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Abstract

Our purpose is to show the order of approximation and simultaneous approximation, Voronovskaja-type results with
quantitative estimate, the exact degree of approximation for complex Szasz-Schurer operators and complex
Kantorovich type generalization of Szasz-Schurer operator attached to analytic functions on compact disks.

Keywords: Complex Szasz-Schurer operators; Voronovksaja type result; Exact order of approximation; Simultaneous
approximation

MSC: 30E10, 41A28

1 Introduction
The main problem of approximation theory consists in
finding for a complicated function a close-by simple func-
tion. Weierstrass’s approximation theorem stating that
every continuous function on a bounded interval can be
approximated to arbitrary accuracy by polynomials is such
an important example for this process and has been played
the significant role in the development of analysis. For
complex analytic functions, this theorem has a signifi-
cant generalization known as Mergelyan’s theorem. The
mentioned theorem is about: If a function f is defined
on compact set G whose complement is connected in
the complex plane and is continuous on G and ana-
lytic in the interior, f can be approximated on G by
polynomials.
By using probability theory Bernstein [1] proved the

Weierstrass’s theorem and defined approximate polyno-
mials known as Bernstein polynomials in the literature.
In the case of the function f (z) defined and analytic in
a certain region involving the interval [0, 1], the problem
was investigated by Wright [2], Kantorovich [3] and then
Bernstein [4].
The degree of approximation for previous mentioned

work at first was obtained by Gal [5] on compact
disks. Also, exact quantitative estimates and quantitative
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Voronovskaja-type results for these polynomials, together
with similar results for complex version of Bernstein-
Stancu polynomials, Kantorovich-Stancu polynomials,
Szasz operators, Baskakov operators were obtained by Gal
in the book [5] which has collected several recent papers
of him. Moreover; complex Schurer type generalization
of Bernstein and Kantorovich polynomials were stud-
ied by Anastassiou-Gal [6], complex genuine Durrmeyer
type polynomials were investigate by Gal [7] and other
important generalization of known operators were stud-
ied by Gal-Gupta ([8,9]), Agarwal-Gupta [10], Mahmudov
([11-13]), Mahmudov-Gupta [14].
In 1950, Szasz defined and studied the approximation

properties of the following operators

Sn
(
f ; x
) = e−nx

∞∑
j=0

(nx)j

j!
f
(
j
n

)
,

whenever f satisfies exponential-type growth condition
[15]. Then Gergen, Dressel and Purcell [16] proved that
for certain class of analytic function f (z) the complex
Szasz operators Sn

(
f ; z
)
approximate this function in

parabolic domain. Gal obtained quantitative estimates of
the convergence and Voronovskaja type theorem in com-
pact disk for the complex Szasz operators attached to
f (z) which is analytic function and satisfies some suitable
exponential-type growth condition in [17] and does not
satisfy such type condition in [18].
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The purpose of this paper is to study complex Szasz-
Schurer operator defined by

Sn,p
(
f ; z
) = e−(n+p)z

∞∑
j=0

((n + p) z)j

j!
f
(
j
n

)
, (1)

and complex Kantorovich type generalization of Szasz-
Schurer operator defined as

Kn,p
(
f ; z
) = (n + p + 1) e−(n+p+1)z

∞∑
j=0

((n + p + 1) z)j

j!

j+1
n+1∫
j

n+1

f (t) dt,
(2)

where p ∈ N0, n ∈ N and the function f : D̄R∪[R,∞) → C

is analytic in DR and bounded on [0,∞).
The paper is organized as follows: In Section 2, we give

some lemmas of background of the main problems. In
Section 3, we obtain upper estimate in approximation by
Sn,p

(
f ; z
)
, simultaneous approximation by the operators

(1), the Voronovskaja-type formula with a quantitative
upper estimate and the exact degree of approximation for
Sn,p

(
f ; z
)
. In a final Section 4, the same results for complex

Kantorovich type generalization of Szasz-Schurer opera-
tor are derived from the obtained inequalities in Section
3.

2 Some auxiliary results
Before proceeding to the study of order of approximation
by the complex Szasz-Schurer operators, it is necessary to
analyze the some properties of the mentioned operators.
Here the following lemmas are useful.

Lemma 1. Suppose that f is a polynomial having degree
m. Then Sn,p

(
f ; z
)
is a polynomial having the same degree.

Proof. For m ∈ N0, let be f (z) = em (z) = zm. Taking
into account of the following fact

e−(n+p)z
∞∑
j=0

((n + p) z)j

j!
jm =

m∑
j=0

c(m)
j ((n + p) z)j ,

where c(m)
j are constants and c(m)

m = 1, we get

Sn,p (em; z) = e−(n+p)z
∞∑
j=0

((n + p) z)j

j!

(
j
n

)m

= 1
nm

m∑
j=0

c(m)
j ((n + p) z)j .

From the above fact, as n → ∞ one obtains Sn,p (em; z) →
em (z) . This mentioned convergence is uniform on every
compact subset of complex plane. Hence, by using the lin-
earity property of Sn,p operators we deduce the same result
for arbitrary polynomials.

The aim of the next lemma is to represent the operators
(1) with the help of divided difference.

Lemma 2. Let z ∈ C, n ∈ N and p ∈ N0 be arbitrary.
Then for Sn,p holds that

Sn,p
(
f ; z
) =

∞∑
i=0

(
n + p
n

)i [
0,

1
n
,
2
n
, ...,

i
n
; f
]
zi.

Proof. By using the definition of finite difference and
divided difference of function f, we immediately deduce
that

Sn,p
(
f ; z
) = e−(n+p)z

∞∑
j=0

((n + p) z)j

j!
f
(
j
n

)

=
∞∑
j=0

((n + p) z)j

j!
f
(
j
n

)( ∞∑
i=0

(− (n + p) z)i

i!

)

=
∞∑
j=0

∞∑
i=0

(−1)i
((n + p) z)j+i

j! i!
f
(
j
n

)

=
∞∑
i=0

⎧⎨
⎩ (n + p)

i!

i i∑
j=0

(
i
j

)
(−1)i−j f

(
j
n

)⎫⎬
⎭ zi

=
∞∑
i=0

(n + p)
i!

i
�i

1
n
f (0) zi

=
∞∑
i=0

(
n + p
n

)i [
0,

1
n
,
2
n
, ...,

i
n
; f
]
zi.

As an important consequence of Lemma 2, we obtain
the following inequality for the operators (1).

Lemma 3. For arbitrary |z| ≤ r, k, n ∈ N and p ∈ N0,
then the following holds∣∣Sn,p (ek ; z)

∣∣ ≤ (2 (1 + p) r)k .

Proof. In view of Lemmas 1 and 2 and the relation
between divided difference and derivative, we have

∣∣Sn,p (ek ; z)
∣∣ =

∣∣∣∣∣∣
k∑

i=0

(
n + p
n

)i [
0,

1
n
,
2
n
, . . . ,

i
n
; ek
]
zi
∣∣∣∣∣∣

≤
k∑

i=0

(
n + p
n

)i ∣∣∣∣
[
0,

1
n
,
2
n
, . . . ,

i
n
; ek
]∣∣∣∣ |z|i

≤
k∑

i=0

(
n + p
n

)i k (k − 1) . . . (k − i + 1)
i!

rk−iri

≤ (p + 1)k
k∑

i=0

(
k
i

)
rk

= (2 (1 + p) r)k ,

and the proof is completed.
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Lemma 4. For z ∈ C, n ∈ N and k, p ∈ N0, let
Tn,p,k (z) = Sn,p (ek ; z) . Then the recurrence formula

Tn,p,k+1 (z) = z
n
T ′
n,p,k (z) + (n + p) z

n
Tn,p,k (z)

is valid.

Proof. Differentiating the function Tn,p,k (z) with
respect to z 	= 0, we can write

T ′
n,p,k (z) = − (n + p)Tn,p,k (z) + n

z
e−(n+p)z

×
∞∑
j=0

((n + p) z)j

j!

(
j
n

)k+1

= − (n + p)Tn,p,k (z) + n
z
Tn,p,k+1 (z) .

So the desired result is obtained for z ∈ C.

Lemma 5. For z ∈ C, k, n ∈ N and p ∈ N0, we have

Tn,p,k (z) − zk = z
n

(
Tn,p,k−1 (z) − zk−1

)′

+ (n + p) z
n

(
Tn,p,k−1 (z) − zk−1

)
+ p

n
zk + k − 1

n
zk−1.

Proof. This result is direct conclusion of Lemma 4.

3 Quantitative results for the Sn,p operators
In this section, we will get upper estimate in approxi-
mation by Sn,p

(
f ; z
)
, simultaneous approximation by the

operators (1), the Voronovskaja-type formula with a quan-
titative upper estimate and lastly the exact degree of
approximation for Sn,p

(
f ; z
)
.

Let us denote the disk DR by

DR = {z ∈ C : |z| < R} .

Theorem 1. Let p ∈ N0, r ≥ 1, 2 < R < ∞ be such
that r (p + 1) < R

2 . Assume that the function f : D̄R ∪
[R,∞) → C is analytic in DR and bounded on [0,∞) .
Then, the following assertions hold:

(i) For arbitrary |z| ≤ r and n ∈ N, we have∣∣Sn,p (f ; z)− f (z)
∣∣ ≤ 1

n
Cr,p

(
f
)
,

where

Cr,p
(
f
) =

∞∑
k=1

|ck |
{

p
p + 1

((1 + p) r)k

+3k (k − 1)
2

(2 (1 + p) r)k−1

+ k − 1
p + 1

(r (p + 1))k
}
.

(ii) If 1 ≤ r < r1 ≤ r1 (p + 1) < R
2 , then for any |z| ≤ r

and n,m ∈ N∣∣∣S(m)
n,p
(
f ; z
)− f (m) (z)

∣∣∣ ≤ 1
n

m! r1
(r1 − r)m+1Cr1,p

(
f
)
,

where Cr1,p
(
f
)
is mentioned as above.

Proof. (i) Because the function f is analytic in DR, for

z ∈ D̄r we can write f (z) =
∞∑
k=0

ckzk . From this fact, we

easily get

Sn,p
(
f ; z
) =

∞∑
k=0

ckTn,p,k (z) .

Therefore,
∣∣Sn,p (f ; z)− f (z)

∣∣ ≤ ∞∑
k=1

|ck|
∣∣∣Tn,p,k (z) − zk

∣∣∣ (3)

follows from the above facts.
Now, we are in a position to find upper bound for∣∣Tn,p,k (z) − zk

∣∣. Taking Bernstein inequality, Lemma 3
and Lemma 5 into consideration, by simple calculations
we get∣∣∣Tn,p,k (z) − zk

∣∣∣ ≤ k − 1
n

∥∥Tn,p,k−1 − ek−1
∥∥
r

+ r (n + p)
n

∣∣∣Tn,p,k−1 (z) − zk−1
∣∣∣

+ p
n
rk + k − 1

n
rk−1

≤ k − 1
n

[
(2 (1 + p) r)k−1 + rk−1

]
+ r (n + p)

n

∣∣∣Tn,p,k−1 (z) − zk−1
∣∣∣

+ p
n
rk + k − 1

n
rk−1

≤ r (n + p)
n

∣∣∣Tn,p,k−1 (z) − zk−1
∣∣∣

+ 3
k − 1
n

(2 (1 + p) r)k−1 + p
n
rk

≤ r (1 + p)
∣∣∣Tn,p,k−1 (z) − zk−1

∣∣∣
+ 3

k − 1
n

(2 (1 + p) r)k−1 + p + 1
n

rk .
(4)

On the other hand, the following inequality∣∣Tn,p,1 (z) − z
∣∣ ≤ p

n
r

is satisfied. If we put k = 2 in the inequality (4), we find∣∣Tn,p,2 (z) − z2
∣∣ ≤ p

n
(p + 1) r2 + 3

n
(2 (1 + p) r)2−1

+ p + 1
n

r2.
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By using the above inequality in (4) for k = 3, we obtain∣∣Tn,p,3 (z)−z3
∣∣ ≤ p

n
(p + 1)2 r3 + 3

n
(2 (1 + p) r)3−1 (1+2)

+ 2
n
r3 (p + 1)2 .

A similar procedure to that applied for arbitrary natural
number k in (4) allows us to show that∣∣∣Tn,p,k (z) − zk

∣∣∣ ≤ p
n

(p + 1)k−1 rk + 3
n

(2 (1 + p) r)k−1

× (1 + 2 + . . . + (k − 1))

+ k − 1
n

rk (p + 1)k−1

= p
n

(p + 1)k−1 rk + 3k (k − 1)
2n

× (2 (1 + p) r)k−1 + k − 1
n

rk (p + 1)k−1 .

(5)

By considering the expression (5) in (3), we see that

∣∣Sn,p (f ; z)− f (z)
∣∣ ≤ ∞∑

k=1
|ck|
∣∣∣Tn,p,k (z) − zk

∣∣∣
= 1

n

∞∑
k=1

|ck|
{

p
p + 1

((1 + p) r)k

+3k (k − 1)
2

(2 (1 + p) r)k−1

+k − 1
p + 1

(r (p + 1))k
}

= 1
n
Cr,p

(
f
)
.

So the proof of (i) of Theorem 1 is completed.
(ii) Let us denote the circle of radius r1 > r centered at

origin by γ . For any |z| ≤ r and ϑ ∈ γ , we have |ϑ − z| ≥
r1 − r. By using Cauchy integral formula, we deduce

∣∣∣S(m)
n,p
(
f ; z
)− f (m) (z)

∣∣∣ ≤ m!
2π

∫
γ

∣∣Sn,p (f ;ϑ)− f (ϑ)
∣∣

|ϑ − z|m+1 |dϑ |

≤ 1
n
m!
2π

Cr1,p
(
f
) ∫

γ

|dϑ |
|ϑ − z|m+1

≤ 1
n

m! r1
(r1 − r)m+1Cr1,p

(
f
)
,

for arbitrary |z| ≤ r and n,m ∈ N.

Remark 1. Since by the hypothesis of Theorem 1, f (z) =
∞∑
k=0

ckzk is absolutely and uniformly convergent |z| ≤
r (p + 1) < R

2 , it is clear that Cr,p
(
f
)
is finite. So,

the mentioned elementary idea is valid on the following
discussion.

Theorem2. Let be p ∈ N0, 2 < R < ∞ such that p+1 <
R
2 . Also suppose that the function f : D̄R ∪ [R,∞) → C is
analytic in DR and bounded on [0,∞) . Then the following
is true for any z ∈ D̄1 and n ∈ N

∣∣∣Sn,p (f ; z)− f (z) − pz
n
f ′ (z) − z

2n
f ′′ (z)

∣∣∣ ≤ Hp
(
f
)

n2
,

where

Hp
(
f
) =

∞∑
k=2

|ck|
{
(6 + p) (k − 1)Ak (2 (p + 1))k−2

+ (k − 1)Bp,k (p + 1)k−2
}

< ∞

and Ak = (k − 1)2 (k − 2), Bp,k = (k − 1)
(
4p (k − 1) + p2

)
.

Proof. Since

Tn,p,0 (z) = 1, Tn,p,1 (z) =
(
1 + p

n

)
z,

the above identities yield that∣∣∣Sn,p (f ; z)− f (z) − pz
n
f ′ (z) − z

2n
f ′′ (z)

∣∣∣
≤

∞∑
k=2

|ck|
∣∣∣∣Tn,p,k (z) − zk − kp

n
zk − k (k − 1)

2n
zk−1

∣∣∣∣ .
(6)

Let us define the function

En,p,k (z) = Tn,p,k (z) − zk − kp
n
zk − k (k − 1)

2n
zk−1,

by Lemma 4 we get

En,p,k (z) = z
n
E′
n,p,k−1 (z) + z (n + p)

n
En,p,k−1 (z)

− (k − 1) p
n

zk + (k − 1) (n + p) p
n2

zk

+ k − 1
2n2

(
(3k − 4) pz + (k − 2)2

)
zk−2

= z
n
E′
n,p,k−1 (z) + z (n + p)

n
En,p,k−1 (z)

+ k − 1
2n2

(
(3k − 4) pz + (k − 2)2

)
zk−2

+ (k − 1) p2

n2
zk .
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From the above equality by using the Bernstein inequal-
ity, we have for |z| ≤ 1

∣∣En,p,k (z)
∣∣ ≤ 1

n

∣∣∣E′
n,p,k−1 (z)

∣∣∣+ (n + p)
n

∣∣En,p,k−1 (z)
∣∣

+ k − 1
2n2

(
(3k − 4) p + (k − 2)2

)+ (k − 1) p2

n2

≤ (p + 1)
∣∣En,p,k−1 (z)

∣∣+ k − 1
n

∥∥En,p,k−1
∥∥
1

+ k − 1
2n2

(
(3k − 4) p + (k − 2)2

)+ (k − 1) p2

n2
≤ (p + 1)

∣∣En,p,k−1 (z)
∣∣

+ k − 1
n

(∥∥Tn,p,k−1 − ek−1
∥∥
1 + (k − 1) p

n

+ (k − 1) (k − 2)
2n

)

+ k − 1
2n2

(
(3k − 4) p + (k − 2)2

)+ (k − 1) p2

n2
.

(7)

By comparing (5) with (7), we find that

∣∣En,p,k (z)
∣∣ ≤ (p + 1)

∣∣En,p,k−1 (z)
∣∣+ k − 1

n

{
p (p + 1)k−2

n

+3 (k − 1) (k − 2)
2n

(2 (p + 1))k−2

+k − 2
n

(p + 1)k−2 + (k − 1) p
n

+ (k − 1) (k − 2)
2n

}

+ k − 1
2n2

(
(3k − 4) p + (k − 2)2

)+ (k − 1) p2

n2
≤ (p + 1)

∣∣En,p,k−1 (z)
∣∣

+ k − 1
n2

{
p (p + 1)k−2

+3 (k − 1) (k − 2) (2 (p + 1))k−2

+ (k − 2) (p + 1)k−2 + (k − 1) p
+ (k − 1) (k − 2)}
+ k − 1

n2
(
(3k − 4) p + (k − 2)2 + p2

)
≤ (p + 1)

∣∣En,p,k−1 (z)
∣∣

+ k − 1
n2

{
p (p + 1)k−2 + 4 (k − 1) (k − 2)

× (2 (p + 1))k−2

+ (k − 2) (p + 1)k−2 + p (4k − 5) + (k − 2)2

+p2
}

≤ (p + 1)
∣∣En,p,k−1 (z)

∣∣
+ k − 1

n2
(
(6 + p) (k − 1) (k − 2) (2 (p + 1))k−2

+4p (k − 1) + p2
)

= (p+1)
∣∣En,p,k−1 (z)

∣∣+ 1
n2

(6 + p)Ak (2 (p+1))k−2

+ 1
n2

Bp,k ,

(8)

for z ∈ D̄1 and k ≥ 2. On the other hand, if we consider
En,p,0 (z) = En,p,1 (z) = 0 in (8) for k = 2, then we obtain
∣∣En,p,2 (z)

∣∣ ≤ 1
n2

(6 + p) (2 (p + 1))0 A2 + 1
n2

Bp,2.

Taking account of the above inequality in (8) for k = 3, we
find∣∣En,p,3 (z)

∣∣ ≤ (p + 1)
(

1
n2

(6 + p) (2 (p + 1))0 A2 + 1
n2

Bp,2

)

+ 1
n2

(6 + p) (2 (p + 1))1 A3 + 1
n2

Bp,3

≤ 1
n2

(6 + p) (2 (p + 1))1 (A2 + A3) + p + 1
n2

× (Bp,2 + Bp,3
)
.

By the same discussion, for k ≥ 2 we deduce

∣∣En,p,k (z)
∣∣ ≤ 1

n2
(6 + p) (2 (p + 1))k−2

⎛
⎝ k∑

j=2
Aj

⎞
⎠

+ (p + 1)k−2

n2

⎛
⎝ k∑

j=2
Bp,j

⎞
⎠ .

Due to the fact that the sequences
(
Aj
)
and

(
Bp,j
)
are

increasing, one can write for any z ∈ D̄1 and k ≥ 2∣∣En,p,k (z)
∣∣ ≤ 1

n2
(6 + p) (2 (p + 1))k−2 (k − 1)Ak

+ (p + 1)k−2

n2
(k − 1)Bp,k . (9)

By substituting (9) in (6), it follows that∣∣∣Sn,p (f ; z)− f (z) − pz
n
f ′ (z) − z

2n
f ′′ (z)

∣∣∣
≤ 1

n2
∞∑
k=2

|ck |
{
(6 + p) (k − 1)Ak (2 (p + 1))k−2

+ (k − 1)Bp,k (p + 1)k−2
}

= 1
n2

Hp
(
f
)
.

So, we arrive at an estimate as in theorem.

Following the same process in the proof of Theorem 2,
we can easily get the below general result.

Remark 2. Assume that for p ∈ N0, r ≥ 1 and 2 <

R < ∞ the following condition holds r (p + 1) < R
2 . If the

function f satisfies the same assumptions in Theorem 2,
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then for z ∈ D̄r and n ∈ N∣∣∣Sn,p (f ; z)− f (z) − pz
n
f ′ (z) − z

2n
f ′′ (z)

∣∣∣ ≤ Hr,p
(
f
)

n2
,

where

Hr,p
(
f
)= ∞∑

k=2
|ck| (k−1)

{
(5 + r (p+1))Ak (2r (p+1))k−2

+Br,p,k (r (p+1))k−2
}

< ∞
and Ak = (k − 1)2 (k − 2), Br,p,k = (k − 1)

[(
(4k − 5) rk−1

+r) p + p2rk
]
.

Theorem 3. Let assumptions p ∈ N0, 2 < R < ∞ and
r (p + 1) < R

2 hold and suppose that the function f : D̄R ∪
[R,∞) → C is analytic in DR and bounded on [0,∞). If f
is not a function of the form

a1 + a2e−2pz,

with arbitrary complex constants a1 and a2, then for r ≥ 1∥∥Sn,p (f ; .)− f
∥∥
r ≥ 1

n
Mr,p

(
f
)

where the constant Mr,p
(
f
)
depends only on f , r and p.

Proof. The following identity

Sn,p
(
f ; z
)− f (z) = 1

n

{
pzf ′ (z) + z

2
f ′′ (z)

+1
n
[
n2
(
Sn,p

(
f ; z
)

−f (z) − pz
n
f ′ (z) − z

2n
f ′′ (z)

)]}
is quite obvious for any p ∈ N0, n ∈ N and z ∈ C. Let
Kn,p

(
f ; z
)
denote the function

Kn,p
(
f ; z
)
:= Sn,p

(
f ; z
)− f (z) − pz

n
f ′ (z) − z

2n
f ′′ (z) .

So, it follows that

∥∥Sn,p(f ; .)−f
∥∥
r ≥

1
n

{∥∥∥pe1f ′+ e1
2
f ′′
∥∥∥
r
− 1
n
[
n2
∥∥Kn,p

(
f ; .
)∥∥

r
]}
.

(10)

Then we claim that∥∥∥pe1f ′ + e1
2
f ′′
∥∥∥
r
> 0.

Suppose that for arbitrary z ∈ D̄r

pzf ′ (z) + z
2
f ′′ (z) = 0.

Solving the above complex differential equation by means
of series method, we obtain for any complex numbers a1
and a2

f (z) = a1 + a2e−2pz,

but this is a contradiction. On the other hand, Remark 2
allows us to write

n2
∥∥Kn,p

(
f ; .
)∥∥

r ≤ Hr,p
(
f
)
.

Considering this fact in (10), then there exists a natural
number n0 ∈ N such that for arbitrary n ≥ n0∥∥Sn,p (f ; .)− f

∥∥
r ≥ 1

2n

∥∥∥pe1f ′ + e1
2
f ′′
∥∥∥
r
. (11)

In the case of for n ∈ {1, 2, . . . , n0 − 1} , we estimate

∥∥Sn,p (f ; .)− f
∥∥
r ≥ Ar,p,n

(
f
)

n
, (12)

where Ar,p,n
(
f
) = n

∥∥Sn,p (f ; .)− f
∥∥
r > 0. Finally, from

(11) and (12) we derive the estimation for any n ∈ N

∥∥Sn,p (f ; .)− f
∥∥
r ≥ Mr,p

(
f
)

n
,

where Mr,p
(
f
) = min

{
Ar,p,1

(
f
)
, . . . ,Ar,p,n0−1

(
f
)
, 12
∥∥pe1f ′ +

e1
2 f

′′∥∥
r
}
.

Combining Theorem 1 with the above result we have:

Corollary 1. Let be p ∈ N0, 2 < R < ∞ and r (p + 1) <
R
2 and suppose that the function f : D̄R ∪ [R,∞) → C is
analytic in DR and bounded on [0,∞). If f is not a function
of the form

a1 + a2e−2pz,

with arbitrary complex constants a1 and a2, then for r ≥ 1
∥∥Sn,p (f ; .)− f

∥∥
r ∼ 1

n
where the constants in the equivalence depend only on f , r
and p.

4 Quantitative results for theKn,p operators
This section is based on the connection between the
complex Szasz-Schurer operator given by (1) and the com-
plex Kantorovich type generalization of the Szasz-Schurer
operator given (2), presenting upper estimates in simulta-
neous approximation and also Voronovskaja’s result with a
quantitative estimate for them. Let us define the function
F as follows:

F (z) :=
z∫

0

f (t) dt.

Theorem 4. For arbitrary n ∈ N and z ∈ C, the
relationship

Kn,p
(
f ; z
) = S′

n+1,p (F ; z) (13)

holds.
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Proof. Relationship (13) can be directly obtained from
the definition of Sn,p, that is more clearly

S′
n+1,p (F ; z) = (n + p + 1) e−(n+p+1)z

∞∑
j=0

((n + p + 1) z)j

j!

×
(
F
(
j + 1
n + 1

)
− F

(
j

n + 1

))

= (n + p + 1) e−(n+p+1)z
∞∑
j=0

((n + p + 1) z)j

j!

×
j+1
n+1∫
j

n+1

f (t) dt.

Theorem 5. Let p ∈ N0, r ≥ 1, 2 < R < ∞ be such
that r < r1 ≤ r1 (p + 1) < R

2 . Assume that the function
f : D̄R ∪ [R,∞) → C is analytic in DR and bounded on
[0,∞). Then the following are true:

(i) For any |z| ≤ r andm, n ∈ N∣∣∣K(m)
n,p
(
f ; z
)− f (m) (z)

∣∣∣ ≤ 1
n + 1

(m + 1) ! r1
(r1 − r)m+2Cr1,p (F) ,

where Cr1,p (F) is defined as in Theorem 1.
(ii) For arbitrary |z| ≤ r and n ∈ N∣∣∣∣Kn,p

(
f ; z
)− n + p + 1

n + 1
f (z) − 2pz + 1

2 (n + 1)
f ′ (z)

− z
2 (n + 1)

f ′′ (z)
∣∣∣∣

≤ 1
(n + 1)2

r1
(r1 − r)2

Hr1,p (F) ,

where Hr1,p (F) is defined as in Remark 2.

Proof. (i) Considering Theorem 1 and Theorem 4, we
get ∣∣∣K(m)

n,p
(
f ; z
)− f (m) (z)

∣∣∣ = ∣∣∣S(m+1)
n+1,p (F ; z) − F(m+1) (z)

∣∣∣
≤ 1

n + 1
(m + 1) ! r1
(r1 − r)m+2Cr1,p (F) .

Keeping in mind that

F (z) =
z∫

0

( ∞∑
k=0

cktk
)
dt =

∞∑
k=1

ck−1
k

zk =
∞∑
k=1

c̃kzk .

(ii) From Remark 2, we can write∣∣Sn+1,p (F ; z) − F (z) − pz
n + 1

F ′ (z) − z
2 (n + 1)

F ′′ (z) |

≤ 1
(n + 1)2

Hr,p (F) .
(14)

Put

S̃n(F ; z) := Sn+1,p (F ; z)−F (z)− pz
n + 1

F ′ (z)− z
2 (n + 1)

F ′′ (z) ,

and let us denote the circle of radius r1 > r centered
at origin by �. For any |z| ≤ r and ϑ ∈ �, we have
|ϑ − z| ≥ r1 − r. By using Cauchy integral formula and
(14), we deduce

∣∣∣S̃′
n (F ; z)

∣∣∣ ≤ 1
2π

∫
�

∣∣∣S̃n (F ;ϑ)

∣∣∣
|ϑ − z|2 |dϑ |

≤ 1
(n + 1)2

r1
(r1 − r)2

Hr1,p (F) .

Hence, from the definition of S̃n (F ; z) we obtain immedi-
ately the desired result.
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