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Abstract

For a group G, and a subset S of G such that 1G �∈ S, let X = Cay(G, S) be the corresponding Cayley graph. Then X is
said to be normal edge transitive if NAut(X)(G) is transitive on edges. In this paper, we determine all connected directed
Cayley graphs of finite abelian groups with valency at most 3 which are normal edge transitive but not normal.
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Introduction
Throughout this paper, graphs are finite, simple and
directed. For a graph X, let V (X), E(X) and Aut(X) denote
its vertex set, edge set and automorphism group, respec-
tively. Let G be a finite group and S a subset of G not con-
taining the identity 1G. The Cayley graph X = Cay(G, S)
of G with respect to S is a graph defined by V (X) = G,
E(X) = {(g, sg)|g ∈ G, s ∈ S}. In particular, if S−1 = S,
such a graph can be viewed as an undirected graph by
coalescing each pair, (g, sg) and (sg, g), of directed edges
into a single undirected edge {g, sg}. A Cayley graph X =
Cay(G, S) is called normal for G if the right regular repre-
sentation of G is a normal subgroup of the automorphism
group of X (see [1]). A graph X is called arc transitive or
symmetric if Aut(X) acts transitively on the arc set of X.
Let X and Y be two graphs. The direct product X × Y is

defined as the graph with vertex set V (X × Y ) = V (X) ×
V (Y ) such that, for any two vertices, u = (x1, y1) and v =
(u2, v2) in V (X × Y ), (u, v) is an edge in X × Y whenever
x1 = x2 and (y1, y2) ∈ E(Y ) or y1 = y2 and (x1, x2) ∈ E(X).
The graphs are called relatively prime if they have no non-
trivial common direct factor. The lexicographic product
X[Y ] is defined as the graph with vertex set V (X × Y ) =
V (X) × V (Y ) such that, for any two vertices, u = (x1, x2)
and v = (v1, v2) in V (X[Y ] ), (u, v) in an edge in X[Y ]
whenever (x1, x2) ∈ E(X) or x1 = x2 and (y1, y2) ∈ E(Y ).
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The concept of normality of the Cayley graph is known
to be of fundamental importance for the study of arc tran-
sitive graphs. So, for a given finite group G, a natural
problem is to determine all the normal or non-normal
Cayley graph of G. Some meaningful results in this direc-
tion, especially for the undirected Cayley graphs, have
been obtained. Baik et al. [2] determined all non-normal
Cayley graphs of abelian groups with valency at most 4
and later [3] dealt with valency 5. For directed Cayley
graphs, Xu et al., [4] determined all non-normal Cayley
graphs of abelian groups with valency at most 3.
An approach to analysing the family of Cayley graphs

for a finite group G is given, which identifies normal edge
transitive Cayley graphs as a subfamily of central impor-
tance. These are the Cayley graphs for G for which a sub-
group of automorphisms exists, which both normalises G
and acts transitively on edges. It is shown that, for a non-
trivial group G, each normal edge transitive Cayley graph
for G has at least one homomorphic image which is a nor-
mal edge transitive Cayley graph for a characteristically
simple quotient group of G. For example, Alaeiyan et al.
[5] determined all normal edge transitive undirected con-
nected Cayley graphs of abelian groups with valancy at
most 5 which are not normal. Our main result is as fol-
lows, the proof of which will be given in section ‘The proof
of 1.1’.

Theorem 1.1. Let X = Cay(G, S) be a connected
directed Cayley graph of an abelian group G with respect
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to S, and the size of S is at most 3. Then X is normal edge
transitive if one of the following cases happens:

(1) G = Z2n = 〈a〉(n > 2, n = 2k), s = {a, an+1},
X = Cn[ 2K1]

(2) G = Zn × Z2 = 〈a〉 × 〈u〉(n > 2, n = 2k),
S = {a, au},X = Cn[ 2K1]

The following corollaries are immediate consequences
of the theorem.

Corollary 1.2. All non-normal connected Cayley
graphs with valency 3 of a finite abelian group are not
normal edge transitive.

Corollary 1.3. A non-normal connected Cayley graph
with valency 2 of a finite abelian group is normal edge
transitive if and only if o(G) = 4k.

Preliminary and result
For a graph X, we denote the automorphism group of X by
Aut(X). The following propositions are basic.

Proposition 2.1. [6] Let X = Cay(G, S) be a Cayley
graph of group G relative on S.

(1) Aut(X) contains the right regular permutation of G,
so X is vertex transitive.

(2) X is connected if and only if G =< S >.
(3) X is undirected if and only if S−1 = S.

Proposition 2.2. [7] Let � = Cay(G, S) be a Cayley
graph for a finite group G with S �= φ. Then � is normal
edge transitive if and only if Aut(G, S) is transitive on S,
and if � is undirected, then � is normal edge transitive as
an undirected graph if and only if Aut(G, S) is either tran-
sitive on S or has two orbits in S which are inverses of each
other.

Proposition 2.3. [4] Let X = Cay(G, S) be a connected
directed Cayley graph of an abelian group G with respect
to S, and the valency of S at most 3. Then X is normal
except when one of the following cases happens:

(1) G = Z2n = 〈a〉(n > 2), S = {a, an+1},X = Cn[ 2K1]
(2) G = Zn × Z2 = 〈a〉 × 〈u〉(n > 2), S = {a, au},

X = Cn[ 2K1]
(3) G = Z4 = 〈a〉, S = G \ {1},X = K4
(4) G = Z6 = 〈a〉, S = {a, a3, a5},X = K3,3
(5) G = Z4 × Z2 = 〈a〉 × 〈b〉, S = {a, a−1, b},X = Q3
(6) G = Z2n × Zm = 〈a〉 × 〈c〉(n > 2,m > 1),

S = {a, an+1, c},X = Cn[ 2K1]×Cm
(7) G = Zn × Z2 × Zm = 〈a〉 × 〈u〉 × 〈c〉(n > 2,

m > 1), S = {a, au, c},X = Cn[ 2K1 × Cm]
(8) G = Z2n = 〈a〉, (n > 2), S = {a, an+1, an}

(9) G = Zn × Z2 = 〈a〉 × 〈u〉(n > 2), S = {a, au,u}
(10) G = Z2k × Z2 = 〈a〉 × 〈u〉(k > 2), S = {a, au, ak}
(11) G = Z2k × Z2 = 〈a〉 × 〈u〉(k > 2), S = {a, au, aku}
(12) G = Z4n = 〈a〉(n = 4k + 1, k > 0),

S = {a, a2n+1, an+1}
(13) G = Z4n × Z2 = 〈x〉 × 〈y〉(n = 2k + 1, k > 0),

S = {x, x2n+1, xn+1y}
(14) G = Zn × Z4 = 〈a〉 × 〈u〉(n = 4k, k > 0),

S = {a, av2, av}
(15) G = Zk × Zt = 〈x〉 × 〈y〉,

S = {xk/nhy, xk/nhyu, xk/mhy−1},u = (xk/nhy)nh/2
(16) G = Zk × Zt × Z2 = 〈x〉 × 〈y〉 × 〈u〉,

S = {xk/nhy, xk/nhyu, xk/mhy−1}

In both (15) and (16), k = mnh/(m, n) and t = (m, n). In
(15),m is a positive integer; h > 1, 2 is not a divided h; and
2|n, n > 2 when n/2 is odd, and n > 4 otherwise. In (16),
m is a positive integer, h > 1, and n > 2.

The proof of 1.1
Let G be a finite abelian group, X = Cay(G, S) a con-
nected directed Cayley graph of G with respect to S with
valency at most 3. In this section, ‘The proof of 1.1’
will be completed by a series of lemmas. We will apply
Proposition 2.2.

Lemma 3.1. The graphs X in cases (1) (for n odd), (2)
(for n odd ), (3), (4), (5), (6) (2n �= m), (7) (n �= m and
n = m = 2k + 1), (8), (9), (11), (10), (12) and (13) in
Proposition 2.3 are not normal edge transitive.

Proof. In case (1) (for n odd), (n + 1, 2n) = 2r and a is
a generator for G, thus there is no automorphism which
takes a to an+1 which means that Aut(G) cannot work
transitively on S. In case (12), (n + 1, n) �= 1, similarly it is
not normal edge transitive.
In case (2) (for n odd), O(a) �= O(au), so there is no

automorphism which takes a to au. In case (3), O(a2) = 2
and O(a) = 4. In case (4), O(a5) = 6 and O(a3) = 2.
Thus, there is no automorphism which takes a to a2. In
case (5), O(a) = 4 and O(b) = 2. In case (6) (for n �=
2m), O(a) �= O(c). In case (7) (for m �= n), O(a) �= O(c),
and (for m = n = 2k + 1), O(a) �= O(au). In case (8),
O(a) �= O(an). In case (9), O(a) �= O(u). In case (10),
O(a) �= O(ak). In case (11), O(a) �= O(aku). In case (13),
O(xn+1y) �= O(x).

Lemma 3.2. The graphs X in cases (1) (for n even)
and (2) (for n even) in Proposition 2.3 are normal edge
transitive.

Proof. In case (1) (for n even), (n, n+1) = 1, and since a
is a generator of G, there is an automorphism which takes
a to an+1. It means that Aut(G, S) acts transitively on S.
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In case (2) (for n even and r ∈ Z), define φ by φ(a2r) =
a2r , φ(a2r+1) = a2r+1u, φ(a2ru) = a2ru and φ(a2r+1u) =
a2r+1. Obviously, φ ∈ Aut(G, S), and so Aut(G, S) acts
transitive on S and G is normal edge transitive.

Lemma 3.3. The graphs X in cases (6) (2n = m), (7)
(m = n = 2k) and (14) in Proposition 2.3 are not normal
edge transitive.

Proof. For case (6) (2n = m), let φ ∈ Aut(G, S) and
φ(a) = c, then φ(an+1) = cn+1 but it has to take an+1 to a
or an+1.

Similarly, for cases (7) (m = n = 2k) and (14), there are
no automorphism to take a to c and av2 to av, respectively.

Lemma 3.4. The graphs X in cases (15) and (16) in
Proposition 2.3 are normal edge transitive.

Proof. In case (15), if (m, n) = 1 then S =
{xmy, xmy(xmy)(nh)/2, xny−1}, clearly O(xmy) �= O(xmy−1),
and so it is not normal edge transitive.

Now let (m, n) = l.We have n = lr andm = ls, so xmy =
xsy and xny−1 = xry−1. Clearly, O(xsy) �= O(xry−1).
Case (16) is similar to (15).
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