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Abstract

Let ℘ be the category of totally disconnected, locally compact abelian groups. In this paper, we determine the
discrete or compact pure injective groups in ℘ . Also, we determine the compact pure projective groups in ℘ .
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Introduction
Throughout, all groups are Hausdorff abelian topologi-
cal groups and will be written additively. Let £ denote the
category of locally compact abelian (LCA) groups with
continuous homomorphisms as morphisms. A morphism
is called proper if it is open onto its image, and a short
exact sequence 0 → A φ→ B ψ→ C → 0 in £ is said
to be proper exact if φ and ψ are proper morphisms.
In this case, the sequence is called an extension of A by
C (in £). A subgroup H of a group C is called pure if
nH = H

⋂
nC for all positive integers n. An extension

0 → A φ→ B ψ→ C → 0 is called a pure extension
if φ(A) is pure in B. Following Fulp and Griffith [1], we
let Ext(C,A) denote the (discrete) group of extensions of
A by C. The elements represented by pure extensions of
A by C form a subgroup of Ext(C,A) which is denoted by
Pext(C,A). Assume that � is any subcategory of £ such
that whenever 0 → A φ→ B ψ→ C → 0 is an extension
in £, and A and C are in �, then B is in �. Following Fulp
[2], G in � is called a pure projective group if and only if
Pext(G,X) = 0 for all X in �. Similarly, G is a pure injec-
tive group in � if and only if Pext(X,G) = 0 for all X in �.
Fulp [2] has described the pure injective and pure projec-
tive in some categories such as the category of connected,
locally compact abelian groups. Let ℘ be the category of
totally disconnected, locally compact abelian groups. In
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this paper, we determine the discrete or compact groups
which are pure injective in ℘. We show that a discrete
(torsion or torsion-free) group is pure injective in ℘ if and
only if it is divisible (Theorems 1 and 2). We show that a
compact groupG is pure injective in℘ if and only ifG = 0
(Corollary 1). We also introduce a result on the pure pro-
jective of ℘. We show that if a compact dual cotorsion
group is a pure projective of ℘, then it is a torsion group
(Corollary 2).
The additive topological group of real numbers is

denoted by R. Q is the group of rationales, Z is the
group of integers, and Z(n) is the cyclic group of order
n. By Gd, we mean the group G with discrete topology.
tG is the torsion part of G, and G0 is the identity com-
ponent of G. The Pontrjagin dual group of a group G
is denoted by Ĝ. The topological isomorphism will be
denote by ‘∼=’.

Pure injective in℘

Let ℘ be the category of totally disconnected, locally com-
pact abelian groups. In this section, we determine the
structure of a discrete or compact pure injective group
in ℘. Recall that a group Bis said to be bounded if nB = 0
for some integer n.

Lemma 1. Suppose B is a discrete bounded group. Then,
B is pure injective in ℘ if and only if B = 0.

Proof. Assume that E is a torsion-free group in £. Let E0
be the identity component of E. Then, the sequence
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0 → E0 → E → E/E0 → 0

is a proper pure exact. Thus, the sequence

0 = Pext(E/E0,B) → Pext(E,B) → Pext(E0,B)

is exact (Proposition 4 in [2]). By Theorem 2.11 in [3],
Pext(E0,B) = 0. Thus, Pext(E,B) = 0. It follows that B
is divisible (Corollary 10 in [4]). Since B is bounded, so
B = 0.

Theorem 1. Let A be a discrete torsion group. Then, A is
pure injective in ℘ if and only if A is a divisible group.

Proof. If A is a divisible group, it is clear that
Pext(X,A) = 0 for all totally disconnected groups X
(Theorem 3.4 in [1]). So, A is pure injective in ℘. Con-
versely, suppose that A is a discrete torsion, pure injective
group in ℘. Then, Ext(Q,A) = 0. Hence, A is a cotorsion
group. By Corollary 54.4 in [5], A = B ⊕ D where B and
D are bounded and divisible groups, respectively. Clearly
B is pure injective in ℘. So by Lemma 1, B = 0. Hence,
A = D is a divisible group.

Theorem 2. Let A be a discrete torsion-free group. Then,
A is pure injective in ℘ if and only if A is a divisible group.

Proof. Suppose that A is a discrete torsion-free,
pure injective group in ℘. Then, Ext( ˆQ/Z,A) =
Pext( ˆQ/Z,A) = 0. By corollary 2.10 in [6], we have the
exact sequence

(∗) Hom( ˆQ/Z,A) → Ext(Ẑ,A) → Ext(Q̂,A)

→ Ext( ˆQ/Z,A) = 0.

Since Â is connected, soHom( ˆQ/Z,A) ∼= Hom(Â,Q/Z) =
0. It follows from (∗) that Ext(Ẑ,A) ∼= Ext(Q̂,A). By
Proposition 2.17 in [1], A ∼= Ext(Ẑ,A). So, A ∼= Ext(Q̂,A).
Since Ext(Q̂,A) is divisible (p. 223(I) in [3]), so A is a
divisible group.

Definition 1. A locally compact abelian groupG will be
called an £-cotorsion if and only if Ext(X,G) = 0 for each
torsion-free group X in £ [4].

Theorem 3. Let G be a compact group. Then,
Pext(X,G) = 0 for any totally disconnected group X in £ if
and only if G ∼= (R/Z)σ where σ is a cardinal number.

Proof. Suppose Pext(X,G) = 0 for any totally discon-
nected group X. First, we show that G is an £-cotorsion
group. Let X be torsion-free in £ and X0 the component
of identity. Since X0 is pure in X, so X/X0 is torsion-free.

Hence, 0 = Pext(X/X0,G) = Ext(X/X0,G). Consider the
exact sequence

(∗) 0 = Ext(X/X0,G) → Ext(X,G) → Ext(X0,G) → 0.

Recall that since X0 is a compact torsion-free group, X̂0
is a discrete divisible group. Consequently, Ext(X0,G) ∼=
Ext(Ĝ, X̂0) = 0. By (*), Ext(X,G) = 0. So G is an £-
cotorsion. By Corollary 9 in [4], G is connected. It follows
that Ext(X,G) = 0 for any totally disconnected group in
£. By Theorem 5.1 in [1], G ∼= (R/Z)σ . The converse is
clear.

Corollary 1. A compact group G is pure injective in ℘ if
and only if G = 0.

Proof. Let G be a compact, pure injective group in ℘.
Then, G is totally disconnected, and Pext(X,G) = 0
for any totally disconnected group X. So, by Theorem 3,
G = 0.

Pure projective in℘

In this section, we show that if a compact group is pure
projective in ℘, then it is a torsion group.

Lemma 2. A discrete group A is pure projective in ℘ if
and only if A is a direct sum of cyclic groups.

Proof. LetA be a discrete pure projective group in℘. So,
Pext(A,X) = 0 for any discrete group X. By Theorem 30.2
in [5], A is a direct sum of cyclic groups. The converse is
clear.

Recall that a discrete group A is said to be a cotorsion if
for any discrete torsion-free group B, Ext(B,A) = 0 [5]. A
compact group G is called dual cotorsion if and only if the
dual group of G is a cotorsion.

Theorem 4. Let G be a compact dual cotorsion group. If
Pext(G,X) = 0 for any X ∈ ℘, then G ∼= �i∈IZ(bi).

Proof. Let G be a compact group such that Ĝ is a
cotorsion group and Pext(G,X) = 0 for any totally dis-
connected group X. By Theorem 2.11 in [3], it is enough
to show that Pext(G, F) = 0 for any compact group F in
£. We have Pext(G, F) = Pext(F̂ , Ĝ). Consider the exact
sequence

(∗) . . . → Pext(F̂/tF̂ , Ĝ) → Pext(F̂ , Ĝ)

→ Pext(tF̂ , Ĝ) → 0.

Since Ĝ is a cotorsion group, Pext(F̂/tF̂ , Ĝ) = 0.
Since (

ˆt F̂) is totally disconnected, then Pext(tF̂ , Ĝ) =
Pext(G, ( ˆt F̂) = 0. It follows from (∗) that Pext(F̂ , Ĝ) = 0.
Hence, Pext(G, F) = 0.
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Corollary 2. If a compact dual cotorsion group is pure
projective in ℘, then it is a torsion group.

Proof. It is clear by Theorem 4.

Theorem 5. Let C be a connected group. Then,
Pext(C,X) = 0 for all totally disconnected groups X in £ if
and only if C is a vector group.

Proof. Since a vector group is a projective object of £, it
is clear that Pext(C,X) for all totally disconnected groups
X ∈ £. Conversely, assume that C is a connected group.
Then, C ∼= Rn ⊕K where K is a compact connected group
(Theorem 9.14 in [7]). Since the sequence

0 = Hom( ˆQ/Z, K̂) → Ext(Ẑ, K̂) → Ext(Q̂, K̂)

= Pext(Q̂, K̂) = 0

is exact, so by Proposition 2.17 in [1], K̂ is isomorphic to
Ext(Ẑ, K̂) = 0 and therefore K = 0. It follows that C is a
vector group.

Theorem 6. Let C be a locally connected group in £.
Then, Pext(C,X) = 0 for all totally disconnected groups X
in £ if and only if C ∼= Rn ⊕ E where E is a discrete direct
sum of cyclic groups.

Proof. Let C be a locally connected group in £ and
Pext(C,X) = 0 for all totally disconnected groups X in £.
By p. 19 in [8] and p. 38 in [9],C ∼= Rn⊕E⊕D̂where Rn is a
vector group with n ≥ 0, E a discrete group, andD is a dis-
crete torsion-free abelian group in which every subgroup
of finite rank is free. Then, Pext(E,X) = 0 for all discrete
groups X. Hence, E is a direct sum of cyclic groups. We
show that D̂ = 0. Recall that Ext(D̂,Q) = Pext(D̂,Q) = 0.
Consider the exact sequence

0 = Hom(D̂,Q/Z) → Ext(D̂,Z) → Ext(D̂,Q) = 0.

So D ∼= Ext(Ẑ,D) = Ext(D̂,Z) = 0, i.e., D = 0.
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