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Abstract

In this paper, the concept of ∂*-quasiconvexity is introduced by using convexifactors. Mond-Weir-type and
Schaible-type duals are associated with a multiobjective fractional programming problem, and various duality
results are established under the assumptions of ∂*-pseudoconvexity and ∂*-quasiconvexity.
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Introduction
Duality plays a very important role in optimization
problems. Many authors have made contributions in the
development of duality theory for multiple objective pro-
gramming problems. There has been tremendous devel-
opment in area of multiobjective optimization problems
during the past years. For the most recent developments
in this area, one can refer to the book by Ansari and Yao
[1]. In this book, several aspects of multiobjective
optimization starting from the very beginning to the
most recent ones have been discussed in the form of
various research papers in this field. An important class
of such problems, namely, multiple objective fractional
programming problems, is of great interest in many
areas such as transportation, production, information
theory, and numerical analysis. Some of the papers by
Schaible [2-4] review the early work done in fractional
programming. For some recent work on duality in
fractional programming, one can see the study of Lyall
et al. [5], Liang [6], etc. Duality in generalized fractional
programming has been studied by Barros et al. [7], Liu
[8], etc. Weir [9] studied a multiobjective fractional
programming problem with the same denominators.
Since then, a great deal of research was started in this
area under the assumptions of convexity and generalized
convexity by many researchers such as Singh [10], Egudo
[11], Singh and Hanson [12], Weir [9,13], Suneja and
Gupta [14], Suneja and Lalitha [15], etc. Duality for
multiobjective fractional programming problem under
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various assumptions has also been studied by authors
like Liu [16], Kim et al. [17], Kim [18], Nobakhtian [19],
Mishra and Upadhyay [20], etc.
The concept of convexifactor was first introduced by

Demyanov [21] as a generalization of the notion of
upper convex and lower concave approximations. In
[21], convexifactor was defined as convex and compact
set and was termed as convexificator. However, Jeyakumar
and Luc [22] in their further study suggested that one can
use a closed, nonconvex set instead of a compact and
convex one to define a convexificator. Dutta and Chandra
[23] called them as convexifactors. They have been further
studied by Dutta and Chandra [24], Li and Zhang [25],
Gadhi [26], etc. Dutta and Chandra [24] introduced
∂*-pseudoconvex functions by using this concept of
convexifactor. The importance of convexifactors lies in
the fact that they are useful even when they are
unbounded or nonconvex, and the use of a nonconvex set
to define convexifactors has an advantage that in many
situations one may just have a convexifactor consisting of
finite number of points which is more amenable to various
applications. Further, for locally Lipschitz function, one can
have convexifactors smaller than the Clarke subdifferential,
Michel-Penot subdifferential, etc., so optimality conditions
and duality results obtained in terms of convexifactors
are sharper. In multiobjective programming problems,
generalized convexity plays an important role in deriving
duality results. Gadhi [26] has proved necessary and
sufficient optimality conditions for a multiobjective frac-
tional programming problem in terms of convexifactors. In
this paper, we introduce the notion of ∂*-quasiconvex func-
tions. We associate Mond-Weir-type and Schaible-type
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duals to the multiobjective fractional programming
problem and derive duality results under the assumptions
of ∂*-pseudoconvexity and ∂*-quasiconvexity. Our results
in terms of convexifactors recast the well-known results in
the multiobjective fractional programming problem and
hence present more general results.
The paper is organized as follows: In the ‘Preliminaries’

section, we introduce the concept of ∂*-quasiconvex
functions in terms of convexifactors. Kuhn-Tucker-type
optimality conditions for multiobjective fractional
programming problem have been given in the ‘Optimality
conditions’ section. Finally, in the ‘Duality’ section, we
prove duality results by associating Mond-Weir-type and
Schaible-type duals to the problem.

Preliminaries
Throughout the paper, we are concerned with finite
dimensional spaces.
Let f: Rn → R [ {+ ∞} be an extended real valued

function.

fð Þ�d x; vð Þ ¼ Lim inf t↓0
f xþ tvð Þ � f xð Þ

t
;

fð Þþd x; vð Þ ¼ Lim supt↓0
f xþ tvð Þ � f xð Þ

t

denote, respectively, the lower and upper Dini directional
derivatives of f at x in direction v.
We begin with the definitions of convexifactors given

by Dutta and Chandra [23].
Definition 2.1. The function f: Rn → R [ {+ ∞}is said

to have an upper convexifactor ∂ uf (x) at x if ∂ uf (x) ⊂ Rn

is closed, and for each v ∈ Rn,

fð Þ�d x; vð Þ≤ supx�∈∂uf xð Þ x
�; vh i:

Definition 2.2. The function f: Rn → R [ {+ ∞} is said
to have a lower convexifactor ∂l f (x) at x if ∂l f (x) ⊂ Rn is
closed, and for each v ∈ Rn,

fð Þþd x; vð Þ≥ infx�∈∂l f xð Þ x
�; vh i:

Definition 2.3. The function f: Rn → R [ {+ ∞} is said
to have a convexifactor ∂*f (x) at x if it is both an upper
and lower convexifactor of f at x.
Definition 2.4. The function f: Rn → R [ {+ ∞} is said

to have an upper regular convexifactor ∂ uf (x) at x if ∂ uf (x)
is an upper convexifactor of f at x, and for each v ∈ Rn,

fð Þþd x; vð Þ ¼ supx�∈∂uf xð Þ x
�; vh i:

Definition 2.5. The function f: Rn → R [ {+ ∞}is said
to have a lower regular convexifactor ∂l f (x) at x if ∂l f (x)
is lower convexifactor of f at x, and for each v ∈ Rn,

fð Þ�d x; vð Þ ¼ infx�∈∂l f xð Þ x
�; vh i:
Convexifactors are not necessarily convex or compact.
These relaxations allow applications to a large class of
nonsmooth functions.
The important question arises regarding the existence

of convexifactors or regular convexifactors at a given
point for a general real valued function. In this regard,
we present the following theorem from Dutta and
Chandra [24].
Theorem 2.6. Let f: Rn → R [ {+ ∞} and let x ∈ Rn be

a given point where f(x) is finite. Moreover, assume that
the lower Dini directional derivative (f )d

−(x, v) is bounded
above. Then, there exists a compact upper convexifactor
of f at x. If the upper Dini directional derivative (f )d

+(x, v)
is bounded below, then there exists a compact lower
convexifactor of f at x.
Now, we consider the following multiobjective fractional

programming problem:

Pð Þminimize ϕ xð Þ ¼ f1 xð Þ
g1 xð Þ ; . . . ;

fp xð Þ
gp xð Þ

� �

subject to

hj xð Þ≤0; j ¼ 1; 2; . . . ;m

Let E = {x ∈ Rn: hj(x) ≤ 0, j = 1, 2,. . ., m}denote the
feasible set for problem (P).
Here, fi, gi, i = 1, 2,. . ., p and hj, j = 1, 2,. . ., m are

continuous real valued functions defined on Rn such
that fi(x) ≥ 0 and gi(x) > 0, i = 1, 2,. . ., p for all x ∈ E, and
minimization means finding weak efficient solutions in
the following sense:
Definition 2.7. x− ∈ E is a weak efficient solution of (P)

if there does not exist any feasible solution x ∈ E such
that

fi xð Þ
gi xð Þ <

fi �xð Þ
gi �xð Þ ; i ¼ 1; 2; . . . ; p:

Definition 2.8. x− ∈ E is a local weak efficient solution
of (P) if there exists a neighborhood U of x− such that for
any feasible solution x ∈ U \ E, the following does not
hold:

fi xð Þ
gi xð Þ <

fi �xð Þ
gi �xð Þ ; i ¼ 1; 2; . . . ; p:

We give below the definition of ∂*-pseudoconvex func-
tion given by Dutta and Chandra [24].
Definition 2.9. A function f: Rn → R is said to be

∂*-pseudoconvex at x− ∈ Rn if for x ∈ Rn,

f xð Þ < f �xð Þ ⇒ ξ; x� �xh i < 0; for all ξ∈∂�f �xð Þ;
where ∂*f(x−) is a convexifactor of f at x−.
We now introduce ∂*-quasiconvex function.
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Definition 2.10. A function f: Rn → R is said to be
∂*-quasiconvex at x− ∈ Rn if for x ∈ Rn,

f xð Þ≤f �xð Þ ⇒ ξ; x� �xh i≤0; for all ξ∈∂�f �xð Þ:
Remark 2.11. (i) (Dutta and Chandra [24]) If f is a

differentiable function and ∂*f(x−) is an upper regular
convexifactor, then ∂*f(x−) = {∇f(x−)}, and the above
definition reduces to the definition of quasiconvex
function.
(ii) If f is a locally Lipschitz function and ∂* f (x−) = ∂c f (x−)

where ∂c f (x−) is the Clarke generalized gradient, then the
above definition reduces to the definition of ∂c-quasiconvex
function defined by Bector et al. [27].
Remark 2.12. ∂*-quasiconvex function is not necessarily

∂*-pseudoconvex as can be seen from the following
example:
Example 2.13. Let f: R2→ R be a function defined by

f x; yð Þ ¼

ffiffiffiffiffiffiffi
x2y

p
; x≥0; y>0;

x; x≥0; y¼ 0;ffiffiffiffiffiffiffiffiffi�xy
p

; x≥0; y<0;
� ffiffiffiffiffiffiffiffiffiffiffi�xy2
p

; x<0; y≥0;ffiffiffiffiffiffiffiffiffiffiffi�x2y
p

; x<0; y<0;

8>>>>><
>>>>>:

∂�f 0; 0ð Þ ¼ x�; 0ð Þ : x�≥0f g:
f is ∂*-quasiconvex at (x−,y−) = (0,0), but f is not

∂*-pseudoconvex at (x−,y−) = (0,0) because for (x,y) =
(− 1, 2), ξ = (0, 0)

f x; yð Þ < f 0; 0ð Þ but ξ; x� yh i ¼ 0:

Remark 2.14. It may be noted that every ∂c-pseudoconvex
function is ∂c-quasiconvex when f is locally Lipschitz as can
be seen from Remark 3.1 in the study of Rezaie and
Zafarani [28] by taking η(x, y) = x − y. However, the next
example shows that the ∂*-pseudoconvex function is not
∂*-quasiconvex.
Example 2.15. Let f: R2 → R be a function defined by

f x; yð Þ ¼
� ffiffiffi

x
p � ffiffiffi

y
p

; x≥0; y≥0
0; x>0; y<0ffiffiffiffiffiffiffi�x
p þ ffiffiffi

y
p

; x<0; y≥0ffiffiffiffiffiffiffi�x
p þ ffiffiffiffiffiffi�y

p
; x≤0; y<0

8>><
>>:

∂�f 0; 0ð Þ ¼ x�; y�ð Þ : x� < 0; y� < 0f g:
f is ∂*-pseudoconvex at (x−, y−) = (0,0), but f is not

∂*-quasiconvex at (x−, y−) = (0,0) because for (x, y) = (1, −1),
ξ = (− 1, −2)

f x; yð Þ ¼ f 0; 0ð Þ but ξ; x� yh i > 0:

The following result is given by Li and Zhang [25].
Lemma 2.16. Let ∂*f(x) be a convexifactor of f at x.

Then, ∀λ ∈ R, λ ∂*f(x) is a convexifactor of λf at x.
We now give the following result given by Jeyakumar
and Luc [22].
Remark 2.17. [22] Assume that the functions f, g:Rn → R

admit upper convexifactors ∂ uf(x) and ∂ ug(x) at x,
respectively, and that one of the convexifactors is
upper regular at x. Then, ∂ uf(x) + ∂ ug(x) is an upper
convexifactor of f + g at x.
Similarly, if one of the convexifactors is lower regular

at x. Then, ∂ lf(x) + ∂ lg(x) is a lower convexifactor of f + g
at x.

Optimality conditions
Gadhi [26] gave the following necessary optimality
conditions for (P).
Theorem 3.1. Let x−εE be a local weak efficient solution

of (P). Assume that fi, gi, i = 1, 2,. . ., p and hj, j = 1, 2,. . ., m
are continuous and admit bounded convexifactors ∂*fi(x−),
∂*gi(x−), i = 1, 2,. . ., p and ∂*hj(x−), j = 1, 2,. . ., m at x−,
respectively, and that x↦ ∂*fi(x), x↦ ∂*gi(x), i = 1, 2,. . .,
p and x↦ ∂*hj(x), j = 1, 2,. . ., m are upper semicontinuous
at x−. Then, there exist vectors α* = (α1

* , α2
* , . . ., αp

* ) ∈ R+
p and

μ* = (μ1
* , μ2

* , . . ., μm
* ) ∈ R+

m (not both zero) such that

0∈
Xp
i¼1

α�i ∂�fi �xð Þ � ϕi �xð Þ∂�gi �xð Þð Þ þ
Xm
j¼1

μ�j ∂
�hj �xð Þ ð1Þ

μ�j hj �xð Þ ¼ 0; j ¼ 1; 2; . . . ;m ð2Þ

μ�j ≥0; hj �xð Þ≤0; j ¼ 1; 2; . . . ;m ð3Þ

where

ϕi xð Þ ¼ fi xð Þ
gi xð Þ ; i ¼ 1; 2; . . . ; p:

We now deduce the Kuhn-Tucker-type necessary
optimality conditions for (P) under the assumption of the
Slater-type weak constraint qualification which is defined
as follows on the lines in the study of Mangasarian [29].
Definition 3.2. The function h is said to satisfy the

Slater-type weak constraint qualification at x− ∈ E if hJ is
∂*-pseudoconvex at x−, and there exists an xo ∈ Rn such
that hJ(x

o) < 0 where J = {j|hj (x
−) = 0}.

Remark 3.3. If h is a differentiable function at x− and
admits an upper regular convexifactor ∂*h(x−) at x−, then
the above Slater-type weak constraint qualification
reduces to Slater's weak constraint qualification given by
Mangasarian [29].
Theorem 3.4. Let x− ∈ E be a weak efficient solution of

(P). Suppose that the hypotheses of Theorem 3.1 hold. Then,
there exist vectors α* ∈ R+

p and μ* ∈ R+
m (not both zero) such

that (1), (2) and (3) hold. If the Slater-type weak constraint
qualification holds at x−, then α* ≠ 0.
Proof. Suppose on contrary α* = 0, then μ* ≠ 0.
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Now using (1), we get that there exists ζj ∈ ∂*hj (x−), j = 1,
2,. . ., m such that

Xm
j¼1

μ�j ζ j ¼ 0: ð4Þ

Since h satisfies the Slater-type weak constraint
qualification at x−, therefore hJ is ∂

*-pseudoconvex at x−,
and there exists an xo ∈ Rn such that

hj x
oð Þ < 0; j∈J ;

where

J ¼ j hj �xð Þ ¼ 0
�� �

:
�

⇒hj x
oð Þ < hj �xð Þ; j∈J :

Using ∂*- pseudoconvexity of hj, j ∈ J, we get

ζ j; x
o � �x

� 	
< 0; j∈J

⇒〈
X
j∈J

μ�j ζ j; x
o � �x〉 < 0 as μ�≠0:

Now, (2) gives μj
* = 0, for all j∉J and thus we have

〈
Xm
j¼1

μ�j ζ j; x
o � �x〉 < 0;

which is contradiction to (4).
Hence, α* ≠ 0.

Duality
Duality plays a crucial role in mathematical programming
as sometimes solving a dual is easier than solving a primal.
Wolfe [30] associated a dual problem with a primal non-
linear programming problem and proved various duality
theorems under the assumptions of convexity. Since certain
duality theorems may fail to hold for the Wolfe model if
the objective and/or the constraint functions are general-
ized convex, Mond and Weir [31] presented a new model
for studying duality which allowed the weakening of the
convexity requirements for the objective and the constraint
functions. In this section, we have introduced two types of
duals: Mond-Weir-type and Schaible-type duals in terms of
convexifactors which are more general than the duals
existing in the literature.
We associate the following Mond-Weir-type dual with

problem (P).

(D1) Maximize ϕ uð Þ ¼ f1 uð Þ
g1 uð Þ ;

f2 uð Þ
g2 uð Þ ; . . . ;

fp uð Þ
gp uð Þ

n o
subject to

0∈
Xp
i¼1

λi ∂�fi uð Þ � vi∂�gi uð Þð Þ þ
Xm
j¼1

γ j∂
�hj uð Þ

γ jhj uð Þ≥0; j ¼ 1; 2; . . . ;m

ð5Þ

where 0≠λ∈Rp
þ; γ∈Rm

þ; vi ¼ ϕi uð Þ ¼ fi uð Þ
gi uð Þ; i ¼ 1; 2; . . . ; p:

Here, maximizing means finding weak efficient solutions
in the following sense:
A feasible solution (u*, λ*, γ*, v*) of the dual (D1) is said

to be a weak efficient solution of (D1) if there does not
exist any feasible solution (u, λ, γ, v) of (D1) such that

fi uð Þ
gi uð Þ >

fi u�ð Þ
gi u�ð Þ ; i ¼ 1; 2; . . . ; p:

We shall now prove the weak duality theorem.
Theorem 4.1. (Weak Duality). Let x be feasible for (P)

and (u, λ, γ, v) be feasible for (D1). Suppose that ∂*fi(u),
i = 1, 2,. . ., p is an upper regular convexifactor of fi(.), i = 1,
2,. . ., p at u and ∂*gi(u), i = 1, 2,. . ., p is a lower regular
convexifactor of gi(.), i = 1, 2,. . ., p at u. If fi(.) − vigi(.), i = 1,
2,. . ., p is ∂*-pseudoconvex at u, γjhj(.), j = 1, 2,. . ., m is
∂*-quasiconvex at u, then

ϕ xð Þ≮ϕ uð Þ:
Proof. Since ∂*fi(u), i = 1, 2,. . ., p is an upper regular

convexifactor of fi(.), i = 1, 2,. . ., p at u and ∂*gi(u), i = 1,
2,. . ., p is a lower regular convexifactor of gi(.), i = 1,
2,. . ., p at u, using Remark 2.17 and Lemma 2.16, we
have that ∂*fi(u) − vi ∂

*gi(u), i = 1, 2,. . ., p is a convexifactor
of fi(.) − vigi(.), i = 1, 2,. . ., p at u.
On the contrary, suppose that ϕ(x) < ϕ(u).
Then,

fi xð Þ � vigi xð Þ < 0; i ¼ 1; 2; . . . ; p; ð6Þ

where vi ¼ ϕi uð Þ ¼ fi uð Þ
gi uð Þ ; i ¼ 1; 2; . . . ; p:

Since (u, λ, γ, v) is feasible for (D1), therefore, there
exist ξi ∈ ∂*fi(u) − vi ∂

*gi(u), i = 1, 2,. . ., p, ζj ∈ ∂*hj(u), j = 1,
2,. . ., m such that

Xp
i¼1

λiξ i þ
Xm
j¼1

γ jζ j ¼ 0: ð7Þ

Using (6), the feasibility of x for (P), and the feasibility
of (u, λ, γ, v) for (D1), we get

fi xð Þ � vigi xð Þ < 0 ¼ fi uð Þ � vigi uð Þ; i
¼ 1; 2; . . . ; p ð8Þ

and

γ jhj xð Þ≤0≤γ jhj uð Þ; j ¼ 1; 2; . . . ;m: ð9Þ
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Since fi(.) − vigi(.), i = 1, 2,. . ., p is ∂*-pseudoconvex at u,
we have from (8),
〈ξi, x − u〉 < 0 for all ξi ∈ ∂*fi(u) − vi ∂

*gi(u), i = 1, 2,. . ., p.
As 0 ≠ λ ∈ R+

p, we get

〈
Xp
i¼1

λiξ i; x� u〉 < 0 for all ξ i∈∂
�fi uð Þ � vi∂�gi uð Þ:

ð10Þ
Now, the ∂*-quasiconvexity of γjhj, j = 1, 2,. . ., m and

(9) gives us
〈ζ0j, x − u〉 ≤ 0 for all ζ0j∈ ∂*(γjhj)(u), j = 1, 2,. . ., m
which on using Lemma 2.16 implies that
〈γjζj, x − u〉 ≤ 0 for all ζj ∈ ∂*hj(u), j = 1, 2,. . ., m.
As γj ≥ 0, j = 1, 2,. . ., m, we have

〈
Xm
j¼1

γ jζ j; x� u〉 ≤0; for all ζ j∈∂
�hj uð Þ: ð11Þ

Adding (10) and (11), we get

〈
Xp
i¼1

λiξ i þ
Xm
j¼1

γ jζ j; x� u〉 < 0

which is a contradiction to (7).
In the next theorem, we shall prove the strong duality

result.
Theorem 4.2. (Strong Duality). Let x*be a weak efficient

solution of (P). Assume that the hypotheses of Theorem 3.4
hold. Then, there exists (λ*, γ*, v*) ∈ Rp × Rm × Rp such that
(x*, λ*, γ*, v*) is feasible for dual (D1). If for each feasible x
for (P) and (u, λ, γ, v) for (D1) hypotheses of Theorem 4.1
hold, then (x*, λ*, γ*, v*) is a weak efficient solution of (D1).
Proof. Since x*is a weak efficient solution of (P) and all

the assumptions of Theorem 3.4 are satisfied, therefore,
there exist vectors 0 ≠ λ* ∈ R+

p and γ* ∈ R+
m such that (1),

(2), and (3) hold.
That is,

0∈
Xp
i¼1

λ�i ∂�fi x�ð Þ � ϕi x
�ð Þ∂�gi x�ð Þð Þ þ

Xm
j¼1

γ�j ∂
�hj x�ð Þ

γ�j hj x
�ð Þ ¼ 0; j ¼ 1; 2; . . . ;m

γ�j ≥0; hj x
�ð Þ≤0; j ¼ 1; 2; . . . ;m;ϕi x

�ð Þ ¼ fi x�ð Þ
gi x�ð Þ ; i ¼ 1; 2; . . . ; p

which implies that (x*, λ*, γ*, v*) is feasible for dual

where v�i ¼
fi u�ð Þ
gi u�ð Þ; i ¼ 1; 2; . . . ; p: Let, if possible, (x*, λ*, γ*,

v*) be not a weak efficient solution of (D1). Then, there
exists (u, λ, γ, v) feasible for dual such that ϕ(u) >ϕ(x*).
However, this is a contradiction to Theorem 4.1 as x* is

feasible for (P) and (u, λ, γ, v) is feasible for (D1).
Hence, (x*, λ*, γ*, v*) is a weak efficient solution of (D1).
We now provide an example illustrating Theorem 4.1.
Example 4.3 Consider the problem

(P) Minimize
f1 xð Þ
g1 xð Þ ;

f2 xð Þ
g2 xð Þ

h i
subject to h1(x) ≤ 0, h2(x) ≤ 0,
where fi, gi, hj: R→ R, i = 1, 2, j = 1, 2 are defined by

f1 xð Þ ¼
(
1þ x

10
; x≥0

1þ x2; x<0
; f2 xð Þ ¼

(
2þ x2 þ 2x; x≥0
2þ x; x<0

g1 xð Þ ¼
(
�1þ 2xþ x2; x≥0
�1þ 3x; x<0

; g2 xð Þ ¼
(
2þ x2; x≥0
2þ x

2
; x<0

h1 xð Þ ¼ �x; x≥0
x2; x<0

; h2 xð Þ ¼ 2� x; x≥0
2þ x2; x<0





The set of feasible solutions of (P) is E = [2, ∞[, and its
dual is given by

(D1) Maximize
f1 uð Þ
g1 uð Þ ;

f2 uð Þ
g2 uð Þ

h i
subject to

0∈
X2
i¼1

λi ∂�fi uð Þ � vi∂�gi uð Þð Þ þ
X2
j¼1

γ j∂
�hj uð Þ

γ jhj uð Þ≥0; j ¼ 1; 2;

where 0 ≠ λ ∈ R+
2, γ ∈ R+

2, and vi ¼ fi uð Þ
gi uð Þ; i ¼ 1; 2: u; λ1; λ2;ð

γ1; γ2Þ ¼ 0; 14 ; 1; 2;
1
4

� �
is feasible for dual (D1).

∂�f1 0ð Þ ¼ 0;
1
10


 

; ∂�f2 0ð Þ ¼ 1; 2f g;

∂�g1 0ð Þ ¼ 2; 3f g; ∂�g2 0ð Þ ¼ 0;
1
2


 

;

∂�h1 0ð Þ ¼ �1; 0f g; ∂�h2 0ð Þ ¼ �2; 0f g

∂�f1 0ð Þ � v1∂�g1 0ð Þ ¼ 2; 3;
21
10

;
31
10


 

;

∂�f2 0ð Þ � v2∂�g2 0ð Þ ¼ 1;
1
2
; 2;

3
2


 

;

where

v1 ¼ f1 uð Þ
g1 uð Þ ¼ �1; v2 ¼ f2 uð Þ

g2 uð Þ ¼ 1

f1(.) − v1g1(.) and f2(.) − v2g2(.) are ∂*-pseudoconvex at
u = 0.
γ1h1(.) and γ2h2(.) are ∂*-quasiconvex at u = 0.
We can see that for feasible point x = 2 for (P) and
u; λ1; λ2; γ1; γ2ð Þ ¼ 0; 14 ; 1; 2;

1
4

� �
for D1ð Þ;

f1 xð Þ
g1 xð Þ ;

f2 xð Þ
g2 xð Þ

� �
¼ 6

35
;
5
3

� �
≮

f1 uð Þ
g1 uð Þ ;

f2 uð Þ
g2 uð Þ

� �
¼ �1; 1ð Þ:

Hence, Theorem 4.1 is illustrated.
Remark 4.4. There do exist functions which are both

∂*-pseudoconvex and ∂*-quasiconvex as can be seen
from the following example.



Suneja and Kohli Mathematical Sciences 2013, 7:6 Page 6 of 8
http://www.iaumath.com/content/7/1/6
Example 4.5. Let f: R2 → R be a function defined by

f x; yð Þ ¼

ffiffiffi
x

p þ y; x>0; y>0;ffiffiffi
x

p � y; x>0; y≤0;ffiffiffiffiffiffiffi�x
p þ y; x≤0; y>0;
� ffiffiffiffiffiffiffi�x
p þ y; x≤0; y≤0;

8>><
>>:

∂�f 0; 0ð Þ ¼ x�; y�ð Þ : x�≥1; y�≥1f g:
f is ∂*-pseudoconvex and ∂*-quasiconvex at (x−, y−) = (0,0).
We now associate the Schaible-type dual with (P)

which is given as follows:
(D2) Maximize v = (v1, v2,. . ., vp)
subject to

0∈
Xp
i¼1

λi ∂�fi uð Þ � vi∂�gi uð Þð Þ þ
Xm
j¼1

γ j∂
�hj uð Þ

Xp
i¼1

λi fi uð Þ � vigi uð Þð Þ≥0;
Xm
j¼1

γ jhj uð Þ≥0;

0≠λ∈Rp
þ; γ∈Rm

þ ; vi≥0; i ¼ 1; 2; . . . ; p:

ð12Þ

Remark 4.6. If we assume that fi, gi, i = 1, 2,. . ., p, hj, j = 1,
2,. . ., m are differentiable and admit upper regular convexi-
factors ∂*fi(u), ∂

*gi(u), i = 1, 2,. . ., p and ∂*hj(u), j = 1, 2,. . .,
m at u, respectively, then the Schaible-type dual reduces to
the following:
Maximize v = (v1, v2,. . ., vp)
subject to

Xp
i¼1

λi ∇fi uð Þ � vi∇gi uð Þð Þ þ
Xm
j¼1

γ j∇hj uð Þ ¼ 0

Xp
i¼1

λi fi uð Þ � vigi uð Þð Þ≥0;
Xm
j¼1

γ jhj uð Þ≥0;

0≠λ∈Rp
þ; γ∈R

m
þ; vi≥0; i ¼ 1; 2; . . . ; p;

which is similar to the dual given by Suneja and Gupta
[14].
We shall now prove the weak duality and strong

duality results.
Theorem 4.7. (Weak Duality). Let x be feasible for (P)

and (u, λ, γ, v) be feasible for (D2). Suppose that ∂*fi(u),
i = 1, 2, . . ., p is an upper regular convexifactor of fi (.), i =
1, 2,. . ., p at u and ∂*gi(u), i = 1, 2,. . ., p is a lower regular
convexifactor of gi (.), i = 1, 2,. . ., p at u. Also, assume that
for some i, and some j, ∂*fi (u) − vi∂

*gi (u), ∂
*hj (u) are

respectively upper regular convexifactors of fi (.) − vigi (.),
i = 1, 2,. . ., p and hj (.), j = 1, 2, ..., m at u, and for some i0
≠ i, j0 ≠ j, ∂�fi0 uð Þ � vi0∂

�gi0 uð Þ; ∂�hj0 uð Þ are respectively
lower regular convexifactors of fi0 :ð Þ � vi0gi0 :ð Þ; and hj0 :ð Þ;
at u. If
Xp
i¼1

λi fi :ð Þ � vigi :ð Þð Þ is ∂*-pseudoconvex at u

and;
Xm
j¼1

γ jhj :ð Þ is ∂*-quasiconvex at u, then

ϕ (x) ≮v.

Proof. Since ∂*fi(u), i = 1, 2,. . ., p is an upper regular
convexifactor of fi(.), i = 1, 2,. . ., p at u and ∂*gi(u), i = 1,
2,. . ., p is a lower regular convexifactor of gi(.), i = 1,
2,. . ., p at u, using Remark 2.17 and Lemma 2.16, we
have that ∂*fi(u) − vi∂

*gi(u), i = 1, 2,. . ., p is a convexifactor
of fi(.) − vigi(.), i = 1, 2,. . ., p at u. Also, since for some i, and
some j, ∂*fi(u) − vi∂

*gi(u), ∂
*hj(u) are respectively upper

regular convexifactors of fi(.) − vigi(.), i = 1, 2,. . ., p and hj(.),
j = 1, 2,.., m at u, and for some i0 ≠ i, j0 ≠ j,
∂�fi0 uð Þ � vi0∂

�gi0 uð Þ; ∂�hj0 uð Þ are respectively lower regu-
lar convexifactors of fi0 :ð Þ � vi0gi0 :ð Þ; and hj0 :ð Þ; at u
using Remark 2.17 and Lemma 2.16, we have thatXp
i¼1

λi ∂�fi uð Þ � vi∂�gi uð Þð Þ;
Xm
j¼1

γ j∂
�hj uð Þ are convexifactors

of
Xp
i¼1

λi fi :ð Þ � vigi :ð Þð Þ and
Xm
j¼1

γ jhj :ð Þat u, respectively.

On the contrary, suppose ϕ(x) < v.
Then,

fi xð Þ � vigi xð Þ < 0; i ¼ 1; 2; . . . ; p: ð13Þ
Since (u, λ, γ, v) is feasible for (D2), therefore, there exist

ξi ∈ (∂*fi(u) − vi∂
*gi(u)), i = 1, 2,. . ., p, ζj ∈ ∂*hj(u), j = 1, 2,. . .,

m such that

Xp
i¼1

λiξ i þ
Xm
j¼1

γ jζ j ¼ 0: ð14Þ

Using (13), 0 ≠ λ ∈ R+
p, γ ∈ R+

m, and the fact that x is
feasible for (P), we get thatXp

i¼1

λi fi xð Þ � vigi xð Þð Þ < 0

Xm
j¼1

γ jhj xð Þ≤0:
ð15Þ

Since (u, λ, γ, v) is feasible for (D2), using (15) we have

Xp
i¼1

λi fi xð Þ � vigi xð Þð Þ < 0≤
Xp
i¼1

λi fi uð Þ � vigi uð Þð Þ
Xm
j¼1

γ jhj xð Þ≤0≤
Xm
j¼1

γ jhj uð Þ:

Using ∂*-pseudoconvexity of
Xp
i¼1

λi fi :ð Þ � vigi :ð Þð Þ and

∂*-quasiconvexity of
Xm
j¼1

γ jhj :ð Þ, we have
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〈
Xp
i¼1

λiξ i; x� u〉 < 0 for ξ i∈∂
�fi uð Þ � vi∂�gi uð Þ; i ¼ 1; 2; . . . ; p

ð16Þ

and

〈
Xm
j¼1

γ jζ j; x� u〉≤0 for ζ j∈∂
�hj uð Þ; j

¼ 1; 2; . . . ;m: ð17Þ

Adding (16) and (17), we get

〈
Xp
i¼1

λiξ i þ
Xm
j¼1

γ jζ j; x� u〉 < 0

which is a contradiction to (14).
Theorem 4.8. (Strong Duality). Let x*be a weak efficient

solution of (P). Assume that the hypotheses of Theorem 3.4
hold. Then, there exists (λ*, γ*, v*) ∈ Rp × Rm × Rp such that
(x*, λ*, γ*, v*) is feasible for dual. If for each feasible x for (P)
and (u, λ, γ, v) for (D2) hypotheses of Theorem 4.7 hold, then
(x*, λ*, γ*, v*) is a weak efficient solution of (D2).
Proof. Since x* is a weak efficient solution of (P) and

all the assumptions of Theorem 3.4 are satisfied, therefore,
there exist vectors 0 ≠ λ* ∈R+

p, γ* ∈ R+
m, and vi

* ≥ 0,
i = 1, 2,. . ., p such that (1), (2), and (3) hold.
That is,

0∈
Xp
i¼1

λ�i ∂�fi x�ð Þ � v�i ∂
�gi x�ð Þ� �þXm

j¼1

γ�j ∂
�hj x�ð Þ

γ�j hj x
�ð Þ ¼ 0; j ¼ 1; 2; . . . ;m

γ�j ≥0; hj x
�ð Þ≤0; j ¼ 1; 2; . . . ;m

where

v�i ¼ ϕi x
�ð Þ; i ¼ 1; 2; . . . ; p ð18Þ

which implies that (x*, λ*, γ*, v*) is feasible for dual (D2).
Let, if possible, (x*, λ*, γ*, v*) be not a weak efficient solution
of (D2). Then, there exists (u, λ, γ, v) feasible for dual such
that v*<v.
On using (18), we have

ϕ x�ð Þ < v:

However, this is a contradiction to Theorem 4.7 as x*

is feasible for (P) and (u, λ, γ, v) is feasible for (D2).
Hence, x* is a weak efficient solution of (P).
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