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Abstract

In this article, we are to find the root of a square matrix A. Specially, if matrix A has multiple eigenvalues, we present a
manual solution so as to find the root of it. In other words, we focus on solving the equation X2 = A and find the
solutions.
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Introduction
In recent years, several articles are written about the root
of a matrix, and we can refer to [1-6] for instance. In 2007,
Kh. Ikramov tried to solve the matrix equation XX = I
and XX = I. At first, he considered the problem as

XX =
[
a b
c d

]
and then generalized it to general case

XX = In and XX = In [7]. If matrix A has different eigen-
values λ1, λ2, . . . , λn, then the root of A, i.e. solution of the
equation X2 = A is achieved as the following:

X = VEV−1, E = diag(
√

λ1,
√

λ2, · · · ,
√

λn), (1)

where V is a matrix, columns of which are eigenvectors of
A. If matrix A is not diagonalizable, the solution is not so
simple. In this article, first of all, we are to solve the follow-
ing matrix equation in different cases and try to generalize
the result for greater dimensions:

XX =
[
a b
c d

]
= A. (2)

In section “Solution of X2 = A”, we solve the matrix
equation (2). In section “Solution of X2 = A in which A

is of dimension 3”, we solve the equation X2 =
⎡
⎣a b c
0 d e
0 0 f

⎤
⎦

and ultimately in section “Second root of 3 × 3 matrix”,
generalizations of it are verified.
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Solution of X2 = A
Let A =

(
a b
c d

)
. In this section, we are to solve the

equation (2) in four cases as the following:

Case 1 - The matrix A has two different eigenvalues.
Case 2 - The matrix A has two nonzero different simple
eigenvalues and b �= 0.
Case 3 - The matrix A has two nonzero different simple
eigenvalues and b = 0.
Case 4 - The matrix A has two different simple eigenval-
ues which are zero.

For the first case, as the right-hand side matrix is diago-
nalized, the solution of (2) is as (1).

Lemma 1. (Case two) If A has a multiple nonzero eigen-
value, and b �= 0, then solution of the equation (2) is as
below:

X =
⎡
⎢⎣

3a+d
4
√

a+d
2

b
2
√

a+d
2

c√
a+d
2

a+3d
4
√

a+d
2

⎤
⎥⎦ .

Proof. Writing the characteristic equation ofA, we have:

λI − A = λ2 − (a + d)λ + ad − bc = 0.

Consider its eigenvalues as follows:

λ1 = a + d
2

, λ2 = a + d
2

+ t, (t → 0).
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In this case, as we see in (1) , we attempt to find the root
of matrix A, setting

E =
⎡
⎣

√
a+d
2 0

0
√

a+d
2 + t

⎤
⎦ .

If so, the matrix of corresponding eigenvalues with these
eigenvalues is as below:

V =
[

2b 2b
d − a d − a + 2t

]
⇒ V−1 =

[ d−a+2t
4

−1
2t

a−d
4bt

1
2t

]
.

In this case,

X = lim VEV−1
t→0

= lim
t→0

×

⎡
⎢⎢⎣
2b

√
a+b
2 (b−a+2t)+(a−d)

(
2b

√
a+d
2 +t

)
4bt

−2b
√

a+d
2 +2b

√
a+d
2 +t

2t
(d−a)

√
a+d
2 (d−a+2t)

√
a+b
2 +t(a−d)

4bt (a−b)
√

a+b
2 + (d−a+2t)

√
a+d
2 + t

⎤
⎥⎥⎦

=
⎡
⎢⎣

3a+d
4
√

a+d
2

b
2
√

a+d
2

c
2
√

a+d
2

a+3d
4
√

a+d
2

⎤
⎥⎦

is solution of the problem.

Theorem 1. (Case 3) If A has two simple nonzero eigen-
values, b = 0 and c �= 0, then the matrices

X =
[ √

a c
c

2
√
a

√
a

]
, X =

[
−√

a c
−c
2
√
a −√

a

]

are some solutions of (2).

If A =
[
a 0
c d

]
and X =

[
x y
z w

]
is the root of it, then

setting X2 = A is the solution above.

Corollary 1. If A has a zero multiple eigenvalue and
b = c = 0, then in addition to the two solutions
in (4), an infinite number of solutions exist as the following
for (2):

X =
[ √

a c
a −√

a

]
,X =

[ −√
a c

a
√
a

]
,X =

[
β γ

α−β2

γ
−β

]
,

in which α,β , γ �= 0 ∈ C.

Lemma 2. (Case 4) If A has two zero eigenvalues, then
one of the following cases occurs:

a) If b = c = 0, then X = 0 is a solution of the equation.
b) If b = 0 and c �= 0, then the equation has no solution.
c) If c = 0 and b �= 0, then the equation has no solution.
d) If bc �= 0, then the equation has no solution.

Assuming X =
[
x y
z w

]
, we can verify all four cases pre-

sented before. Case (a) is trivial. For case (b), if b = 0 and
c �= 0, then from X2 = A, we must have:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

w2 + xy = 0

x2 + yz = 0

(x + w)y = 0

z(x + w) = c

⇒ y = 0 or (x + w) = 0.

If y = 0, then x = w = 0 which is in contradiction with
c �= 0. If x + w = 0, then we must have c = 0, which is
impossible. Therefore, in this case, the second root of A
does not exist.
Case (c) is similar to case (b) and for case (d), according

to the characteristic equation of matrix A, we have:

λ2 − (a + d)λ + ab − bc = 0.

By our assumption, matrix A has two zero eigenvalues,
then{

a + d = 0

ad − bc = 0.

As a result, a = −d and bc = −a2 and as b and c are
nonzero, so a �= 0. Thus, in removing b and d, we have:

A =
[
a −a2

c

c −a

]
.

Now, we claim that this matrix has no square root. If

X =
[
x y
z w

]
is its root, then according to X2 = A, we have:

w2 + xy = −a2, (3)

x2 + yz = a, (4)

xy + yw = −a2

c
, (5)

xz + wz = c, (6)
from (5), we have:

y(x + w) = −a2

c
, (7)

and also from (6), with c �= 0, we have:

z(x + w) = c ⇒ x + w �= 0 and z �= 0. (8)

According to both (5) and (6), we achieve y
z = −a2

c2 ⇒
z = −c2

a2 y, (4) implies that x2 − y2c2
a2 = a and regarding (6)

and (8), conclude that

(x + w)(
−c2

a2
y) = c. (9)

2013, 7:44
http://www.iaumath.com/content/7/1/44

http://www.iaumath.com/content/7/1/44


Nazari et al. Mathematical Sciences 2013, 7:xx Page 3 of 6
http://www.iaumath.com/content/7/1/xx

The relation (3) implies that

w2 − c2

a2
y2 = −a

and ultimately considering (4) and (9), we have:

x2 − w2 = 2a (10)

from (9) and (10), we have:

(x − w)

(
−a2

cy

)
= 2a ⇒ x − w = −2cy

a
; (11)

from (9), we have:

x + w = −a2

cy
; (12)

the relations (11) and (12) imply that

2x = −2c
a
y − az

cy
⇒ x = − c

a
y − a2

2cy
;

from (7), we have:(
c
a
y − a2

2cy

)2
− c2y2

az
= a ⇒ a2

4c2yz
= 0 ⇒ a = 0,

and this is impossible and proves the lemma.

Solution of X2 = A in whichA is of dimension 3
The second root of all square matrices that have differ-
ent eigenvalues are achieved. In this article, the cases are
studied in which eigenvalues are not different.
The second root of a matrix A is X = VEV−1, where V

is a matrix, rows of which are eigenvectors of A and also
V is diagonal matrix, and the entries on its diagonal are
square root of eigenvalues of A, because

X2 = (VEV (−1))2 = VEV (−1)VEV (−1) = VE2V (−1) = A.

In this section, we solve the problem for the triangular
matrix A. Next, we attempt to solve the problem for a
more generalized case.

Theorem 2. The second root of matrix

A =
⎡
⎣a b c
0 d e
0 0 d

⎤
⎦ ,

in which a �= d and d �= 0 equals:

X =
⎡
⎢⎣

√
a b√

a+√
d

m
0

√
d e

2
√
d

0 0
√
d

⎤
⎥⎦ ,

in which

m =
−be(

√
d − √

a) + (d − a)( be
2
√
d

+ c
√
d − c

√
a)

(a − d)2
.

Proof. λ1 = a, λ2 = d, λ3 = d + t (t → 0) ⇒ E =⎡
⎣

√
a 0 0
0

√
d 0

0 0
√
d + t

⎤
⎦ .

AX1 = λ1X1 ⇒ X1 =

⎛
⎜⎜⎝

1

0

0

⎞
⎟⎟⎠

AX2 = λ2X2 ⇒ X2 =

⎛
⎜⎜⎝

−b

a − d

0

⎞
⎟⎟⎠

AX3 = λ3X3 ⇒ X3 =
( −be−tc

t(a−d−t)
e
t 1

)T

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⇒

V =
⎡
⎣1 −b be+tc

td+t2−ta
0 a − d e

t
0 0 1

⎤
⎦ .

X = lim
t→0

VEV−1 =

⎡
⎢⎢⎣

√
a b√

a+√
d

m

0
√
d e

2
√
d

0 0
√
d

⎤
⎥⎥⎦

m =
−be(

√
d − √

a) + (d − a)( be
2
√
d

+ c
√
d − c

√
a)

(a − d)2
.

Example 1. The second root of A =
⎡
⎣1 4 9
0 4 1
0 0 4

⎤
⎦ equals:

X =

⎡
⎢⎢⎣
1 4

3
26
9

0 2 1
4

0 0 2

⎤
⎥⎥⎦ .

Theorem 3. The second root of A =
⎡
⎣d b c
0 d e
0 0 a

⎤
⎦, in which

a �= d and d �= 0 equals X such that

X =

⎡
⎢⎢⎢⎣

√
d b

2
√
d

(be+ca−cd)(
√
a−√

d)+ be(d−a)
2
√
d

(a−d)2

0
√
d e√

a+√
d

0 0
√
a

⎤
⎥⎥⎥⎦ .

λ1 = d, λ2 = d + t (t → 0),

λ3 = a ⇒ E =
⎡
⎣

√
d 0 0
0

√
d + t 0

0 0
√
a

⎤
⎦
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Proof. AXi=λiXi, i=1, 2, 3⇒V =
⎡
⎢⎣1 b

t
be+ca−cd
(a−d)2

0 1 e
a−d

0 0 1

⎤
⎥⎦

⇒X= limVEV−1
t→0

=

⎡
⎢⎢⎣
√
d b

2
√
d

(be+ca−cd)(
√
a−√

d)+ be(d−a)
2
√
d

(a−d)2

0
√
d e√

a+√
d

0 0
√
a

⎤
⎥⎥⎦.

Example 2. Second root of A =
⎡
⎣9 −6 17
0 9 14
0 0 25

⎤
⎦ is equal

with X =
⎡
⎣3 −1 75

32
0 3 7

4
0 0 5

⎤
⎦ .

Theorem 4. Second root of A =
⎡
⎣a b c
0 d e
0 0 a

⎤
⎦ in which a �= d

and a �= 0 equals X such that X =
⎡
⎢⎣

√
a b√

a+√
d

n
0

√
d e√

a+√
d

0 0
√
a

⎤
⎥⎦

and n is as n =
(−be−ca+cd)(a+d)

2
√
a +eb

√
d+c

√
a(a−d)

(a−d)2
.

λ1 = a, λ2 = d, λ3 = a + t(t → 0)

E =
⎡
⎣

√
a 0 0
0

√
d 0

0 0
√
a + t

⎤
⎦ , AXi = λiXi, i = 1, 2, 3 ⇒

Proof. V =
⎡
⎢⎣ 1 b be+ct+ca−cd

(a−d)2

0 d − a e
t+a−d

0 0 1

⎤
⎥⎦

⇒ X = limVEV−1
t→0

=
⎡
⎢⎣

√
a b√

a+√
d

n
0

√
d e√

a+√
d

0 0
√
a

⎤
⎥⎦

and

n =
(−be−ca+cd)(a+d)

2
√
a +eb

√
d+c

√
a(a−d)

(a−d)2

Example 3. Second root of A =
⎡
⎣ 9 −7 −5
0 16 4
0 0 9

⎤
⎦ equals:

X =
⎡
⎣ 3 −1 −31

42
0 4 4

7
0 0 3

⎤
⎦ .

Theorem 5. Second root of A =
⎡
⎣a b c
0 a d
0 0 a

⎤
⎦ , that a �= 0 is

X =
⎡
⎢⎣

√
a b

2
√
a

4ca−bd
8a

√
a

0
√
a d

2
√
a

0 0
√
a

⎤
⎥⎦ .

λ1 = a, λ2 = a + t, (t → 0), λ3 = a + 2t,

(t → 0) ⇒ E =
⎡
⎣

√
a 0 0
0

√
a + t 0

0 0
√
a + 2t

⎤
⎦ ,

Proof. AXi=λiXi, i=1, 2, 3⇒V =
⎡
⎣ 1 bd+tc

t2
bd+2ct
4t2

0 d
t

d
2t

0 1 1

⎤
⎦ ,

⇒ X = limVEV−1
t→0

=
⎡
⎢⎣

√
a b

2
√
a

4ca−bd
8a

√
a

0
√
a d

2
√
a

0 0
√
a

⎤
⎥⎦ .

Example 4. Calculate the second root of A =
⎡
⎣ 4 9 −3
0 4 11
0 0 4

⎤
⎦,

X =
⎡
⎣ 2 9

4
−147
64

0 2 11
4

0 0 2

⎤
⎦ .

Second root of lower triangular matrix
In order to find the second root of the lower triangular
matrix that has iterated eigenvalue (the four cases men-
tioned previously), we do as the upper triangular matrix
since (At)my = (Amy)t .

Theorem 6. If A =
⎡
⎣ 0 0 0
a 0 0
b c d

⎤
⎦ , d �= 0 then

(a) If a �= 0, then A has no lower triangular second root.
(b) If a = 0, then A has infinite second roots as

X =
⎡
⎢⎣

0 0 0
t 0 0

b
√
d−tc
d

c√
d

√
d

⎤
⎥⎦, where t is a free parameter.

Example 5. Find the second root of

⎡
⎣ 0 0 1, 100
0 0 1, 200
0 0 1, 600

⎤
⎦

such that sum of all entries is 100.

X =
⎡
⎣ 0 t 110−3t

4
0 0 30
0 0 40

⎤
⎦ ⇒ X =

⎡
⎣ 0 10 20
0 0 30
0 0 40

⎤
⎦.

Theorem 7. Find the second root of a lower triangular
matrix which has three eigenvalues (all are 0);
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considering A =
⎡
⎣ 0 0 0
a 0 0
b c 0

⎤
⎦ ,with b �= 0, we have the

following:

(a) If a = c = 0, we can find infinite second roots of A.
(b) If at least a or c is not 0, then A has no lower triangular
second root.

Example 6. Calculate the second root of A =⎡
⎣ 0 0 1, 390
0 0 0
0 0 0

⎤
⎦ such that sum of all entries is 1,391.

X =
⎡
⎣ 0 1,390

t 0
0 0 t
0 0 0

⎤
⎦ ⇒ X =

⎡
⎣ 0 1 0
0 0 1, 390
0 0 0

⎤
⎦ or

X =
⎡
⎣ 0 0 1, 390
0 0 1
0 0 0

⎤
⎦ .

Theorem 8. The second root of the matrix A =⎡
⎣ a 0 b
0 a 0
0 0 d

⎤
⎦ , when a �= b, and a �= 0, equals:

⎡
⎢⎢⎣

√
a

bc
(√

d−√
a+ a−d

2
√
a

)
(a−d)2

b√
a+√

d
0

√
a 0

0 0
√
d

⎤
⎥⎥⎦ .

Example 7. Calculate the second root of A =⎡
⎣ 9 0 −19
0 9 0
0 5 16

⎤
⎦.

The solution is X =
⎡
⎣ 3 95

294
−19
7

0 3 0
0 5

7 4

⎤
⎦ .

Second root of 3 × 3matrix
In this section, we find the solution of equation X2 = A,
when A is special 3 × 3 non-triangular matrix.

Theorem 9. The second root of matrix A =
⎡
⎣a 0 b
0 a 0
0 0 d

⎤
⎦ ,

when a �= b, and a �= 0, equals

⎡
⎢⎢⎣

√
a

bc
(√

d−√
a+ a−d

2
√
a

)
(a−d)2

b√
a+√

d
0

√
a 0

0 c√
a+√

d

√
d

⎤
⎥⎥⎦ .

Proof. At first, we find the eigenvalues of matrixA. From
det(A − λI) = 0, we have λ = a, a, d. Thus,

E =
⎡
⎣

√
a 0 0
0

√
a + t 0

0
√
d

⎤
⎦ .

The matrix eigenvector associated to these eigenvalues
has the following form:

V =
⎡
⎣ 1 bc

t(a−d+t) b
0 1 0
0 c

a−d+t d − a

⎤
⎦ ,

where t is a free parameter. Then, we have:

V−1 = 1
detA

adjA = 1
d − a

⎡
⎣ d − a 0 0

bc
t d − a − c

a−d+t−b 0 1

⎤
⎦
T

,

and then we have:

VEV−1 =
⎡
⎢⎣

√
a x12 b√

a+√
d

0
√
a + t

√
d

−0 x23 1

⎤
⎥⎦ , (13)

where

x12 =
√
abc(a − d + t) + bc

√
a + t(d − a) − tbc

√
d

t(d − a)(a − d + t)
,

x32 = c
√
a + t(d − a) − c(d − a)

√
d

(d − a)(a − d + t)
.

Now, we take limit of all elements of matrix (13) when t
tends to zero; therefore,

X = limVEV−1
t→0

=

⎡
⎢⎢⎣

√
a

bc(
√
d−√

a+ a−d
2
√
a )

(a−d)2
b√

a+√
d

0
√
a 0

0 c√
a+√

d

√
d

⎤
⎥⎥⎦ .

Theorem 10. The square root of 3 × 3 permutation

matrices P12 =
⎡
⎣ 0 1 0
1 0 0
0 0 1

⎤
⎦, P13 =

⎡
⎣ 0 0 1
0 1 0
1 0 0

⎤
⎦ and

P23 =
⎡
⎣ 1 0 0
0 0 1
0 1 0

⎤
⎦ equals

⎡
⎣ i+1

2
1−i
2 0

1−i
2

i+1
2 0

0 0 1

⎤
⎦,

⎡
⎣ i+1

2 0 1−i
2

0 1 0
1−i
2 0 i+1

2

⎤
⎦

and

⎡
⎣ 1 0
0 i+1

2
1−i
2

0 1−i
2

i+1
2

⎤
⎦, respectively, where i = √−1.
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Proof. We present proof only for P12. From det(P12 −
λI) = 0, we have λ = 1, 1,−1. Thus, the matrix

E=
⎡
⎣1 0 0
0

√
1 + t 0

0 0 i

⎤
⎦, and the matrix V =

⎡
⎣1 1 1
1 1 −1
1 0 0

⎤
⎦.Then,

VEV−1 =
⎡
⎢⎣

√
1+t+i
2

√
1+t−i
2 1 − √

1 + t√
1+t−i
2

√
1+t+i
2 1 − √

1 + t
0 0 1

⎤
⎥⎦ ,

and by taking limit when t tends to zero, we obtain
solution.
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