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Abstract

Eigenvalue problem for p-Laplacian with mixed boundary conditions is concerned on a bounded domain. The
existence of nonnegative eigenvalues are obtained by using the Lusternik-Schnirelman principle. Boundedness of
eigenfunctions is obtained by using the Moser iteration. The simplicity and isolation of the first eigenvalue are proved.
The existence of the second eigenvalue is also illustrated.
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Introduction
In this paper, we study the following eigenvalue problem

⎧⎪⎪⎨
⎪⎪⎩

−�pu(x) = λ|u|p−2u, in �,

u = 0, on σ ,

|∇u(x)|p−2 ∂u
∂n = λ|u|p−2u, on �,

(1.1)

where �pu = div(|∇u|p−2|∇u|) is the p-Laplacian oper-
ator, 1 < p < +∞,� is a bounded domain in
R
N with C1 boundary ∂�, σ ∪ � = ∂� and σ ∩

� = ∅, � is a sufficiently smooth (N − 1)-dimensional
manifold, and n is the outward normal vector on
∂�.
Throughout the paper we define X := {u ∈ W 1,p(�) :

u|σ = 0} is a closed subspace of W 1,p(�) with the norm
‖u‖p = ∫

�
(|∇u|p + |u|p)dx. Eigenvalue problems for the

p-Laplacian and p(x)-Laplacian have been studied exten-
sively for many years and many interesting results have
been obtained. These results are on the structure of
the spectrum of Dirichlet, no-flux, Niemann, Robin, and
Steklov problems as demonstrated in [1-8]. Problem (1.1)
is a mixed boundary value problem, and is different from

*Correspondence: ligf8855@yahoo.com.cn
1Department of Mathematics and Information Science, Qujing Normal
University, Qujing 655011, People’s Republic of China
Full list of author information is available at the end of the article

the classical ones. References [9,10] studied the following
problem⎧⎪⎪⎨

⎪⎪⎩
−�u = λu, in �,

u = 0, on σ ,
∂u
∂n = λβu, on �,

(1.2)

where β = a2
b2 . Problem (1.1) is a generalization of (1.2) as

p = 2 and β = 1. In this paper, we extend their results and
study the complete character of eigenvalue problem (1.1)
which is an abstract one and has never been known.

Methods
Since our methods of proofs of the theorem are different
from the others, we must consider the boundary σ and
�. We use the multiplicative inequality in [11,12] to proof
the boundedness of eigenfunctions. For example, problem
(1.1) includes the following classical problem⎧⎪⎪⎨

⎪⎪⎩
X′′(x) + λX(x) = 0, 0 < x < l,

X(0) = 0,

X′(l) − λX(l) = 0,

(1.3)

as its special case, which leads to the equation for eigen-
value λ > 0,

tan
√

λl = 1√
λ
.
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Thus, we get the sequence of eigenvalues λk = θ2k ,
satisfying

(k − 1)π
l

< θk <
(2k − 1)π

2l
, k = 1, 2, · · · .

Related eigenfunctions are {sin(θkx)}k=1,2,···.
It is well known that an eigenvalue problem plays a very

important role in the studying of all kinds of linear and
nonlinear problems. Therefore, the research in present
paper would be useful to the understanding of spectrum
of nonlinear operator and related problems.
The sketch of the paper is as follows. We first estab-

lish the eigenvalue sequence in next section. Next, we
consider the boundedness of eigenfunctions in section
‘Boundedness of eigenfunctions’. The simplicity and isola-
tion of the first eigenvalue are considered in the section
‘Simplicity and isolation of the first eigenvalue’. In the
section ‘Existence of the second eigenvalue’, we consider
the existence of the second eigenvalue.

Results and discussion
Eigenvalue problem for the p-Laplacian
Weak solutions
Definition 2.1. A pair (u, λ) ∈ X × R is a weak solution
of (1.1) provided that

∫
�

|∇u|p−2∇u∇vdx=λ

(∫
�

|u|p−2uvdx+
∫

�

|u|p−2uvds
)
,

(2.1)

for any v ∈ X as u = 0 on σ . Where u is nontrivial, λ is an
eigenvalue, and u is called an associated eigenfunction.
It follows from (2.1) that all eigenvalues λ are nonnega-

tive (by choosing v = u). It shows that if � is of class C1,γ ,
then eigenfunction of (2.1) belongs to C1,α(�). Hence, ∇u
exists on �, and the boundary conditions of the prob-
lem (1.1) make sense. The following lemma assures that
if an eigenfunction u is smooth enough, then u solves the
corresponding partial differential equation.

Lemma 2.2. Let (u, λ) be an eigenpair, i.e., a weak solu-
tion of (2.1) such that u ∈ W 2,p(�), then (u, λ) solves
(1.1).

Proof. Let (u, λ) ∈ W 2,p(�) × R
+ be an eigenpair of

(2.1). We recall the first formula of Green [13], it follows
from (2.1) that

∫
�

(−�pu
)
vdx +

∫
�

|∇u|p−2 ∂u
∂n

vds

= λ

(∫
�

|u|p−2uvdx +
∫

�

|u|p−2uvds
)

for any v ∈ X. Thus, taking any v in C∞
0 (�) we have∫

�

(�pu + λ|u|p−2u
)
vdx = 0,

which implies −�pu = λ|u|p−2u in �. Furthermore, since
the range of the trace mapping X ↪→ Lp(�) is continuous
and compact (see [14]), and v = 0 on σ , we have∫

�

|∇u|p−2 ∂u
∂n

vds = λ

∫
�

|u|p−2uvds, ∀v ∈ Lp(�).

Therefore, |∇u|p−2 ∂u
∂n = λ|u|p−2u on �.

Existence of L-S sequence for (1.1)
The existence of a sequence of eigenvalues can be proved
by the Ljusternik-Schnirelman principle, we call this
sequence as L-S sequence {λn}.
Let � be a bounded domain in R

n with C1 boundary.
We define the following functionals F and G on X

F(u) =
∫

�

a(x)|u(x)|pdx +
∫

�

b(s)|u(s)|pds, (2.2)

G(u) =
∫

�

(|∇u(x)|p + |u(x)|p) dx +
∫

�

β(s)|u(s)|pds,
(2.3)

where a ∈ L∞(�) and b,β ∈ L∞(�) such that a, b,β > 0.
Consider the following eigenvalue problem

F ′(u) = μG′(u),u ∈ SG,μ ∈ R,

where SG is the level SG = {u ∈ X : G(u) = 1}.
For any positive integer n, denoted by An the class of all

compact, symmetric subsets K of SG such that F(u) > 0 is
on K and γ (K) ≥ n, where γ (K) denotes the genus of K,
i.e., γ (K) := inf{k ∈ N : ∃h : K → R

k\{0} such that h is
continuous and odd}.

Theorem 2.3. Let F(u), G(u) be defined in (2.2) and
(2.3) with a(x) = b(x) = β(x) = 1. Then there exists
a nondecreasing sequence of nonnegative {λn} of (2.1)
obtained by using the L-S principle such that λn = 1

μn
−

1 → +∞ as n → +∞, where each μn is an eigenvalue of
the corresponding equation F ′(u) = μG′(u) that satisfies
μ1 ≥ μ2 ≥ · · · ≥ μk ≥ · · · > 0, lim

k→+∞
μk = 0.

Proof. With a(x) = b(x) = β(x) = 1 in (2.2) and (2.3),
F(u) and G(u) become

F(u) =
∫

�

|u(x)|pdx +
∫

�

|u(s)|pds,G(u)

=
∫

�

(|∇u(x)|p + |u(x)|p) dx +
∫

�

|u(s)|pds.
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Thus, F ′(u) = μG′(u) is equivalent to∫
�

|u|p−2uvdx +
∫

�

|u|p−2uvds

= μ

(∫
�

(|∇u|p−2∇u∇v + |u|p−2uv
)
dx

+
∫

�

|u|p−2uvds
)
,

for any v ∈ X, or∫
�

|∇u|p−2∇u∇vdx =
(
1
μ

− 1
) (∫

�

|u|p−2uvdx

+
∫

�

|u|p−2uvds
)
,∀v ∈ X.

Combining (2.1) and the existence of the L-S sequence
principle, we obtain λn = 1

μn
− 1 → +∞ as n → +∞.

Boundedness of eigenfunctions
Let � be a bounded domain in R

n with C1 boundary and
1 < p < +∞. We shall show the eigenfunctions are in
L∞(�), which is the boundedness for solutions of (1.1).

Theorem 3.1. Let (u, λ) be an eigensolution of the weak
form (2.1), then u ∈ L∞(�).

Proof. In this proof, we use the Moser iteration tech-
nique in [15]. We assume first that u ≥ 0. We define
vM(x) = min{u(x),M} forM > 0 and ϕ = vkp+1

M for k > 0,
then∇ϕ = (kp+1)vkpM∇vM. It follows that ϕ ∈ X∩L∞(�)

and vM|� = min{u|� ,M}. Taking ϕ as a test function we
have

(kp + 1)
∫

�

|∇u|p−2∇uvkpM∇vMdx

= λ

(∫
�

|u|p−2uvkp+1
M dx +

∫
�

|u|p−2uvkp+1
M ds

)
,

which implies that

kp + 1
(k + 1)p

∫
�

|∇vk+1
M |pdx ≤ λ

(∫
�

|u|(k+1)pdx

+
∫

�

|u|(k+1)pds
)
.

LetM → ∞; by Fatou’s lemma we obtain

kp + 1
(k + 1)p

∫
�

|∇uk+1|pdx ≤ λ

(∫
�

|u|(k+1)pdx

+
∫

�

|u|(k+1)pds
)
.

That is,
kp + 1

(k + 1)p

∫
�

(
|∇uk+1|p + |uk+1|p

)
dx

≤
(

λ + kp + 1
(k + 1)p

) ∫
�

|u|(k+1)pdx

+ λ

∫
�

|u|(k+1)pds,

kp + 1
(k + 1)p

‖uk+1‖p ≤
(

λ + kp + 1
(k + 1)p

)
‖uk+1‖pLp(�)

+ λ‖uk+1‖pLp(�).
(3.1)

When u = 0 in σ , by the multiplicative inequality stated
(see Chapter 1, Section 1.4.7, Corollary 2 in [11]) and the
Moser iteration done in [12] of the form

‖u‖pLp(∂�) ≤ ε‖u‖p + C(ε)‖u‖pLp(�), ε > 0,

we obtain

‖uk+1‖pLp(�) ≤ ε‖uk+1‖p + C(ε)‖uk+1‖pLp(�), ε > 0.
(3.2)

Combining (3.1) and (3.2), it has(
kp + 1

(k + 1)p
− λε

)
‖uk+1‖p ≤

(
λ(1 + C(ε)) + kp + 1

(k + 1)p

)

× ‖uk+1‖pLp(�).

Since ε → 0, we may assume that kp+1
(k+1)p − λε > 0, then

‖u‖ ≤
⎡
⎣(

λ (1 + C(ε)) + kp + 1
(k + 1)p

)
1

kp+1
(k+1)p − λε

⎤
⎦

1
(k+1)p

× ‖u‖L(k+1)p(�).
(3.3)

By Sobolev’s embedding function X ↪→ Lp∗
(�), where

p∗ = Np
N−p , if p < N and p∗ = 2p, if p = N . Then there

exists a constant c1 > 0 such that

‖uk+1‖Lp∗ (�) ≤ c1‖uk+1‖,
which is

‖u‖L(k+1)p∗ (�) ≤ c
1

k+1
1 ‖u‖. (3.4)

By (3.3) and (3.4), for any k > 0, we can find a constant
c2 > 0 such that⎡
⎣(

λ (1 + C(ε)) + kp + 1
(k + 1)p

)
1

kp+1
(k+1)p − λε

⎤
⎦

1
(k+1)p

< c
1√
k+1

2 ,
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which is

‖u‖L(k+1)p∗ (�) ≤ c
1

k+1
1 c

1√
k+1

2 ‖u‖L(k+1)p(�). (3.5)

Choosing k1 such that (k1 + 1)p = p∗, taking k = k1 in
(3.5), it has

‖u‖L(k1+1)p∗ (�)
≤ c

1
k1+1
1 c

1√
k1+1

2 ‖u‖Lp∗ (�).

Next, we choose k2 such that (k2 + 1)p = (k1 + 1)p∗,
then taking k = k2 in (3.5), we have

‖u‖L(k2+1)p∗ (�)
≤ c

1
k2+1
1 c

1√
k2+1

2 ‖u‖L(k1+1)p∗ (�)
.

Therefore,

‖u‖L(kn+1)p∗ (�) ≤ c
1

kn+1
1 c

1√
kn+1

2 ‖u‖L(kn−1+1)p∗ (�)
,

where the sequence {kn} is chosen such that (kn + 1)p =
(kn−1 + 1)p∗, k0 = 0.
It is easy to see that kn + 1 =

(
p∗
p

)n
, hence

‖u‖L(kn+1)p∗ (�) ≤ c
∑n

i=1
1

ki+1
1 c

∑n
i=1

1√
ki+1

2 ‖u‖Lp∗ (�).

There exists C > 0 such that

‖u‖L(kn+1)p∗ (�) ≤ C‖u‖Lp∗ (�),

for any n = 1, 2, · · · , with rn = (kn + 1)p∗ → +∞ as
n → +∞.
Next, we will prove u ∈ L∞(�). Suppose u /∈ L∞(�),

then there exists ε1 > 0 and a set A of positive measure in
� such that |u(x)| > C‖u‖Lp∗ (�) + ε1 = K , for all x ∈ A.
Hence,

lim inf
n→+∞ ‖u‖Lrn (�) ≥ lim inf

n→+∞

(∫
A
Krn

) 1
rn = lim inf

n→+∞ K |A| 1
rn

= K > C‖u‖Lq(�),

which contradicts what has been established above.
If u (as an eigenfunction of (2.1)) changes sign, we con-

sider u+, and it is easy to know u+ ∈ X. We define for each
M > 0, vM(x) = min(u+(x),M). Taking again ϕ = vkp+1

M
as a test function inW 1,p(�), we obtain

(kp + 1)
∫

�

|∇u+|p−2∇u+vkpM∇vMdx

= λ

(∫
�

|u+|p−2u+vkp+1
M dx +

∫
�

|u+|p−2u+vkp+1
M ds

)
.

Proceeding the same way as above, we conclude that
u+ ∈ L∞(�). Similarly we have u− ∈ L∞(�). Therefore
u = u+ + u− is in L∞(�).

Simplicity and isolation of the first eigenvalue
In this section, we will study the characterization of the
first eigenvalue of (1.1). In the succeeding text, we assume

that � is a bounded domain in R
n with C1,γ boundary,

γ > 0, and 1 < p < +∞. By (2.1) we have λ1 =
inf

u∈X\{0}

∫
� |∇u|pdx∫

� |u|pdx+∫
� |u|pds .

Simplicity of the first eigenvalue
Proposition 4.1. If (u, λ) is an eigenpair of (2.1) with

λ > λ1, then u has to change sign in �.

Proof. If (u, λ) satisfies (2.1) for any v ∈ X, by choosing
v ≡ 1, we obtain

∫
�

|u|p−2udx +
∫

�

|u|p−2uds = 0.

Therefore, u has to change sign.

Theorem 4.2. The principal eigenvalue λ1 is simple; i.e.,
if u, v are two eigenfunctions associated with λ1, then there
exists a constant k such that u = kv.

Proof. By proposition 4.1, we can assume that u, v are
positive in �. We assume u, v are strictly positive in �, we
take

η1 = up − vp

up−1 , η2 = vp − up

vp−1

as test functions in the weak form of (2.1) satisfied by u, v,
respectively. We have

∫
�

|∇u|p−2∇u∇
(
up−vp

up−1

)
dx

= λ

(∫
�

|u|p−2u
(
up−vp

up−1

)
dx +

∫
�

|u|p−2u

×
(
up − vp

up−1

)
ds

)
,

(4.1)

∫
�

|∇v|p−2∇v∇
(
vp−up

vp−1

)
dx

= λ

(∫
�

|v|p−2v
(
vp−up

vp−1

)
dx +

∫
�

|v|p−2v

×
(
vp − up

vp−1

)
ds

)
.

(4.2)
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Combining (4.1) and (4.2) yields

0 =
∫

�

|∇u|p−2∇u∇
(
up − vp

up−1

)
dx

+
∫

�

|∇v|p−2∇v∇
(
vp − up

vp−1

)
dx.

(4.3)

Using ∇
(
up−vp
up−1

)
= ∇u − p vp−1

up−1 ∇v + (p − 1) vpup ∇u, we
obtain∫

�

|∇u|p−2∇u∇
(
up−vp

up−1

)
dx

=
∫

�

|∇lnu|pup − p
∫

�

vp|∇lnu|p−2〈∇lnu,∇lnv〉

+ (p − 1)
∫

�

|∇lnu|pvp

(4.4)

and∫
�

|∇v|p−2∇v∇
(
vp−up

vp−1

)
dx

=
∫

�

|∇lnv|pvp−p
∫

�

up|∇lnv|p−2〈∇lnv,∇lnu〉

+ (p − 1)
∫

�

|∇lnv|pup.

(4.5)

By (4.3), (4.4), and (4.5), we obtain

0=
∫

�

up
(|∇lnu|p−|∇lnv|p−p|∇lnv|p−2〈∇lnv,∇lnu−∇lnv〉)

+
∫

�

vp
(|∇lnv|p − |∇lnu|p − p|∇lnu|p−2

× 〈∇lnu,∇lnv − ∇lnu〉) .
(4.6)

When p ≥ 2 by reference [1], we have

|∇lnu|p − |∇lnv|p − p|∇lnv|p−2〈∇lnv,∇lnu − ∇lnv〉
≥ C(p)|∇lnv − ∇lnu|p,

|∇lnv|p − |∇lnu|p − p|∇lnu|p−2〈∇lnu,∇lnv − ∇lnu〉
≥ C(p)|∇lnu − ∇lnv|p.

Therefore, (4.6) implies that

0 ≥
∫

�

C(p)|∇lnu − ∇lnv|p(up + vp).

Hence,

0 = |∇lnu − ∇lnv|.
This also implies that u = kv, as we wanted to prove.

When p < 2, we have

|∇lnu|p − |∇lnv|p − p|∇lnv|p−2〈∇lnv,∇lnu − ∇lnv〉

≥ C(p)
|∇lnv − ∇lnu|p

(|∇lnu| + |∇lnv|)2−p ,

|∇lnv|p − |∇lnu|p − p|∇lnu|p−2〈∇lnu,∇lnv − ∇lnu〉

≥ C(p)
|∇lnu − ∇lnv|p

(|∇lnu| + |∇lnv|)2−p .

Arguing as above, we also conclude u = kv.

Theorem 4.3. Let u be an eigenfunction corresponding
to λ �= λ1, then u changes sign on �, that is, the sets {x ∈ � :
u(x) > 0} and {x ∈ � : u(x) < 0} have positive measure.

Proof. Assume that u does not change sign in�, then we
can assume that u > 0 in � due to the Harnack inequality.
Let u1 be an eigenfunction with λ1; making similar calcu-
lation as the ones performed in the proof of lemma 4.2, we
arrive at

(λ1 − λ)

(∫
�

(
up1 − up

)
dx +

∫
�

(
up1 − up

)
ds

)

= (λ1 − λ)

∫
�∪�

(
up1 − up

)
dx

≥ C
∫

�

|∇lnu1 − ∇lnu|p (
up1 + up

)
dx.

Hence, taking ku instead of u, for any k > 0, we have∫
�∪�

(
up1 − kpup

)
dx ≤ 0,

which is a contradiction if kp <
∫
�∪�

up1dx/
∫
�∪�

updx.
Therefore, u changes sign in �.
Suppose that u does changes sign on �, then we can

assume u ≤ 0 on �. Using u+ as a test function in (2.1),
we conclude that∫

�

|∇u|p−2∇u∇u+dx = 0.

Since u changes sign in �, the left hand side is strictly
positive. This is a contradiction. Hence, u changes sign
on �.

Isolation of the first eigenvalue
Given λ, an eigenvalue of (1.1) and u, an eigenfunction
associated with λ, we define
Z(u) = {x ∈ � : u(x) = 0},
N(u) = the number of components of �\Z(u),
N (λ) = sup {N (u) : u is an eigenfunction associated
with λ}.
We shall show N(λ) is finite.
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Theorem 4.4. Let (u, λ) be a (weak) eigenpair of (1.1),
λ �= λ1, there exists a constant C such that |�+| ≥ Cλ−β

and |�−| ≥ Cλ−β , where�+ = �∩{u > 0},�− = �∩{u <

0},β = (N − 1)/(p − 1) if 1 < p < N and β = 2 if p ≥ N.

Proof. If we let u− ∈ W 1,p(�) be a test function in (2.1),
we obtain∫

�

|∇u−|pdx = λ

(∫
�

|u−|pdx +
∫

�∩{u<0}
|u−|pds

)
,

(4.7)

that is,

‖u−‖p = (λ + 1)‖u−‖pLp(�) + λ

∫
�∩{u<0}

|u−|pds.

When 1 < p < N , we choose α = (N − 1)/(N − p)
and β = (N − 1)/(p − 1), by the Hölder inequality and
the Sobolev embedding functions X ↪→ Lαp(�) and X ↪→
Lp(�), there exists constants C1,C2 > 0, such that

‖u−‖p ≤ (λ + 1)C1‖u−‖p + λC2‖u−‖p|�−|1/β ,
that is, |�−| ≥ Cλ−β , where C =

[
1−(λ+1)C1

C2

]β

.
When p ≥ N , we choose α = β = 2 and by the embed-

ding functions X ↪→ L2p(�), a similar argument works for
u+ as above.

Theorem 4.5. The principal eigenvalue λ1 of (1.1) is iso-
lated. That is, there exists a > λ1 such that λ1 is the unique
eigenvalue in [ 0, a].

Proof. We can prove this theorem as Theorem 5.16 of
[3] by assuming

�−
n = {x ∈ � : un(x) < 0},�+

n = {x ∈ � : un(x) > 0}.

Existence of the second eigenvalue
Proposition 5.1. For any eigenvalue λ of (2.1), we have

λN(λ) ≤ λ,

where N(λ) is themaximal number of nodal domains asso-
ciated with λ (see Theorem 4.4), and λN(λ) is the N(λ)th
eigenvalue taken from the L-S sequence of Theorem 2.3.

Proof. Let r = N(λ), then there is an eigenfunction u �=
0 associated with λ such that r = N(u). Let ω1,ω2, · · · ,ωr
be the r-components of �\Z(u). We define

vi(x) =
{ u(x)

[
∫
�∩ωi

|u|pdx+∫
�∩ωi

|u|pds]1/p if x ∈ ωi,

0 if x ∈ �\ωi.

Then by the Theorem C.3 in [3], we have vi ∈ X for
i = 1, 2, · · · , r.
Let Xr denote the subspace of X which is spanned by

{v1, v2, · · · , vr}. For each v ∈ Xr , v = ∑r
i=1 αivi, we obtain

F(v) =
∫

�

|v|pdx +
∫

�

|v|pds =
r∑

i=1
|αi|pF(vi) =

r∑
i=1

|αi|p.

Thus, the map v �→ F(v)1/p is a norm on Xr . Hence, the
compact set Sr is defined by

Sr =
{
v ∈ Xr : F(v) = 1

λ + 1

}
,

which can be identified with the unit sphere of Rn, and
which is r. By choosing v = vi as a test function, we obtain∫

�

|∇u|p−2∇u∇vidx=λ

(∫
�

|u|p−2uvidx+
∫

�

|u|p−2uvids
)
.

Hence,∫
�∩ωi

|∇vi|pdx = λ

(∫
�∩ωi

|vi|pdx +
∫

�∩ωi
|vi|pds

)
,

or

G(vi) = (λ + 1)F(vi), i = 1, 2, · · · , r.
Thus, for v ∈ Sr , we have

G(v) = (λ + 1)
r∑

i=1
|αi|pF(vi) = (λ + 1)

r∑
i=1

|αi|p

= (λ + 1)F(v) = 1.

It implies Sr ⊂ SG. Hence
1

1 + λr
= μr = sup

H∈Ar

inf
v∈H F(v) ≥ inf F(v) = 1

1 + λ
.

Therefore λr ≤ λ. This completes the proof.

Proposition 5.2. For any of the problems, λ2 = inf{λ :
λ is an eigenvalue and λ > λ1}.

Proof. The proof is similar to Theorem 5.19 in [3], we
omit it here.

Conclusions
There are four important conclusions that can really be
drawn from this study: (1) there exists a nondecreasing
sequence of nonnegative {λn} of (2.1); (2) there is bound-
edness of eigenfunctions; (3) the first eigenvalue is simple
and isolated; and (4) there is an existence of a second
eigenvalue.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors (GL, HL, and BC) contributed equally and significantly in writing this
paper. All authors read and approved the final manuscript.



Li et al. Mathematical Sciences 2013, 7:8 Page 7 of 7
http://www.iaumath.com/content/7/1/8

Acknowledgements
This work is partly supported by the Foundation of Education Commission of
Yunnan Province (2012Y410).

Author details
1Department of Mathematics and Information Science, Qujing Normal
University, Qujing 655011, People’s Republic of China. 2Department of
Mathematics, Yunnan Normal University, Kunming 650092, People’s Republic
of China.

Received: 29 August 2012 Accepted: 27 December 2012
Published: 11 February 2013

References
1. Garcı́a Azorero, JP, Peral Alonso, I: Existence and nonuniqueness for the

p-Laplacian: nonlinear eigenvalues. Commun. Partial Differ. Equations. 12,
1389–1430 (1987)

2. Fan, X: Remarks on eigenvalue problems involving the p(x)-Laplacian.
J. Math. Anal. Appl. 352, 85–98 (2009)
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