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Abstract

There exist many sixth-order iterative methods for solving nonlinear scalar equations. The purpose of this work is to
bring them together. We develop a scheme for unifying sixth-order iterative methods. Convergence analysis shows
that the methods, and family of methods, formulated through the scheme are sixth-order convergent. Finally, some
computational results are reported to verify the developed theory.

Keywords: Iterative methods, Sixth order, Newton, Unification, Convergence, Numerical analysis, Infinite series,
Nonlinear

MSC: 65H05; 41A25; 65B10

Introduction
Many problems in science and engineering require solving
a nonlinear scalar equation f (x) = 0 [1-16]. As a result,
solving nonlinear equations is an important part of scien-
tific computing. There exist various iterative methods for
solving nonlinear scalar equations. We are interested in
sixth-order iterative methods, and their dynamics, to find
a simple zero, that is f (γ ) = 0 and f ′(γ ) �= 0, of a non-
linear equation f (x) = 0. There exist many sixth-order
iterative methods (see, e.g., [5-7,12,13,15]) for solving
nonlinear scalar equations. The paper develops a scheme
for constructing sixth-order iterative methods or family of
methods. The scheme unifies existing sixth-order iterative
methods. It is shown that various existing sixth-order iter-
ative methods can be generated by the scheme through a
proper choice of the independent parameters.
Let us first explore the existing sixth-order convergent

iterative methods and family of methods. Lately, Sharma
and Guha [13], through a modification of the well-known
Ostrowski’s method [11], developed the following sixth-
order convergent method (SG):⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yn = xn − f (xn)
f ′(xn)

,

zn = yn − f (xn)
f (xn) − 2f (yn)

f (yn)
f ′(xn)

,

xn+1 = zn − f (xn) + af (yn)
f (xn) + (a − 2)f (yn)

f (zn)
f ′(xn)

,

(1)
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where a ∈ R. From here onwards, the preceding method
is referred through the initials of the authors, i.e., SG. Neta
[7] proposed a family, consisting of three steps and one
parameter, of sixth-order convergent iterative methods
(NETA):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

yn = xn − f (xn)
f ′(xn)

,

zn = yn − f (xn) + α f (yn)
f (xn) + (α − 2)f (yn)

f (yn)
f ′(xn)

,

xn+1 = zn − f (xn) − f (yn)
f (xn) − 3f (yn)

f (zn)
f ′(xn)

.

(2)

From here onwards, the above method is referred to as
NETA. We observe that for α = 0, the second step of the
methods NETA and SG is the same, while for the choice
a = −1, the third step of the methods NETA and SG
is the same. In [6], Grau and Dı́az-Barrero developed yet
another sixth-order variant of Ostrowski’s method:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

yn = xn − f (xn)
f ′(xn)

,

zn = yn − f (xn)
f (xn) − 2f (yn)

f (yn)
f ′(xn)

,

xn+1 = zn − f (xn)
f (xn) − 2f (yn)

f (zn)
f ′(xn)

.

(3)

The term f (xn)/(f (xn) − 2f (yn)) is referred to as
Ostrowski’s correction factor [6]. From here onwards,
the above method is referred to as GD. Through a suit-
able modification of Ostrowski’s method, Chun and Ham
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[5] derived the following family of sixth-order iterative
methods:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

yn = xn − f (xn)
f ′(xn)

,

zn = yn − f (xn)
f (xn) − 2f (yn)

f (yn)
f ′(xn)

,

xn+1 = zn − H(un)
f (zn)
f ′(xn)

,

(4)

where un = f (yn)/f (xn) and H(t) represents a real val-
ued function satisfying H(0) = 1 and H′(0) = 2. If one
chooses H(t) = 1+β t

1+(β−2)t , one obtains the method SG,
while if one choosesH(t) = 1

1−2t , one obtains the method
GD. From here onwards, the above method is referred
to as CH. It may be noticed that the methods SG, CH,
and GD are formulated by modifying Ostrowski’s method;
as a result, the first two steps of these methods are the
same. Through a graceful modification of the well-known
Kung andTraubmethod [17], recently Chun andNeta [16]
proposed the following sixth-order iterative method:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn = xn − f (xn)
f ′(xn)

,

zn = yn − f (yn)
f ′(xn)

1[
1 − f (yn)

f (xn)

]2 ,
xn+1 = zn − f (zn)

f ′(xn)
1[

1 − f (yn)
f (xn) − f (zn)

f (xn)

]2 .
(5)

From here onwards, the above method is referred to as
CN.
In this work, we propose a scheme for forming sixth-

order convergent iterative methods. The methods formu-
lated through the scheme consist of three steps. During
each iteration, the developed methods require three func-
tional evaluations and one evaluation of the derivative
of the function. It is also shown that methods, such as
SG, NETA, GD, and CH, that require three functional
and one derivative evaluations can be formed through the
proposed scheme. In consequence, the proposed scheme
offers a unification of the sixth-order iterative methods,
which is the main purpose of this work. The rest of the
paper is organized as follows: The ‘Scheme for construct-
ing sixth-order iterative methods’ section presents the
scheme. In the ‘Unification of sixth-order iterative meth-
ods’ section, through the scheme, we generate various
well-known sixth-order iterative methods. In the ‘Numer-
ical work’ section, numerical and dynamical comparisons
of various methods are shown. Finally, the ‘Conclusions’
section concludes the article.

Scheme for constructing sixth-order iterative
methods
Our aspiration is to develop a sixth-order iterative scheme
which unifies sixth-order methods published in the liter-
ature. For this purpose, we consider the following three-
step iterative scheme:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn = xn − f (xn)
f ′(xn)

,

zn = yn − f (yn)
f ′(xn)

(
1 +

∑m

j=1
aj

(
f (yn)
f (xn)

)j
)
,

xn+1 = zn − f (zn)
f ′(xn)

(
1+

∑l

k=1
bk

(
μ1 f (yn) + μ2 f (zn)

f (xn)

)k
)
.

(6)

Here, aj, bk , μ1, μ2, m, and l are independent param-
eters. The parameters aj, bk , μ1, μ2 ∈ R, while the
parameters m and l are positive integers. The parame-
ters are established through the following convergence
theorem:

Theorem 1. Let γ be a simple zero of a sufficiently dif-
ferentiable function f : D ⊂ R �→ R in an open interval
D. If the initialization x0 is sufficiently close to γ , then the
scheme (6) defines sixth-order iterative methods iff a1 = 2
and b1 = 2/μ1, and the error equation for the family of
methods is given as

en+1 = c2
(
c3c1 − 5 c22 + a2c22

) (−6 c22 + c22b2μ
2
1 + c3c1

)
c51

× e6n + O
(
en7

)
,

(7)

where en = xn − γ and cm = f m(γ )/m! with m ≥ 1.

Proof. The Taylor expansion of the function f (x) around
the solution γ is given as

f (xn) = c1en + c2e2n + c3e3n + c4e4n + O
(
e5n

)
. (8)

Furthermore, from the preceding equation, we have

f ′(xn) = c1 + 2 c2en + 3 c3e2n + 4 c4e3n + O
(
e4n

)
. (9)

Dividing Equations 8 and 9,

f (x)
f ′(x)

= en − c2
c1
en2 − 2

c3c1 − c22

c12
e3n (10)

− 3 c4c12 − 7 c2c3c1 + 4 c23

c13
en4 + O

(
en5

)
.

From the first step of our scheme, we write

yn − γ = en − f (xn)
f ′(xn)

; (11)
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substituting Equation 10 into the preceding equation
yields

yn − γ = c2
c1
en2 + 2

c3c1 − c22

c12
en3 (12)

+ 3 c4c12 − 7 c2c3c1 + 4 c23

c13
en4 + O

(
en5

)
.

Expanding f (yn), around the solution γ , through the
Taylor series and using f (γ ) = 0,

f (yn) =
∞∑
j=1

cj (yn − γ );

substituting Equation 12 into the above equation, we
obtain

f (yn) =c2en2 + 2
c3c1 − c22

c1
en3

+ 3 c4c12 − 7 c2c3c1 + 5 c23

c12
en4 + O

(
en5

)
.

(13)

Dividing Equations 8 and 13 gives

f (yn)
f (xn)

= c2
c1
en + 2 c3c1 − 3 c22

c12
en2

+ 3 c4c12 − 10 c2c3c1 + 8 c23

c13
en3 + O

(
en4

)
.

(14)

From the second step of our scheme (6), we may write

zn = xn− f (xn)
f ′(xn)

[
1 + f (yn)

f (xn)

(
1 + a1

(
f (yn)
f (xn)

)

+a2
(
f (yn)
f (xn)

)2
+ · · ·

)]
;

(15)

substituting f (xn)/f ′(xn), from Equation 10, and
f (yn)/f (xn), from Equation 14, into the above equation
yields

zn − γ =γ − c22 (a1 − 2)
c12

en3

− c2
(
4 a1c3c1 − 7 a1c22 + a2c22 − 7 c3c1 + 9 c22

)
c13

× en4 + O
(
en5

)
.

(16)

The Taylor expansion of f (zn) around the solution γ is
given as

f (zn) =
∞∑
k=1

ck(zn − γ )k ; (17)

substituting zn − γ , from Equation 16, into the above
equation returns

f (zn) = − c22 (a1 − 2)
c1

en3

− c2
(
4 a1c3c1 − 7 a1c22 + a2c22 − 7 c3c1 + 9 c22

)
c12

× en4 + O
(
en5

)
.

(18)

From the third step of our scheme (6), we have

xn+1 = zn − f (zn)
f ′(xn)

[
1 + b1

(
μ1

f (yn)
f (xn)

+ μ2
f (zn)
f (xn)

)

+b2
(

μ1
f (yn)
f (xn)

+ μ2
f (zn)
f (xn)

)2
+ · · ·

]
;

substituting Equations 9, 14, and 18 into the above
equation furnishes the following error relation:

xn+1 = γ + c32(−2 + b1μ1)a1 − 2e4n
c31

+ c22
c41

(
(−11 a1 − 11 b1μ1 + 6 b1 a1μ1 + 20) c1c3

+ (
(−2 + a1) μ1

2b2 + (
(−12 a1 + a2 + 19) μ1

+ (−4 + 4 a1 − a12
)
μ2

)
b1−2 a2+18 a1−26

)
c22

)
e5n

+ c2
c51

(
(−16 a1 − 16 b1μ1 + 28 + 9 a1b1μ1) c12c2c4

+ (12 a1b1μ1 − 20 b1μ1 + 33 − 20 a1) c12c32

+ (
131 b1μ1 − 89 a1b1μ1 − 28 b1μ2 − 15 b2μ1

2

+ 8 a1b2μ1
2 + 8 b1μ1a2 + 30 b1μ2a1 − 8 b1μ2a12

−15 a2 + 125 a1 − 167) c1c22c3
+ (

86 a1b1μ1−15 b1μ1a2−58 b1μ2a1+17 b1μ2a12

−15 a1b2μ1
2 + 4 a2b1μ2 + a2b2μ1

2 − 8 b2μ1μ2

+a1b3μ1
3 + b1μ1a3 − 2 a2b1μ2a1 + 8 b2μ1μ2a1

−2 b2μ1μ2a12 − a12 − 98 a1 + 24 a2 − 2 a3 + 108

+48 b1μ2−111 b1μ1 +25 b2μ1
2 − 2 b3μ1

3) c24) e6n
+ O(e7n).

(19)

From the above error relation, we may deduce that the
three-step scheme (6) will define sixth-order methods, or
family of methods, if the following three equations are
satisfied simultaneously:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(a1 − 2)(b1 μ1 − 2) = 0,
− 11 a1 − 11 b1μ1 + 6 b1 a1μ1 + 20 = 0,

(−2 + a1) μ1
2b2 + ((−12 a1 + a2 + 19) μ1

+ (−4 + 4 a1 − a12
)
μ2

)
b1 − 2 a2 + 18 a1 − 26 = 0.



Khattri and ArgyrosMathematical Sciences 2013, 7:5 Page 4 of 8
http://www.iaumath.com/content/7/1/5

From a simple calculation, we see that a solution is

a1 = 2 and b1 = 2
μ1

.

Substituting a1 = 2 and b1 = 2/μ1 in Equation 19
produces the required error equation (7). This proves our
theorem.

Consequently, this work contributes the following
three-step sixth-order convergent iterative scheme for
solving nonlinear equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn = xn − f (xn)
f ′(xn)

,

zn = yn − f (yn)
f ′(xn)

(
1+ 2

(
f (yn)
f (xn)

)
+

∑m

j=2
aj

(
f (yn)
f (xn)

)j
)
,

xn+1 = zn − f (zn)
f ′(xn)

(
1 + 2

μ1

(
μ1 f (yn) + μ2 f (zn)

f (xn)

)

+
∑l

k=2
bk

(
μ1 f (yn) + μ2 f (zn)

f (xn)

)k
)
.

(20)

In the preceeding scheme, the parameters aj, bk (with
j ≥ 2 and k ≥ 2), and μm (with m = 1, 2) are free to
choose. From here onwards, the above scheme is referred
to as USS for short. Accordingly, USS presents oppor-
tunities to form various sixth-order methods. The next
section explores few interesting choices of these parame-
ters to formulate methods and family of methods from the
published literature.

Unification of sixth-order iterativemethods
Let us now derive methods from the published literature.
Let us first construct the family of methods developed by
Sharma and Guha [13]. For this purpose, we consider

aj = 2j for j ≥ 2, m = ∞, μ1 = 1,

bk = 2 (2 − β)k−1 for k ≥ 2, l = ∞, μ2 = 0.

Here, β ∈ R. Substituting these values in the second and
third steps of the proposed scheme USS, we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn = xn − f (xn)
f ′(xn)

,

zn = yn − f (yn)
f ′(xn)

(
1+ 2

(
f (yn)
f (xn)

)
+

∑∞
j=2

2j
(
f (yn)
f (xn)

)j
)
,

xn+1 = zn − f (zn)
f ′(xn)

(
1 + 2

(
f (yn)
f (xn)

)

+
∑∞

k=2
2(2 − β)k−1

(
f (yn)
f (xn)

)k
)
.

Using 1 + r + r2 + r3 + · · · = 1/(1 − r) for |r| < 1 in
the second and third steps of the preceeding equation, we
obtain the method, SG, developed by Sharma and Guha

[13]. Now, to formulate the family of methods developed
by Chun and Ham [5], we consider

aj = 2j for j ≥ 2, m = ∞, μ1 = 1,
bk = ωk for k ≥ 2, l = ∞, μ2 = 0.

Here, a ∈ R. Substituting the preceding choices in the
second and third steps of the scheme USS, we get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn = xn − f (xn)
f ′(xn)

,

zn = yn − f (yn)
f ′(xn)

(
1 + 2

(
f (yn)
f (xn)

)
+

∑∞
j=2

2j
(
f (yn)
f (xn)

)j
)
,

xn+1 = zn − f (zn)
f ′(xn)

(
1+2

(
f (yn)
f (xn)

)
+

∑∞
k=2

ωk

(
f (yn)
f (xn)

)k
)
.

(21)

Using 1 + r + r2 + r3 + · · · = 1/(1 − r) for |r| < 1
in the second step of the preceding equation, we obtain
the second step of the method, CH, developed by Chun
and Ham [5]. The third step of the method CH is given
as xn+1 = zn − f (zn)/f ′(xn)H(un) (see Equation 4). Here,
un = f (yn)/f (xn) and H(t) is a real valued function sat-
ifying H(0) = 1 and H′(0) = 2. Through a simple
calculation, the functionH(un) may be expressed as

H
(
f (yn)
f (xn)

)
= 1 + 2

(
f (yn)
f (xn)

)
+

∞∑
k=2

ωk

(
f (yn)
f (xn)

)k
.

As a consequence, the formulated method (21), through
the scheme USS, is the method developed by Chun and
Ham [5]. The method of Grau and Dı́az-Barrero [6] can be
derived by considering the following:

aj = 2j for j ≥ 2, m = ∞, μ1 = 1,

bk = 2k for k ≥ 2, l = ∞, μ2 = 0,

in the second and third steps of the developed scheme
USS. To derive the family of methods developed by Neta
et al. (2), the choices are

aj = 2 (−(a − 2))j−1 for j ≥ 2, m = ∞, μ1 = 1,

bk = 2 (−(−3))k−1 for k ≥ 2, l = ∞, μ2 = 0.

Here, a ∈ R. To formulate the recently developed sixth-
order method CN by Chun and Neta [16], the parameters,
in the scheme USS, are chosen as follows:

aj = (j + 1) for j ≥ 2, m = ∞, μ1 = 1,
bk = (k + 1) for k ≥ 2, l = ∞, μ2 = 1.
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Table 1 The (number of function evaluations, COC) for
various sixth-order iterative methods

f(x) x0 SG NETA GD CH CN

f1(x) 100 (36, 6) (36, 6) (28, 6) (36, 6) (28, 6)

f2(x) 100 (172, 6) (884, 6) (160, 6) (172, 6) (108, 6)

f3(x) −1 (20, 6) (20, 6) (20, 6) (20, 6) (32, 6)

f4(x) 1 (20, 6) (20, 6) (20, 6) (20, 6) (20, 6)

f5(x) 1 (24, 6) (24, 6) (24, 6) (24, 6) (24, 6)

f5(x) 3 (24, 6) (28, 6) (20, 6) (24, 6) (20, 6)

f6(x) −1.5 (24, 6) (28, 6) (20, 6) (24, 6) (20, 6)

Substituting the above values in the scheme USS, we get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn = xn − f (xn)
f ′(xn)

,

zn = yn − f (yn)
f ′(xn)

(
1+2

(
f (yn)
f (xn)

)
+

∑∞
j=2

(j+1)
(
f (yn)
f (xn)

)j
)
,

xn+1 = zn − f (zn)
f ′(xn)

(
1 + 2

(
f (yn) + f (zn)

f (xn)

)

+
∑∞

k=2
(k + 1)

(
f (yn) + f (zn)

f (xn)

)k
)
.

Figure 1 The attraction basins for the polynomial f (z) = z3 − 1. (a) SG, μ = 4.46 and ω = 10.37, a = 2; (b) CN, μ = 3.98 and ω = 1.98; (c) GD,
μ = 3.94 and ω = 0.56; (d) NETA, μ = 4.25 and ω = 10.95, α = 5.
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Figure 2 The attraction basins for the polynomial f (z) = z7 − 1. (a) SG, μ = 5.86 and ω = 30.33, a = 2; (b) CN, μ = 5.74 and ω = 23.20; (c)
GD, μ = 5.19 and ω = 11.48; (d) NETA, μ = 6.49 and ω = 45.33, α = 5.

Using 1+2r+3r2 +4r3 +· · · = 1/(1− r)2 for |r| < 1 in
the second and third steps of the preceding method yields
the method of Chun and Neta [16].

Numerical work
Let {xn}∞n=0 be a sequence, generated by an iterative
method, converging to γ and en = xn − γ . If there exist
a real number ξ ∈ [ 1,∞) and a nonzero constant C such
that

lim
n→∞ |en+1|/|en|ξ = C,

then ξ is called the convergence order of the sequence
and the constantC is called the asymptotic error constant.

From the preceding relation, the computational order of
convergence (COC) is approximated as follows:

ρ ≈ log |(xn+1 − γ )/(xn − γ )|
log |(xn − γ )/(xn−1 − γ )| .

All the computations are performed in the program-
ming language C++. For numerical precision, the C++
library ARPREC [1] is being used. For the convergence of
the method, it is required that the distance of two consec-
utive iterates (|xn+1 − xn|) and the absolute value of the
function (|f (xn)|), also referred to as residual, be less than
10−300. The maximum allowed iteration is 200.
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Solving nonlinear equations
The methods are tested for the following functions:

f1(x) = x3 + 4 x2 − 10, γ ≈ 1.365.

f2(x) = x2 − exp(x) − 3 x + 2, γ ≈ 0.257.

f3(x) = x exp(x2) − sin2(x) + 3 cos(x) + 5, γ ≈ −1.207.

f4(x) = x4 + sin
π

x2
− 5, γ = √

2.

f5(x) = ex sin x + log (1 + x2), γ = 0.

f6(x) =
√
2 + x2 sin

π

x2
+ 1

x4 + 1
− 17

√
3 + 1
17

, γ = −2.

Various free parameters are chosen as in themethod SG:
a = 2, in the method NETA: α = 5, and in the method
CH: β = 3. The outcome of the numerical experimenta-
tion is presented in Table 1. Table 1 reports the number
of function evaluations and COC during the second-to-
the-last iterative step. COC is rounded to the nearest
significant digits. In Table 1, we can see that the methods
GD and CN show better results.

Dynamic behavior of various sixth-order methods
Let f (x) be a complex polynomial and γ be one of its zeros.
Furthermore, let x0 ∈ C be a starting point for an iter-
ative method. Then, the sequence {xn}∞n=0, generated by
the iterative methods, may converge or may not converge
to the zero γ . If the sequence converges to the zero γ ,
then the starting point x0 is attracted to γ . The basin of
attraction, corresponding to a zero γ of the complex poly-
nomial f (x), is the set of all the starting points x0 which
are attracted to γ .
To make the figures, first we take a rectangle D, of

size [−1.5, 1.5]×[−1.5, 1, 5], and then divide the rectan-
gle into 1, 000 × 1, 000 grids [18–20]. Further, we apply
the iterative method starting at each grid point. The iter-
ative methods converge if the residual, in a maximum of
10 iterations, is less than 10−15. Given that the iterative
method does not generate a residual less than 10−10 in the
maximum allowed iterations, we say that the initial point
does not converge to any root. Let us denote the number
of mean iterations by μ and the percentage of diverging
points by ω [14].
We consider the polynomial f (x) = xn − 1, x ∈ C for

finding the nth roots of unity. The nth roots of unity are
given by [18–20]

αj = cos
(
2π(j − 1)

n

)
+i sin

(
2π(j − 1)

n

)
, j = 1, 2, . . . , n.

The outcome of our numerical experimentation is
reported in Figures 1 and 2. From these figures, we notice
that the methods GD and CN which require the least
number of iterationsμwhile diverging at the least number
of points show better results.

Conclusions
This work has developed a scheme to unify various
sixth-order iterative methods. Comparison among itera-
tive methods, by using the basins of attraction and also
through numerical computations, is also presented. Ideas
presented in this work can be further developed and
extended to include iterative methods of higher orders
such as seven or eight.
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