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Introduction

LetD = {z € C : |z| < 1} be the open unit disk of the
complex plane C. H(ID) denotes the space of all analytic
functions in D, and dA(z) is the normalized area measure
on D so that A(D) = 1.

Let Green’s function of D be defined as g(z,a) =
log ‘%—l(z)‘, where ¢,(z) = lz%;z, for z,a € D is the Mobius
transformation related to the point a € D. A complex-
valued function defined in DD is said to be univalent if it
is analytic and one-to-one there. The class of all univalent
functions in D will be denoted by U. If f € U , Q@ = f(D),
and 02 is a Jordan curve, then f : D — Q is said to
be a conformal mapping, and so 2 is a simply connected
domain strictly contained in C.

For 0 < o < 0o, we say that an analytic function f on D
belongs to the space B* (see [1]) if

Ifllse = sup( — |z)*|f'(2)] < oo.

zeD

Moreover, we say that f € B* belongs to the space By if
lim (1 — [21*)*|f'(2)| = 0.
la|—1

The space % is a Banach space under the norm ||f|| =
[f(0) + |Ifllge. If @ = 1, the space B! is the Bloch space B
and the space B(l) is the little Bloch space By (see [2]).
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Let K :[0,00) —[0, 00) be a right-continuous and non-
decreasing function. For 0 < p < 00, —2 < g < 00, the
space Qg (p, q) consists of all functions f € H(D) (see [3]),
for which

|[f||PQK(p'q):sug /D If ()P (1|21} K (g(z, @))dA(z) < oo
ae

Moreover, we say that f € Qk (p, q) belongs to the space
QK,O (19: Q) if

lim / If @P (1 — 219K (g(z, a))dA(z) = 0.
D

lal—

The definition of Qx (p,q) here is based on K(g(z, a)).
There is a slightly different definition of Qk (p,q) in the
literature that is based on K (1 — |¢a(z)|2). However, it
has been known that the two definitions are essentially
equivalent (see [4,5]). Equipped with the norm [f(0)| +
Ifllok ., the space Qx(p,q) is a Banach space when
p>11tg+2=p, Qx(p, q) is Mobius-invariant, i.e.,

If o walloxp.ay = Il ok p.a)

for all a € D. The study of Qx(p,q) space has mainly
been on understanding the relationship between the prop-
erties of K and the resulting spaces Ok (p,q). For more
information about these spaces, we refer to [3,6-9].

Let f € U. For a Banach space X C H(D), we say that
Q = f(D) is an X-domain whenever logf’ € X. Many
such domains have been characterized in terms of the
Schwarzian derivative of a conformal map of D. Namely,
Becker and Pommerenke in 1978 characterized bounded
By domains (see [10]), and in 1991, Astal and Zinsmeister
gave a description of BMOA domains (see [11]). Also, Qp
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domains were characterized by Pau and Peldez in 2009
(see [12]) by using a method developed in 1994 by Bishop
and Jones (see [13]). Moreover, F(p,q,s) domains were
characterized by Zorboska in 2011 (see [14]).

The logarithm of the Schwarzian derivative of a univa-
lent function plays an important role in geometric func-
tion theory in the characterization of different types of
domains, and in its connections with the Teichmiiller the-
ory. For example, one of the famous results in geometric
function theory by Astala and Gehring states that Q =
f(D) is a quasi-disk, i.e., f has a quasiconformal exten-
sion to the complex plane if and only if logf’ belongs
to one of the models of a Teichmiiller space T(1) =
{logf’ : f hasa quasiconformal extension to D}, that is,
the Bloch norm interior of the set of all mappings logf’,
with univalent function f (see [15]).

Analogously, f € H(D) is called locally univalent if it is
injective in a neighborhood of each point of I, which is
further equivalent to f’(z) # 0. The Schwarzian derivative
of a locally univalent function was introduced by Chuaqui
and Osgood in [16].

In this paper we study the membership of logf’ to
the general Ok-type spaces Qx(p,q) in terms of Car-
leson measures involving the Schwarzian derivative of f.
Moreover, we have given Schwarzian derivative character-
izations of the spaces Sy = {logf’ : f € U,logf’ € X},
where X is either a Qx (p, q) or Qk 0(p, q) space, contained
in the Bloch space.

Note that the space Qk (p, q) includes the space BMOA
(the space of functions analytic on D and with bounded
mean oscillation on the unit circle), the class of so-called
Qs space, the class of (analytic) Besov spaces B, and the
general Besov-type spaces F(p, g,s). Thus, the results are
generalizations of the recent results due to Pau and Peldez
[12], Pérez-Gonzalez and Réttyé [17], and Zorboska [14].

The letter C denotes a positive constant throughout the
paper which may vary at each occurrence. Throughout
this paper, we suppose that the nondecreasing function K
is differentiable and satisfies K (2¢t) ~ K (t), that is, there
exist constants C; and Cj such that C1K(2t) < K(t) <
CyK(2t). Also, we assume that

1
/ 1 —r?)IK (log l/r) rdr < oo. (1)
0

Otherwise, Ok (p,q) is trivial, that is, Qx(p,q) con-
tains constant functions only (see [8]). We know that

Ox,(0,9) = Qu,(p g for Ky = inf(Ki(r),Ki(1)) (see
[8], Theorem 3.1), and so the function K can be assumed

+2
to be bounded. We know that Qx(p,q) C BqT and

q+2

Qxo(p,q) C By’ (see [8]). Also, if

1
/ 1 - r2)_2K (log l/r) rdr < 00,
0
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g2 a2
then Qx(p,q) = B 7 and Qko(p,q) = B," (see [8]).In
order to obtain our main results in this paper, we define
an auxiliary function ¢ as follows:

K(st)

() = S Ty

The following conditions play important roles in the
study of O (p, q) space (see [3,8,18]):

0<s <o

1 ds
/ oK (s)— < 00 (2)
0 S
and that
(1 — |z*)P2 < 1 )
————K\llog — )| dA(2) < . (3)
webJo 1 azp &zl

We know that (2) implies (3) for 1 < p < oo (see [3]).

Throughout this paper, f(z) will be a conformal map-
ping, and we shall write /(z) =: log(f')(z). We denote by
Pr(z) the so-called pre-Schwarzian of f(2), i.e.,

f// (Z)
fl@
The Schwarzian derivative of a locally univalent function

fis

Pr(z) = K (2) =

/ 1 f//(z) "1 f”(Z) >
52 = P23 (Pr(2)” = (f’(Z)) 2 (f/(z)> '
(4)

We list few properties of Pr(z) and Sy (z). For proofs and
more details, see [19].

(A) If fis univalent on D, then (1 — |z|2)|Pf(z)| < 6and
(1 —12»)?1Sr(2)| < 6.

(B) If (1 — |21®)|2Pr(2)| < Lor (1 —|21%)?Sf(2)| <2,

then f is univalent on .

For h € H(D), h € B if and only if there exist w € C

and a univalent f such that # = wlogf".

The Schwarzian derivative is Mobius-invariant in the

sense that Seaof = Sf, and it is also such that

(1 = 121%)2[Sfog, (@] = (1 = 190a(2)|*)*ISf(¢a(2))|, for
every Mobius transformation ¢,4(2)),a € D.

For a subarc I C 9D, the boundary of D, let
SHy={rceD:1—-|l|<r<1, ¢el}.

If |I| > 1, then we set S(J) = . A positive measure p is
said to be a bounded K-Carleson measure on D (see [18])

if
1—
sup / I(( |Z|>du(z) < 00.
1c 3D Jsw) 7]

Moreover, if

1 —
1<< |Z|)d,u(z) —0,
S 7]

then u is a compact K-Carleson measure.

lim
1|—0
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Clearly, if K(t) = 7, then p is a bounded p-Carleson
measure on D if and only if (1 — |z|?)du is a bounded
p-Carleson measure on D (see [18]). The following lemma
is Corollary 3.2 in [18].

Lemma 1. Let K :[0,00) —[0,00) satisfy (2). Then a
positive measure ( on D is a K-Carleson measure if and
only if

sup[];)l( (1 = pa(@)|?) da(z) < cc.

aeD

Next, for each n = 1,2,..., from the dyadic Carleson
boxes

. 1 j

Qn’j={z=re‘ge]1]):l—27§|z|<1, pYas)
0 j+1 . ontl
§;<2n+1},0§]§2 ,

of side-length £(Qy,;) = 2% and their inner half

1 1
T(Quj) = QujNiz € Quj: 1 = o = 2] < J£(Qu)}.

From [20], for a univalent function f, the given é and ¢ will
be determined later. If Q is a dyadic Carleson box, we shall
say Q is bad if

sup (1—|z[»)|Ps(2)| > & and
zeT(Q)

sup (1 —[z[%)%[S7(2)] < 6.
zeT(Q)

We callQ a maximal bad square if the next bigger dyadic

square Q containing Q has either £(Q) = % or sup (1—

zeT(Q)
12*)21S7(2)| > 8.

Lemma 2. [12] Let f be a univalent function on D, and
suppose that there exists zy € D such that |Sf(zo)|2(1 -
|z0|%) > 8. Then there is a positive constant ¢ = c(8) < 1
sucizl that |Sf(z)|2(1 —1z)%) > ;—2, whenever z € D(zp, c(1 —
|201%)).

In the proof of Theorem 4, some sums of the type
> L[ K(Q)] will be estimated. One of them appears in the
j

following lemma.

Lemma 3. Let p,&,8 be positive constants and K
[0, 00) — [0, 00). Then there exists C1, Cy > 0 such that

D K@l G
j

+C f 1Sr(2)1P(1 — |21 2K (1 — |ga(2)|)dA(2).
D
(5)
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Proof. Let Q be a maximal square with £(Q) # % Then

Q is a maximal bad square, and hence, there exists zg €
T(Q) with

1 — 1219217 (z0)| > 8.

Then, by Lemma 2, there is a disk D, = D(z0,c(1 —
l201%)) C T(Q) such that

1)
(1= PPIS@)] > o5, forall z € Dy,

Then

LKQ] ~ L[K(Q] < /1; (1= 12 7K1 — |pa(2))dA(2)

<cC f ISP (1 — |21)?P2K (1 — |9a(2)|)dA(2).

0

Since any top half T(aj) can appear only two times, and

since there are only two squares Q' with £(Q) = %, then
(5) holds. O

The nth derivative of Qx (p, q) space
First, we give some equivalent conditions for the nmth
derivative of Qx (p, q) spaces.

Theorem 1. Let K : [ 0,00) — [0, 00) satisfy (2), (3), 0 <
p < o0 and —2 < q < 00. Suppose that n is a positive
integer, and h € H(D). Then the following statements are
equivalent:

(i) heQxp q9);
(i) W™ ()P (1 — |2|*)"P P 9dA(z) is a K-Carleson
measure;

(iii)

sup /D 1K (2)|P (1|2} PHIK (g(z, a))dA(z) < oo;

aeD

(iv)

sup / 1h™ ()P (1 — |2/ PHK (1 — |ga(2)|)
aecD JD

X dA(z) < oo.

Proof. (i) < (ii). This implication is an immediate conse-
quence of the corresponding part of the proof of Theorem
2in [3].

(i) © (iii). Similarly as in the proof of Theorem 1 in [3],
the implication follows.
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(ii) & (iv). By Lemma 1 for du(z) = K" (@)P1 —
|z|%)"?~Pt94A(z), then u is a K-Carleson measure if and
only if

sup /D K (1= ¢a@P) du(@

acD
=sup f | ()P (1 — 2127 PHK (1 — |ga(2)[?)
acD JD
X dA(z) < oo.
Thus, the implication follows. O

Theorem 1 has a corresponding ‘little-oh’ version in
terms of compact K-Carleson measure as follows:

Theorem 2. Let K : [ 0,00) —[0, 00) satisfy (2), (3), 0 <
p < o0 and =2 < q < 00. Suppose that n is a positive
integer, and h € H (D). Then the following statements are
equivalent:

(i) heQkop 9);
(i) |h" ()P — |2|*)"PPt9dA(z) is a compact
K-Carleson measure;

(ii)

lim
lal—1

|h" (2)P (1—|2/%)"P~PHK (g(z, @))dA(z) = 0;
D

(iv)
|1|im1 f K @) (1 — 21 PTEK (1 - |ga(2)]?)
a|— ]D)

X dA(z) = 0.

Now, we prove the following lemmas:

Lemma 4. Let K : [0,00) —[0,00) satisfy (2), (3), 1 <
p < ooand -2 < q < cowithq—p < =2, and let
h =logf’ € By. Then if |S;(2)|P (1 — |z|*)PT1dA(2) is a K-
Carleson measure, we get that |Ps(2)|P(1 — 1z12)1dA(z) is
also a K-Carleson measure.

Proof Recall that Sy(z) = Pj(a) — }(Pr(@)’,
that by Theorem 1, |Pr(2)IP(1 — 1z12)1dA(z) is a
K-Carleson measure if and only if |Pj’((z)|p(1 -

|z|2)?t1dA(z) is a K-Carleson measure, and that
1 - |z|2)|Pf(z)| < 6 for every z € D. Thus, for any
1 < p < 00, we have
I(a) = /D IPH@P (1 = 12K — |9a(2)*)dA(2)
<! / ISp@) P (1 — 2P TIK (1 — |a(2)|*)dA(2)
D

+ %/DIPf(z)|2p(1 22K (1 — |ga(2)2)dA(2).

Page4of 8

In what follows, we may assume that Py is continuous on

D (the closed unit disk), for if not, we can use instead the
dilatations (Py),(z) = Pr(rz), and then at the end of the
proof, take r — 1.

Since h = logf’ € By, for any ¢ > 0 there exists r; such
that whenever |z| > r¢, we have |Pr(2)|(1 — |z|2) < €, and

f 1Pr(@)# (1 — |2lHPHK (1 — |ga(2)|*)dA(z)

D

= ] 1Pr(2) | (1 — |21PTIK (1 — |ga(2)|)dA(2)
|z|>re

+ /| ‘ IPr(2)|* (1 — |2|P K (1 — |9a(2)|*)dA(2)
z|<rg
=ILi(a) + (a).
Thus, for some C = C(p, q), we have
Li(a) = /‘ | 1Pr(2) [ (1 — 2P TIK (1 — |9a(2)|*)dA(2)

<é / 1Pr()IP (1 — |2*)IK(1 — |a(2)|P)dA(2)
D

< Ce? f IPr@) P (1= 2P HIK (1 — |ga(2)[P)dA(2)
D

= Cell(a).

On the other hand, since g — p < —2, for everya € D we
have

I(a) = /‘ | 1Pr(2)| (1 — [2*YTIK (1 — |pa(2)|)dA(2)

<6 / (1= 2T PK( — pu@IP)dA@)
|zl <re

6%

<—.

T AP
Choose ¢ that is small enough such that 1 —
Then, since

CeP

(1 - ;)zw <27 / IS¢ )P (1 = |27
D

2p

Ce?

—_ 2 a1 . No—a
K1 — |9a(2)|")dA(z) + 2(1 — ng)piq,

(6)
and since |S¢(2)[P (1 — |z|2)PT1dA(z) is a K-Carleson mea-
sure, taking supremum over a € D on both sides of (6), we
get

sup I(a) =sup f 1P @) (1= 21K (1= |9a(2) ) dA(2) < oc.
eD JD

achD a

It follows by Theorem 1 that | Py (2) [P (1— 1z12)1dA(z) is also
a K-Carleson measure, and the proof is completed. O

Now we give the following result.
Proposition 1. Let K : [0,00) — [0, 00) satisfy (2), (3),

1<p<ooand -2 < q < oo.Ifh =logf € Qx(,q),
then |Sp(2)|P(1 — |21 1dA(z) is a K-Carleson measure.
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Proof. Since f is univalent,
logf"lls = sup(1 — [z*)|P(2)| < 6.
acD
Thus by Theorem 4 with n = 1 and & = logf’, we have
h =logf’ € Qk(p,q) if and only if
|Pr(2)P(1 — 1z1%)7dA(z) is a K-Carleson measure. (7)

Using Theorem 4 with n = 2, this is further equivalent
to

|P} (@)P(1—|z1**T1dA(z) being a K-Carleson measure.

(8)

Forp > 1, we get
1y 1
ISy @1 < 2P @I + 2P ()
Thus,
ISF@P (1 — |21+ < 227 HPL(2) P (1 — |27
1
+ 5 Nogf 'l (2P (1 — [2)1.

By (7) and (8) we have [S¢(2)[P(1 — |22 1dA(z) as a K-
Carleson measure. The proof is completed. O

Schwarzian derivative and K-Carleson measure

In this section, we give Schwarzian derivative characteri-
zations of the spaces Sy = {logf’ : f € U, logf’ € X},
where X is either a Ok (p,q) or Qxo(»,q) space, con-
tained in the Bloch space. Note that since Qk (p,q) C By
whenever ¢ + 2 < p,or g+ 2 = p and K(0) > 0,
and Qxo(,q) C By whenever g + 2 < p, we have
Sx N T(1) = Sx, where X is one of these spaces and
T(1) = {logf’ : f hasa quasiconformal extension to D}.
Thus, the main interests are the leftover options, i.e., the
cases when X = Qx(p,p — 2), K :[0,00) —[0,00), and
1 < p < 0o, which are all Mobius-invariant Qg (p, p — 2)
space.

Theorem 3. Let K :[0,00) —[0,00) satisfy (2), (3),
1 <p < ooand -2 < q < oo, further satisfying either
q+2 <p orq+2=pandK(t) = 1. Then the following
conditions are equivalent:

(i) logf € Qk(p.q)-
(i) logf' € Bo and |Sp(2)P(1 — |z12P1dA(z) is a
K-Carleson measure.

Proof. Recall that for the general choice of p,q and K

satisfying (2) and (3), logf’ € Qx(p,q) C 8%2. Thus, if
q+2 < p,Qxpq) C B* with0 < o < 1, which is a
subspace of By. Thus, the proof of (i)<= (ii) follows from
Lemma 4 and Proposition 1. O
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The case g + 2 = p and K(¢) = 1, i.e., the case of the
Besov spaces By, 1 < p < oo, follows similarly, noting that
each of these spaces is also included in By. This result also
appears in [21].

Theorem 4. Let K :[0,00) —[0,00) satisfy (2), (3),
1 < p < ocoand =2 < q < oo, further satisfy-
ingq+ 2 = p. Then logf' € Qx(p,q) if and only if
[Sr(2)IP (1 — |21 19dA(z) is a K-Carleson measure.

Proof. The direction of the proof is already covered by
Proposition 1. Since ¢ = p — 2, we have Qx(p,q) =
Ok (p, p—2), and we are left to prove that if

IS¢ ()P (1 — |21 ~2dA(2)

is a K-Carleson measure, then logf’ € Qk (p,p — 2). Both
of these conditions are Mdbius-invariant, and so, all that
we really need to prove is that

/D ISF@FP (1 = [21)* K1 — |pa(2)|*)dA(2) < 00
implies
fD PH@P (1 — 2P 2K — [pa(@PAG) < oo,
which is further equivalent to
/D IPr@)P (1 — [2)* 2K (1 ~ |¢a(2)*)dA(2) < co.
Since [P;(2))” < 271 |S¢(2)P + 31P;(2)|, we have
fD IPL@IP (1 = [21)* K (1 = |ga(2)[*)dA(2)
< ! /D ISF@ P (1 — 2?7 K (1 — |ga(2)*)dA(2)
+% fD 1Pr(2) [P (1 — |21 2K (1 — |9a(2)|*)dA(2).

As before, we may assume that Py is continuous on D (the
closed unit disk), for if not, we can first use r-dilatation Py
and then take r — 1 at the end of the proof.

We estimate the integral

Ip®) = /D 1Pr(2)| (1 — |2 2K (1 — |pa(2)|)dA(2)

by estimating parts of this integral over three subsets of D.
Fore,§ > 0, let

U=i{zeD: |P@I1—zI*) <e),

V={zeD: 5|1 - z)? > 8},
and
A=D\(UUYV)
= {zeD:|Pr(@)|(1—|z*) = &, S (2) (1 - |21H)? < 8).
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By Theorem 1, there is E > 0 such that
fD IPr(2)P(1 — [2*YP 72K (1 — |pa(2)*)dA(2)
<E f IPr@IP (1 = 2P 2K~ pa(2))dA(2),
D
SO
Ip(U) = f 1Pr ()| (1 — 122K (1 — |ga(2)[*)dA(2)
u
<éf f IPr(2)IP (1 — |z 2K(1 — |a(2)|H)dA(2)
u
<ef / IPr(2)P (1 — [2*Y 2K (1 — |pa(2)|P)dA(2)
D
< Ee? / IPr@)P (1~ |2 2K (1 ~ |¢a(2)*)dA(2).
D
Using [Py (2)|(1 — |2|*) < 6, we have
Ip(V) = /V IPr(2) | (1 — 22K (1 — |ga(2)|*)dA(2)
< 6% / (1 =12 72K (1 — |ga(2)|*)dA(2)
14
6%
<— f ISr ()P (1 — 21)?2K(1 — |9a(2)|*)dA(2)
& Jy
6%
< — / IS¢ ()P (1 — |21 72K(1 — |9a(2)[*)dA(2).
& Jp
For the estimate of
Ip(2) = / 1Pr(2) | (1 — |2 2K (1 — |ga(2)|*)dA(2),
A
we use a sequence {Q;} of Carleson boxes, so

Ip(8) = /A 1Pr(2)| (1 — |2 2K (1 — |ga(2)|*)dA(2)

dA(z)

2p _ 2

<6 fA K= 19a@P) 7 =53
dA(z)

6% f K(1 = |9a(@)|) ———2—

< §k oy KU @D T o

<6%CY LK(Q)].

J

Combining the above and choosing ¢ such that Ee? < 1,
we get

fD IPHRI (L = 222K = ga(2) AA()
< 2P—1/D|sf(z)|1”(1 — 2?7 72K(1 — |a(2)[*)dA(2)

P
+ 5 [ IE@ra - K - @ Pdae)
2 Jo

62r
t o

+ 6%CY UK(WQ)].
j

/D ISr ()P (1 — |2 2K(1 — |9a(2)[*)dA(2)
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By Lemma 3, we further have

> UK Q)]
j

<C+G f ISp(@) P (1 — [z*)P 72K (1 — |ga(2)|)dA(2).
D

Choosing C to represent a generic positive constant, we
get

(1— ?) /D 1Pr@IP (A = 2P 2K~ |pa(2) ) dA(2)
<C /D ISr@) P (1 — |2 2K (1 — |9a(2)|P)dA(2).
Thus,
/D ISp@FP (1 — [21)* 7K (1 — |9a(2)[*)dA(2) < o0,
which implies that
/D IPr@)P (1 — [2)* 72K (1 ~ |ga(2)[))dA(2) < 00

this is equivalent to logf’ € Ok (p, q), and this finishes the
proof. O

Next, we give the results of the membership of logf” in
the space Qr0(p, q).

Theorem 5. Let K :[0,00) —[0,00) satisfy (2), (3),
1<p<ooand—2 < q < oo, further satisfying q + 2 <
p. Then logf' € Qro(p,q) if and only if |Sf(2)[P(1 —
|2|2)1*PdA(z) is a compact K-Carleson measure.

Proof. Since g + 2 < p, we have Qro(,q) < Bo.
Thus, if logf’ € Qko(p,q), to prove that |S¢(2)|P(1 —
12|2)7*?dA(z) is a compact K-Carleson measure, we start
with the inequality

_ 1
IS/ @1 < 2P @) + 1P )P
Thus,
/D ISP (A — [ZHTPK(A ~ |pa(2)[*)dA ()
< ! /D IPL@P (1 = |2 TPK (1 — |9a(2)*)dA(2)
1 !
+ 5 ogf"I15 /D 1Pr@) P (1 — [2)TK (1 — |9a(2)|P)dA(2).
Taking limits as |a| — 1 on both sides of the inequality,
by Theorem 2, we get that |Sy(2)[P(1 — 1z]2)1TPdA(z) is a
compact K-Carleson measure.
For the converse, let us assume that [S/(2)[P(1 —
|21t dA(z) is a compact K-Carleson measure. We will

first show then that logf’ € By, i.e., [Sr(2)|(1 — |z*)* — 0
as |a] — 1. Since g + 2 < p, we have (1 — |z|2)2p72 <


http://www.iaumath.com/content/7/1/43

El-Sayed Ahmed and Bakhit Mathematical Sciences 2013, 7:43
http://www.iaumath.com/content/7/1/43

(1 — 121777, and so |Sf(2) P (1 — |2|*)*#~2dA(z) is also a
compact K-Carleson measure. For a € D, let

E@a,1l/e)={zeD:|z—a|l < 2(1 — |al)}.

It is easy to see that

(1_ 1) Q—la) <Q-z]) < (1+ 1) (1 — lal)
e e

whenever z € E(a,1/e). Using 1S7(2) |P as a subharmonic
function and the pseudo-hyperbolic disk D(a,1/e) and
E(a,1/e) C D(a,1/e), we have

ISr(@) P (1 — |a|®)?

< K(1) ISP (1 — |2*)#2dA(z)
E(a,1/e)

< K(1) ISP (1 — |2*)#2dA(2)
D(a,1/e)

< / IS¢ () P11 — |22 < K(1—|9a(2)[*)dA(2) < 0.
D

Therefore, [Sf(a)P(1 — |a|?)% < o0, and so
|l‘im1 [Sp(@)| (1 — la|>)> = 0, which is equivalent to
a|—

logf’ € Bo.

The rest of the proof follows similarly to the proof of
Lemma 4, with appropriate adjustments. Using logf’ €
By, replacing the supremum over a € D with limit as
la] — 1, and using that for |z| < r, we have (1 —
lpa(2))? < — 0 as |a| — 1. We get accordingly
that if [Sy(2) [P (1 — 1212)7*PdA(z) is a compact K-Carleson
measure, then

1—|a
1-r

lim / PP (1 — 2 TPK (1 — |9a(2)|*)dA(z) = 0.
lal—1 Jp
Hence, logf’ € Qk0(p, q), and this finishes the proof. [

Jordan curve and QO (p, p — 2) space

There are many interesting questions related to the topo-
logical structure of these types of general Teichmiiller
spaces and the geometry of the domains 2. For example:

o Isitalways true that Sg, (yp—2) N T(1) is the interior
of Soi(pp—2) in O (p, p—2), and what is their closure
in the Qx (p, p — 2) norm or in the Bloch norm?

e Are there specific descriptions of some of the
connected components of Sg, (p,p—2) N T (1) via the
dilatations of the quasiconformal extensions of the
corresponding map f or in terms of specific
conditions imposed on f?

e What are the specific geometric properties that either
Q or 9Q has when log " belongs to Sg (pp—2) or to
Sokpp-2 NT1)?

Recall that since f is univalent and 9€2 is a Jordan curve,
0Q is rectifiable if and only if f/ € H! (see [19], Theorem
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6.8). Furthermore, the Hardy-Stein-Spencer identity states
that f* € H",r > 0 if and only if

/D I @I @21 — |2*)dA(z) < 00,  (see [21]).

Note that since Q2 is a bounded domain, we get that f
belongs to the Dirichlet space D, which is contained in
the little Bloch space By. It is even more true whenever
logf’ € Qko(p, q). Namely, since all of the Qg o(p,q)
spaces are contained in By, then logf’ € B% o > 0 (see
[14], p. 56).

By using equivalent, higher derivative versions of a
weighted Bergman space norm, it is not to hard to see that

: ’ . . 1@ _
iflogf’ € By, i.e., |i\l§1(1 —|z|%) ol = 0, then

/ If (2" — |z15)dA(z) < o,
D

for every r > 0 and every ¢ > —1 (see [14]).

For any @ > 0, letr > O such that wr > 1, and let t =

ar—2 > —1, then the finiteness of the integral above, with

the chosen r and ¢, implies that \l|im1(1 —12I»)%|f' ()| =0,
z|—

and so f € B%. We have the following result related to
the boundary Jordan curve 92, which includes the cases
mentioned above.

Theorem 6. Let K :[0,00) —[0, 00) satisfy (1) and (2)
with K"(g(z,a)) ~ K(g(z,a));n > 0. Suppose that 1 <
p < ooand =2 < q < oo. Iflogf’ € Qro(p,q), then
f' € H" for all v > 0, which furthermore implies that the
Jordan curve 92 is rectifiable.

Proof. We will use a result from Theorem 3.2 of [22],
stating that for a positive measure y onlD and any r, @ > 0,

di(z)
p (1= z2)or

if and only if there is a positive constant C such that

/D €@ du@ < C (Iglse + 12O ©)

for all analytic functions g in I, in particular, for all g €
B*.

Letlog f' € Qr0(p, q). Since the space gets larger when
the index p increases, we will first of all assume, without
loss of generality, that p > 2. Secondly, since ¢ < p—2and
Oxo0@,q) < Qr o p—2), we will consider only the case
when g = p — 2. Thus, we want to prove that if logf’ €
OxoW,q),p > 2, then f' € H" for all r > 0, which by
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the Hardy-Stein-Spencer identity is equivalent to showing
that

/DIPf(Z)IZLf’(Z)Ir(l — 2K (¢(z,@)) dA(2) < oc.

Since p > 2,letp’ > 1 such that 1%—}—1% = 1. Using Holder’s
inequality, for £ € (0, 1), we get

/D 1Pr@)PIf ()] (1 — |21K (g(z, @) dA(2)

< (fD 1P @I )7 (1 — 212K (g(z, @) dA<z>>

-

y ( / 1 - 1P Pk (g(z,a))dmz))’7
D
p

=c(Ifl 5 +1201) " < oo

The second inequality above holds since logf’ €
Ok, 0@, p — 2), and thus we can apply (9) to the measure

dpu(2) = PP (1 — 2> ~*K (g(z,2)) dA(2)
2
togetfeBB . Moreover, for K satisfying (1),

/(1 - |z|2)%K (g(z @) dA(z)
D

f (1 — 121K (g(z,0)) dA(z)
D

1 1
271/ 1 — |rPIK (log ) rdr < oo
0 r

4—p—2t
p—2

since g = > —1. The proof is completed. O

Remark 1. Note that the proof of Theorem 6 can be used
for several cases, and we leave the details to the reader.
The case when K(£) = 5,0 <s < 1,1 < p < 00,-2 <
q < ooand g+ s > —1 is the Fy(p,q,s) case which is
covered in Zorboska’s result in [14]. Also, the case when
K(t) = t,qg = 0and p = 2 is the VMOA case (the space of
functions analytic on I and with vanishing mean oscilla-
tion on the unit circle) which is covered in Pommerenke’s
result in [23].
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