
Toomanian and AsadiMathematical Sciences

ORIGINAL RESEARCH Open Access

Reductions for Kundu-Eckhaus equation via Lie
symmetry analysis
Megerdich Toomanian* and Naser Asadi

Abstract
In this paper, using Lie symmetry method, we find classical symmetry operators for Kundu-Eckhaus equation (KE).
Also, we obtain one-dimensional optimal system and reduction Lie invariants corresponding to infinitesimal
symmetries of the KE equation. Finally, differential invariants of the KE equation are presented.
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Introduction
Kundu [1] and Eckhaus [2,3] independently derived in
1984 to 1985 what can now be called the Kundu-Eckhaus
equation as a linearizable form of the nonlinear
Schrödinger equation. Levi and Scimiterna in [4] show
that the complex Burgers and the Kundu-Eckhaus
equations are related by a Miura transformation, and
they use this relation to discretize the Kundu-Eckhaus
equation. One of the most important discoveries of
Sophus Lie in differential equation is to show that it is
possible to transform non-linear conditions in a system to
linear conditions by infinitesimal invariants, correspond-
ing to the symmetry group generators of the system [5,6].
In this article, our aim is to obtain a set of symmetries of
KE equation:

iψt + ψxx + 2|ψ |2xψ + |ψ |4ψ = 0. (1)

Which, in that complex equation, we assume that

ψ(t, x) = u(t, x) + iv(t, x). (2)

By substituting (2) in the KE equation, we have

(ut + vti)i + uxx + vxxi + 2(2uux + 2vvx)(u + vi)

+ (u2 + v2)2(u + vi) = 0.
(3)

The real and imaginary parts of the equation are

ut + vxx + 2v(2uxu + 2vxv) + v(u2 + v2)2 = 0

−vt + uxx + 2u(2vxv + 2uxu) + u(v2 + u2)2 = 0.
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The classic Lie symmetries are obtained using the Lie
symmetry method. This requires the utilization of com-
puter softwares because working with continuous groups
involves computations that follow from the algorithmic
process. Having the symmetry group of a system of
equations has a lot of advantages, one of which is the clas-
sification of the solutions of the system. This classification
is to consider two solutions in one class if they can be
converted to each other, by an element of the symmetry
group. If we have an ordinary system, the symmetry group
will help us obtain the exact solution. If the equation is
order 1, it is possible to get the general solution, but it is
not the case for PDE, unless the system is convertible to a
linear system. Another application of the symmetry group
is the probable reduction of the number of independent
variables, and the ideal condition is converting to ODE.

Lie symmetry of KE equation
We used a general method for the determination of the
symmetries of a system of PDE based on [7] and [8]. In
general case, let us have a non-linear PDE system:

�ν(x,u(n)) = 0, ν = 1, . . . , l, (4)

that has l equations of order n, each of which involv-
ing p-independent and q-dependent variables, where x =
(x1, . . . , xp), u = (u1, . . . ,uq) and u(n) derivation of uwith
respect to x of order n. Now, let us suppose that we have
a one-parametric Lie group of infinitesimal transforma-
tions that acts on independent and dependent variables
(t, x,u, v) ∈ M = J0t,x,u,v ∼= R3 as follows:

(t̃, x̃, ũ, ṽ) = (t, x,u, v) + s(ξ1, ξ2,φ1,φ2)(t, x,u, v) + O(s2),
(5)
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where s is the group parameter and ξ1, ξ2, and φ1,φ2 are
the infinitesimals parts of transformations. To calculate
the Lie symmetry group for KE equation, let us suppose in
the general case

v = ξ1(t, x,u, v)
∂

∂x
+ ξ2 (t, x,u, v)

∂

∂t
+ φ1 (t, x,u, v)

∂

∂u

+ φ2 (t, x,u, v)
∂

∂v
,

(6)

is the infinitesimal transformation group of (3). Now, we
prolong the vector field v to order 2, using the following
formula:

Pr(2)v = v+φx ∂

∂ux
+φt ∂

∂ut
+φxx ∂

∂uxx
+φxt ∂

∂uxt
+φtt ∂

∂utt
(7)

with coefficients

φ J = DJQ +
2∑

i=1
ξ i uJ ,i, (8)

in which Q = φ − ∑2
i=1 ξ i uα

i and J = (j1, · · · , jk), 1 ≤
jk ≤ 2, 1 ≤ k ≤ 2, and the sum is all over Js of order
0 < #J ≤ n and uα

i := ∂uα/xi and uα
J ,i := ∂uα

J /xi. The
invariant conditions, [9], for the KE equation are
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pr(2)v(ut + vxx + 2v(2uxu + 2vxv) + v(u2+v2)2) = 0

Pr(2)v(−vt + uxx + 2u(2vxv + 2uxu) + u(v2+u2)2) = 0
ut + vxx + 2v(2uxu + 2vxv) + v(u2+v2)2) = 0
− vt + uxx + 2u(2vxv + 2uxu) + u(v2+u2)2) = 0

(9)

The solution of which yields the system of PDE as the
functions of ξ1, ξ2, and φ1,φ2. Here, KE equation is a
manifold in the jet space J2t,x;u,v ∼= R9, and Pr(2)v is the pro-
longation of v up to the order 2. As a result, we have the
PDE system:

ξ1x = 0, ξ2u = 0, ξ1v = ξ1u = 0, φ2
x = 0,

ξ2t = 0, φ2
u = 0, ξ2v = 0, ξ2x v = −2φ2,

φ2
t = 0, ξ1t v = −4φ2

φ2
v v = φ2, φ1v = φ2u.

(10)

By solving the above system, we will have the following
theorem:

Theorem 1. The Lie group of point symmetries of the KE
equation has a Lie algebra generator in the form of the
vector field v, with the following functional coefficients:

ξ1(t, x,u, v) = c1t + c2, ξ2(t, x,u, v) = c1x
2

+ c3,

φ1(t, x,u, v) = −1
4
c1u, φ2(t, x,u, v) = −1

4
c1v,

where ci, (i = 1, 2, 3) are arbitrary constants.

Theorem2. The infinitesimal generators from the Lie one-
parameter group of the symmetries of the KE equation are
as follows:

v1 = t
∂

∂t
+ x

2
∂

∂x
− 1

4
u

∂

∂u
− 1

4
v

∂

∂v
,

v2 = ∂

∂t
, v3 = ∂

∂x
.

These vector fields produce a Lie algebra space G with
the following commutator table (Table 1):

Group invariant solutions of KE equation
To obtain the group of transformations which are gener-
ated by infinitesimal generators vi for i = 1, 2, 3, we should
solve the first-order system involving first-order equations
in correspondence to each of the generators simultane-
ously. By solving this system, the one parameter group of
gk(s) : M → M generated by vi for i = 1, 2, 3 involved in
Theorem (2) is obtained in the following way:

g1 : (t, x,u, v) �−→ (tes, xe
s
2 ,ue−

s
4 , ve−

s
4 ),

g2 : (t, x,u, v) �−→ (t + s, x,u, v),

g3 : (t, x,u, v) �−→ (t, x + s,u, v).

(11)

Therefore, we have:

Theorem 3. If u = f (t, x), and v = g(t, x) is one of the
solutions of KE equation, then the following functions that
have been produced through acting gk(s) on u = f (t, x) and
v = g(t, x) will also be the solution of KE equation:

g1(s) · f (t, x) = f (te−s, xe−
s
2 )e−

s
4 ,

g2(s) · f (t, x) = f (t − s, x),
g3(s) · f (t, x) = f (t, x − s),

g1(s) · g(t, x) = g(te−s, xe−
s
2 )e−

s
4 ,

g2(s) · g(t, x) = g(t − s, x),
g3(s) · g(t, x) = g(t, x − s).

Optimal system of KE equation
Now, we want to obtain one-dimensional optimal system
of the KE equation using its symmetry group. The optimal
system is in fact a standardmethod for the classification of
one-dimensional sub-algebras in which each class involves
conjugate equivalent members [10]. Also, they involve the

Table 1 Commutator table

[,] v1 v2 v3

v1 0 −v2 − v3
2

v2 v2 0 0

v3
v3
2 0 0
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group adjoint representation which establishes an equiva-
lent relation among all conjugate sub-algebra elements. In
fact, the classification problem for one-dimensional sub-
algebra is the same as the problem of the classification of
the representation of its adjoint orbits. In this way, the
optimal system is constructed. The set of invariant solu-
tions corresponding to a one-dimensional sub-algebra is
a list of minimal solutions where all the other invariant
solutions can be obtained by transformations. To calculate
the adjoint representation, we consider the following Lie
series:

Ad(exp(svi)vj) = vj − s advjvj +
s2

2
ad2vjvj − · · · , (12)

for the vector fields vi, vj in which advjvj = [vi, vj] is the
Lie algebra communicator, s is the group parameter, i, j =
1, 2, 3 [7]. Now, we consider an optional member from G
of the form

v = a1v1 + a2v2 + a3v3, (13)

and for the simplicity, we write a = (a1, a2, a3) ∈ R3;
therefore, the adjoint action can be considered as a type
of linear transformation group of vectors, so we have the
following theorem:

Theorem 4. The one-dimensional optimal system of Lie
algebra G for the KE equation is

(i) v1, (ii) av2 + bv3. (14)

In it, a, b ∈ R is arbitrary constant.

Proof. We define Fs
i : G → G by v �→ Ad(exp(svi)v) as a

linear map, for i = 1, 2, 3. So, the matricesMs
i correspond-

ing to each of the Fs
i , i = 1, 2, 3, with respect to the basis

{v1, v2, v3} will be as follows:
Ms

1 = E11 + e−sE22 + e−
s
2E33,

Ms
2 = I3 + sE21,

Ms
3 = I3 + s

2
E31,

and Eijs are 3 × 3 elementary matrices for i, j = 1, 2, 3,
where (i; j) entry of Eij is 1, and those of others are zero.
Suppose v = a1v1+a2v2+a3v3, we have the combination:

Fs
3 ◦ Fs

2 ◦ Fs
1 : v �→[a1] v1+[e−ssa1 + e−sa2] v2

+ [
1
2
e−

s
2 sa1 + e−

s
2 a3] v3.

If a1 �= 0, then by substituting s = − a2
a1 and s = − 2a3

a1
using Fs

2 and Fs
3, we can vanish the coefficient of v2 and v3,

and by scaling of v, we can suppose a1 = 1. In this case, v
is reduced to form (i), and if a1 = 0, then v is reduced to
form (ii).

Similarity reduction of KE equation
The KE equation has been stated in the (t, x;u, v) coor-
dinate, but we are looking for a new coordinate that the
equation will reduce to ODE. For example, the first ele-
ment of the optimal system is v1. It has the determining
equation in the form:

2dx
x

= dt
t

= −4du
u

= −4dv
v

.

Solving this equation will result in two invariants y =
x√
t , f = ut1/4, g = vt1/4. Now, if we consider u(x, t) =

f (y)t−1/4, and v(x, t) = g(y)t−1/4 as a function of y = x√
t ,

we can state the derivatives of u and v with respect to x
and t in the form of f, g, and y, and the derivatives of f , g
with respect to y. Substituting it in the KE equation, we
get an ODE as follows:

−1/2y f ′−1/4 f +g′′+2g(2gg′+2 ff ′)+g( f 2 + g2)2 =0,

1/2yg′+1/4g+f ′′+2 f (2gg′+2 ff ′)+f ( f 2+g2)2 =0.

If we assume the φ(y) = f (y)+g(y)i in complex manner,
we have

i(1/2yφy + 1/4φ) + φyy + 2|φ|2yφ + |φ|4φ = 0. (15)

For the rest of the optimal system elements and symme-
try group, the reduced equations will be as the following
Table 2:

Characterization of differential invariants
Suppose thatG is a transformation group. It is well known
that a smooth real differential function I : Jn −→ R,
where Jn is the corresponding n-th jet space, is a differ-
ential invariant for G if and only if for all v ∈ G, its nth
prolongation annihilates I, i.e., v(n)(I) = 0. To obtain the
differential invariant of the KE equation, up to order 2, we
solve the following system:

∂I
∂t

= 0,
∂I
∂x

= 0, t
∂I
∂t

+ x
2

∂I
∂x

− u
4

∂I
∂u

− v
4

∂I
∂v

= 0,

(16)

Table 2 Reduced equations

Ci yi fi gi Similarity reduced equation

v1 x√
t

ut1/4 vt1/4 i(1/2yφy+1/4φ)+φyy+2|φ|2yφ+|φ|4φ=0

v2 x u v φyy+2|φ|2yφ+|φ|4φ=0

v3 t u v iφy+|φ|4φ=0

v2 + v3 x − t u v iφy+φyy+2|φ|2yφ+|φ|4φ=0
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Table 3 Characterization of differential invariants

Vector Ordinary First order Second order
field invariant

v1 x√
t
, ut1/4, vt1/4 ∗, utt5/4uxt3/4, ∗, ∗∗, uttt9/4, utxt7/4, uxxt5/4,

vtt5/4vxt3/4 vttt9/4, vtxt7/4, vxxt5/4

v2 x, u, v ∗, ux , ut , vx , vt ∗, ∗∗, uxx , uxt , utt , vxx , vxt , vtt
v3 t, u, v ∗, ux , ut , vx , vt ∗, ∗∗, uxx , uxt , utt , vxx , vxt , vtt
∗ and ∗∗ refer back to ordinary and first-order invariants, respectively.

where, I is a smooth function of (x, t,u, v), and
∂I1
∂t

= 0,
∂I1
∂x

= 0, t
∂I1
∂t

+ x
2

∂I1
∂x

− u
4

∂I1
∂u

− v
4

∂I1
∂v

− 5ut
4

∂I1
∂ut

− 3ux
4

∂I1
∂ux

− 5vt
4

∂I1
∂vt

− 3vx
4

∂I1
∂vx

=0,

(17)

where I1 is a smooth function of (x, t,u, v,ux,ut , vx, vt),
∂I2
∂t

= 0,
∂I2
∂x

= 0, t
∂I2
∂t

+ x
2

∂I2
∂x

− u
4

∂I2
∂u

− v
4

∂I2
∂v

− 5ut
4

∂I2
∂ut

− 3ux
4

∂I2
∂ux

− 5vt
4

∂I2
∂vt

− 3vx
4

∂I2
∂vx

− 9utt
4

∂I2
∂utt

− 7utx
4

∂I2
∂utx

− 5uxx
4

∂I2
∂uxx

− 9vtt
4

∂I2
∂vtt

− 7vtx
4

∂I2
∂vtx

− 5vxx
4

∂I2
∂vxx

= 0,

(18)

where I2 is a smooth function of (x, t,u, v, · · · ,uxx,uxt ,
utt , vxx, vxt , vtt). The solution of Equations (16) up to (18)
are listed in Table 3:

Conclusion
In this paper, by applying the criterion of invariance of the
equation under the infinitesimal prolonged infinitesimal
generators, we find the most general Lie point symme-
tries group of the Kundu-Eckhaus equation. Also, we have
constructed the optimal system of one-dimensional sub-
algebras of Kundu-Eckhaus equation. The latter, creates
the preliminary classification of group invariant solutions.
The Lie invariants and similarity reduced equations cor-
responding to infinitesimal symmetries are obtained.
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