; is continuous ¢- hemicontractive, we obtain
Theorem 16 which proves strong convergence of the iter-
ation process defined by (4.1). Consider the following
estimates by taking 71 = T and v, = .,

Vi = %nll < llvi = X1l + 1%n—1 — %], (4.5)

Vi — 211l = |@pn—1 + by Toys + chvy — %u1]|
= |6 (Tay — 2n1) + ¢ (v — 2n1) |
< by [ Toyy = ana | + 6 vy — s |
<2M (b, +cp),
(4.6)
ln—1 — xnll = |01 — @pin—1 — b}, Tvy — Ctt |
= |6}, (k-1 — Tvy) — |y (ttn — x0—1) |
< Dllxn—1 — Tvall + ¢ llttn — xp1|
< 2M(b, + c})).
(4.7)
Substituting (4.6 to 4.7) in (4.5), we have
Vi = %ull < 2M(by, + ¢, + by, + €},)
— 0,
asn — 0. O

Corollary 17. Let K be a nonempty closed convex subset
of an arbitrary Banach space X and T1, T2, ..., Ty(p > 2)
be self-mappings of K Let Ty be a Lipschitz ¢-
hemicontractive mapping, and R(Ty) is bounded. Let
{a,}, b)), {c,}, 1al}, (bL), and {ci)} be real sequences in
[0,1];a,+b),+c,=1=a,+b, +c,i=12,...,p—1
satisfying (i) nangO b, = 0, (ii) ¢,, = 0(b},), and (iii) Y -,
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b, = oo, nlirrgo bl =0 = nl;rrgo cl. For arbitrary xy €

K, define the sequence {x,} by (4.1). Then, {x,} converges

)4
strongly to the common fixed point of (| F(T;) # 0.
i=1
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