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Abstract

Mehdi studied (ω + k)-projective QTAG-modules with the help of their submodules contained in Hk(M) (the
submodule generated by the elements of exponents at most k). These modules contain nice submodules N
contained in Hk(M) such thatM/N is a direct sum of uniserial modules. Here, we investigate the classA of
QTAG-modules, containing nice submodules N ⊆ Hk(M) such thatM/N is totally projective. We also study strong
ω-elongation of totally projective QTAG-modules by (ω + k)-projective QTAG-modules.
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Introduction
Throughout this paper, all rings will be associative with
unity, and modules M are unital QTAG-modules. An
element x ∈ M is uniform, if xR is a non-zero uniform
(hence uniserial) module and for any R-module M with a
unique composition series, d(M) denotes its composition
length. For a uniform element x ∈ M, e(x) = d(xR) and
HM(x) = sup

{
d

(
yR
xR

)
| y ∈ M, x ∈ yR and y uniform

}
are

the exponent and height of x in M, respectively. Hk(M)

denotes the submodule of M generated by the elements
of height at least k and Hk(M) is the submodule of M
generated by the elements of exponents at most k. M is

h-divisible if M = M1 =
∞⋂
k=0

Hk(M) and it is h-reduced

if it does not contain any h-divisible submodule. In other
words, it is free from the elements of infinite height. A
h-reduced QTAG-module M is called totally projective if
it has a nice system.
A submodule N of M is h-pure in M if N ∩ Hk(M) =

Hk(N), for every integer k ≥ 0. For a limit ordinal α,
Hα(M) = ⋂

ρ<α

Hρ(M), for all ordinals ρ < α and it is

α-pure inM ifHσ (N) = Hσ (M)∩N for all ordinals σ < α.
A submodule N ⊂ M is nice [1] Definition 2.3 in M,

if Hσ (M/N) = (Hσ (M) + N)/N for all ordinals σ , i.e.
every coset ofMmodulo N may be represented by an ele-
ment of the same height. A QTAG-module M is said to
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be separable, if M1 = 0. The cardinality of the minimal
generating set of M is denoted by g(M). For all ordinals
α, fM(α) is the αth-Ulm invariant of M and it is equal to
g(Soc(Hα(M))/Soc(Hα+1(M))).
For a QTAG-module M, there is a chain of submodules

M0 ⊃ M1 ⊃ M2 · · · ⊃ Mτ = 0, for some ordinal τ .
Mσ+1 = (Mσ )1, where Mσ is the σ th-Ulm submodule of
M. Singh [2] proved that the results which hold for TAG-
modules also hold good for QTAG-modules. Notations
and terminology are followed from [3,4]

Elongations of totally projectiveQTAG-modules by
(ω + k)-projectiveQTAG-modules
Recall that aQTAG-moduleM is (ω+1)-projective if there
exists submodule N ⊂ H1(M) such that M/N is a direct
sum of uniserial modules and a QTAG module M is (ω +
k)-projective if there exists submodule N ⊂ Hk(M) such
thatM/N is a direct sum of uniserial modules [5].
A QTAG-module is an ω-elongation of a totally projec-

tiveQTAG-module by a (ω+k)-projectiveQTAG-module
if and only if Hω(M) is totally projective andM/Hω(M) is
(ω + k)-projective.
Suppose Ak denotes the family of QTAG-modules M

which contain nice submodules N ⊆ Hk(M) free from
the elements of infinite height, such that M/N is totally
projective. The main goal of this section is to find a con-
dition for the modules of the family Ak to be isomorphic.
To achieve this goal we need some results. We start with
the following:
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Lemma 1. Let M be a QTAG-module and N ⊆ M such
that N ∩ Hω(M) = 0, then N is nice in M if and only if
N ⊕ Hω(M) is nice in M.

Proof. Suppose N is nice in M. Since a submodule K is
nice in M if M/K is separable, it is sufficient to show that
M/(N⊕Hω(M)) is separable. IfH(x̄) is infinite inM/(N⊕
Hω(M)), where x̄ = x + N ⊕ Hω(M), then there exist a
sequence {xk} in N ⊕Hω(M) such that H(x+ xk) ≥ k, for
every k ∈ Z+.
If xk = yk + zk where yk ∈ N , zk ∈ Hω(M); then H(x +

yk) ≥ k and the coset x + N has infinite height in M/N .
Now for some u ∈ N ,H(x+u) ≥ ω and x = −u+(x+u) ∈
N ⊕ Hω(M), thus N ⊕ Hω(M) is nice inM.
For the converse supposeN ⊕Hω(M) is nice inM. Since

Hω(M) ⊆ N ⊕ Hω(M), M/(N ⊕ Hω(M)) must be sep-
arable. By the previous argument, an element x + N has
height ω inM/N if and only if it can be represented by an
element of Hω(M) and the result follows.

Lemma 2. If N is nice submodule of Hk(M) ⊆ M which
is bounded by k such that N ∩ Hω(M) = 0 and M/N is
totally projective, then

(i) M/(N ⊕Hω(M)) is a direct sum of uniserial modules
and

(ii) M/Hω(M) is (ω + k)-projective.

Proof. Since N is a nice submodule we have
Hω(M/N) = (Hω(M) + N)/N . Now,M/(N ⊕ Hω(M)) ∼=
(M/N)/Hω(M/N) and M/N is totally projective; there-
fore, (M/N)/Hω(M/N) is a direct sum of uniserial
modules. Thus, M/(N ⊕ Hω(M)) is also a direct sum of
uniserial modules.
Again, (N ⊕ Hω(M))/Hω(M) is a submodule of

M/Hω(M), which is bounded by k. Thus, M/Hω(M) is
(ω + k)-projective module.

Lemma 3. Let M be a QTAG-module and N a submod-
ule of Hk(M) ⊆ M such that N ∩ Hω(M) = 0. If Hω(M) is
totally projective and M/(N ⊕ Hω(M)) is a direct sum of
uniserial modules, then M/N is totally projective.

Proof. Now, N ⊕ Hω(M) is nice in M; therefore, by
Lemma 1, N is a nice submodule of M. This implies
that Hω(M/N) = (N ⊕ Hω(M))/N ∼= Hω(M) because
N ∩ Hω(M) = 0.
Again,

(M/N)/Hω(M/N) = (M/N)/[(N ⊕ Hω(M))/N]

∼= M/(N ⊕ Hω(M))

is a direct sum of uniserial modules implying thatM/N is
totally projective.

Lemma 4. Let N be a submodule of Hk(M) ⊆ M such
that N ∩ Hω(M) = 0. Then the Ulm-invariants of N ⊕
Hω(M) with respect to M can be determined by Hk(M).

Proof. The σ th Ulm-invariant of N ⊕ Hω(M) with
respect toM is

g
(
Soc(Hσ (M))/

((Hσ+1(M)+(N ⊕ Hω(M))) ∩ Soc(Hσ (M)))
)

[5].

If σ is an integer, then Hσ+1(M) + N ⊕ Hω(M) =
Hσ+1(M) + N and if x ∈ Hσ+1(M), y ∈ N such that
x + y ∈ Soc(Hσ+1(M) + N), then there exist x′, y′ such
that d(x′R/xR) = k − 1 = d(y′R/yR).
This implies that x∈Hσ+1(Hk(M)) and Soc(Hσ+1(M)+

N+Hω(M)) = Soc [Hσ+1(Hk(M))+N] and if σ ≥ ω, then
Hσ (M) ⊆ N + Hω(M) and the σ th relative Ulm-invariant
is zero.

Definition 1. A QTAG-module M is h-distinctive if
there is a monomorphism from M into a direct sum of
uniserial modules that does not decrease heights.

Remark 1. Let M be a QTAG-module and N a sub-
module of M such that M/N is a direct sum of uniserial
modules. If N is h-distinctive, thenM is also a direct sum
of uniserial modules.

Now, we consider the family Ak of QTAG-modules M
which contains nice submodules N ⊆ Hk(M) free from
the elements of infinite height, such that M/N is totally
projective.
In fact, anymodule inAk is an extension of a totally pro-

jective module Hω(M) by a separable (ω + k)-projective
module M/Hω(M) or M is a ω-elongation of a totally
projective module by a separable (ω + k)-module.

Theorem 1. A direct summand of a module in Ak is
again inAk .

Proof. Let M ∈ Ak , such that M = T ⊕ K and N ⊆
Hk(M) a nice submodule ofM, N ∩Hω(M) = 0 andM/N
totally projective. We define

M1 = T ∩ (N ⊕Hω(M)) and M2 = K ∩ (N ⊕Hω(M)).

Now, by Lemma 2, M/(N ⊕ Hω(M)) is a direct sum of
uniserial modules; therefore

T/M1 ∼= (T + (N ⊕ Hω(M)))/(N ⊕ Hω(M))

⊆ M/(N ⊕ Hω(M))

is also a direct sum of uniserial modules.
Again, Hω(M) ⊆ M1 ⊕ M2 ⊆ N ⊕ Hω(M), therefore

M1 ⊕ M2 = Hω(M) ⊕ (N ∩ (M1 ⊕ M2)).
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Since Hω(M) = Hω(T) ⊕ Hω(K),

M1 = Hω(T) ⊕ [M1 ∩ (Hω(K) ⊕ (N ∩ (M1 ⊕ M2)))] .

Now, the submoduleM1∩(Hω(K) ⊕ (N ∩ (M1 ⊕ M2)))
is contained in Hk(M) and free from the elements of
infinite height. Since Hω(T) is a summand of the totally
projective module Hω(M), by applying Lemma 3, on T
and M1 ∩ ((N ∩ (M1 ⊕ M2)) ⊕ Hω(K)), T ∈ Ak , which
completes the proof.

Theorem 2. Let M, M′ ∈ Ak . Then M is isomorphic to
M′ if and only if there is a height-preserving isomorphism
f : Hk(M) → Hk(M′).

Proof. Consider the height-preserving isomorphism f :
Hk(M) → Hk(M′). SinceM, M′ ∈ Ak , there are nice sub-
modules N ⊆ Hk(M) ⊆ M and N ′ ⊆ Hk(M′) ⊆ M′ such
that N ∩Hω(M) = 0, N ′ ∩Hω(M′) = 0 andM/N ,M′/N ′
are totally projective. By Lemma 2, M/(N ⊕ Hω(M)) and
M′/(N ′ ⊕ Hω(M′)) are direct sums of uniserial modules.
We put

K = (N ⊕ Hω(M)) ∩ (f −1(N ′) ⊕ Hω(M))

and consider the exact sequence

0 → (N⊕Hω(M))/K → M/K → M/(N⊕Hω(M)) → 0.

Let x ∈ N , y ∈ Hω(M) such thatH(x+y+K) ≥ m. Since
y ∈ K , x + y + K = x + K and H(x + K) ≥ m, and there
exists some z ∈ M such that d[(z + K)R/(x + K)R]= m.
Now there is some z′ ∈ (x + K)R such that z′ − x ∈ K .
Therefore, (z′−x) ∈ (f −1(N ′)⊕Hω(M)) and for some u′ ∈
N ′, z′′ = x+f −1(u′)whereHM′(f (x)+u′) = HM(z′′) ≥ m.
This implies that the height of the coset f (x) + u′ + (N ′ ⊕
Hω(M′)) is greater than equal tom inM′/(N ′ ⊕ Hω(M′)).
The map f̄ : ((N ⊕ Hω(M))/K) → M′/(N ′ ⊕ Hω(M)) is
a monomorphism which does not decrease heights; thus,
(N ⊕ Hω(M))/K is h-distinctive, and by Remark 1, M/K
is a direct sum of uniserial modules. Similarly, M′/K ′ is a
direct sum of uniserial modules, where

K ′ = (f (N) ⊕ Hω(M′)) ∩ (N ′ ⊕ Hω(M′)).
Since f is height-preserving isomorphism, it maps

Hk(K) onto Hk(K ′), where

Hk(K) =
(
N ⊕ Hω(Hk(M))

)
∩

(
f −1(N ′) ⊕ Hω(Hk(M))

)
.

Again, if we put

T = N ∩
(
f −1(N ′) ⊕ Hω(Hk(M))

)
,

T ′ = N ′ ∩
(
f (N) ⊕ Hω(Hk(M′))

)
,

then K = T ⊕ Hω(M), K ′ = T ′ ⊕ Hω(M′). From
Lemma 3, M/T and M′/T ′ are totally projective. Now
f (T) ⊕ Hω(M′) = T ′ ⊕ Hω(M′); therefore, f induces a
height-preserving isomorphism g1 : T → T ′.

The Ulm-invariants of Hω(M) and Hω(M′) are deter-
mined by the cardinality of the minimal generating sets of
their socles and f is height preserving therefore these are
equal for Hω(M) and Hω(M′).
As these modules are totally projective, there is an iso-

morphism g2 : Hω(M) → Hω(M′), which is again height
preserving. Now, the isomorphisms g1, g2 help us to
define an isomorphism φ : K → K ′, where K and K ′ are
nice in M and M′, respectively. Since the submodules T
and T ′ have elements of finite heights only and the mod-
ulesHω(M) andHω(M′) have elements of height≥ ω only,
φ must be height preserving.
Therefore, by Lemma 4, the Ulm-invariants of K with

respect to M can be determined with the help of Hk(M).
As

f (Hk(K)) = Hk(K ′), fα(K ,M) = fα(K ′,M′)

for all α andM ∼= M′ [6,7].

Remark 2. Thus, the isomorphic modules M in Ak can
be identified by Hk(M).

Strong ω-elongations of totally projective
QTAG-modules by (ω + k)-projective
QTAG-modules
In the last section, we studied ω-elongations of a totally
projective module by (ω + k)-projective module where
Hω(M) is totally projective and M/Hω(M) is (ω + k)-
projective.
Here, we study strong ω-elongations and separate ω-

elongations. We start with the following:

Definition 2. A QTAG-module M is a strong ω-
elongation of a totally projective module by a (ω + k)-
projective module when Hω(M) is totally projective and
there is a submodule N ⊆ Hk(M) such that M/(N +
Hω(M)) is a direct sum of uniserial modules.

Definition 3. A QTAG-module M is a separate strong
ω-elongation of a totally projective module by a separa-
ble (ω + k)-projective module if there is a submodule
N ⊆ Hk(M), with N ∩ Hω(M) = 0, Hω(M) is totally pro-
jective and M/(N ⊕ Hω(M)) is a direct sum of uniserial
modules.

Remark 3. For the separable modules, M/(N +
Hω(M)) ∼= (M/N)/(N + Hω(M))/N is a direct sum of
uniserial modules, we haveHω(M/N) = (Hω(M)+N)/N
and these are separate strong ω-elongations.
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Now, we prove some basic results:

Proposition 1. A direct summand of a strong ω-
elongation of a totally projective module by a (ω + k)-
projective module is again a strong ω-elongation of a
totally projective module by a (ω + k)-projective module.

Proof. LetM = T ⊕ K and N ⊆ M such that N ⊆ Hk(M)

andM/(N +Hω(M)) is a direct sum of uniserial modules.
We putM1 = T ∩ (N + Hω(M)) to get

T/M1 ∼= (T + (N + Hω(M))/(N + Hω(M))

⊆ M/(N + Hω(M)),

which is a direct sum of uniserial modules. SinceHω(M) is
totally projective and Hω(M) = Hω(T) ⊕ Hω(K), Hω(T)

is also totally projective. Again,

M1 = T ∩ (N + Hω(T) + Hω(K))

= Hω(T) + (T ∩ (N + Hω(K)));

thus,

Hk(T ∩ (N + Hω(K))) ⊆ Hk(T) ∩ Hω(K) = 0

as Hk(N) = 0. Consequently, the result follows.

Remark 4. Direct sums of strong ω-elongations of a
totally projective module by a (ω + k)-projective module
is a strong ω-elongations of a totally projective module by
(ω + k)-projective module.

After this, we recall some results from previous work,
which are helpful in proving the next theorem:

Result 1. AQTAG-moduleM is a �-module if and only
if Soc(M) = ⋃

k<ω

Mk , Mk ⊆ Mk+1 and for every k ∈ Z+,

Mk ∩ Hk(M) = Soc(Hω(M)).

Result 2. Let N be a submodule of a QTAG-module
M such that M/N is a direct sum of uniserial modules.
Then M is a direct sum of uniserial modules if and only
if N = ⋃

k<ω

Nk , Nk ⊆ Nk+1 and Nk ∩ Hk(M) = 0. Equiva-

lently if Soc(N) = ⋃
k<ω

(Sk), Sk ⊆ Sk+1 and Sk ∩Hk(M) =
0 for every k ∈ Z+.
It is well known that each totally projective module is a∑
-module. The next statement answers under what con-

ditions the converse holds. These additional conditions
include the new elongations of totally projective modules
by (ω + 1)-projective modules.

Now we are in the state to prove the following:

Theorem 3. A QTAG-module M which is a strong ω-
elongation of a totally projective module by a (ω + 1)-
projective module, is a �-module if and only if M is a
totally projective module.

Proof. SupposeM is a�- module. SinceHω(M) is totally
projective, in order to prove thatM is totally projective, we
have to show that M/Hω(M) is a direct sum of uniserial
modules. By the structure of M, there exists a submodule
N ⊆ Soc(M), such that M/(N + Hω(M)) is a direct sum
of uniserial modules. Also

(M/Hω(M))/(N+Hω(M)/Hω(M)) ∼= M/(N+Hω(M)).

Since M is a �-module, by Result 1, Soc(M) = ⋃
k<ω

Mk ,

Mk ⊆ Mk+1 andMk ∩Hk(M) ⊆ Hω(M) for every k ∈ Z+.
As N ⊆ Soc(M), N = ⋃

k<ω

Nk , Nk = N ∩Mk , Nk ⊆ Nk+1

and Nk ∩ Hk(M) ⊆ Hω(M). Therefore,

(N+Hω(M))/Hω(M) =
⋃
k<ω

[(Nk+Hω(M))/Hω(M)] and

[Nk +Hω(M)/Hω(M)]∩ Hk(M/Hω(M))

= [(Nk + Hω(M)) ∩ Hk(M)] /Hω(M)

= [Hω(M) + (Nk ∩ Hk(M))] /Hω(M)

= 0.
Now, by Result 2,M/Hω(M) is a direct sum of uniserial

modules, and the result follows.
The converse is trivial.

Corollary 1. A module M is summable and a strong
ω-elongation of a totally projective module by a (ω + 1)-
projective module if and only if M is a totally projective
module of length ≤ ω + 1. In other words M is a direct sum
of countably generated modules.

Proof. Every summable module M is a �-module and
every totally projective module of length ω + 1 is a direct
sum of countably generated modules. Therefore M is
summable.

We end this paper with the following remark:

Remark 5. Now we may say that a QTAG-module M is
a (ω + 1)-projective �-module, if and only if it is a direct
sum of countably generated modules with lengths at most
ω + 1.
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