ORIGINAL RESEARCH

Open Access

The generalized χ^2 sequence spaces over p- metric spaces defined by Musielak

Subramanian Nagarajan^{1*}, Saivaraju Nallswamy² and Velmurugan Subramanian²

Abstract

In this paper, we introduce generalized χ^2 sequence spaces over p- metric spaces defined by Musielak function $f = (f_{mn})$ and study some topological properties.

Keywords: Analytic sequence; Double sequences; χ^2 space; Difference sequence space; Musielak-modulus function; p- metric space; Duals

MSC: 40A05; 40C05; 40D05

Introduction

Throughout this paper, w, χ , and Λ denote the classes of all, gai, and analytic scalar valued single sequences, respectively. We write w^2 for the set of all complex sequences (x_{mn}) , where m, $n \in \mathbb{N}$, the set of positive integers. Then, w^2 is a linear space under the coordinatewise addition and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich [1]. Later on, they were investigated by Hardy [2], Moricz [3], Moricz and Rhoades [4], Basarir and Solankan [5], Tripathy [6], Turkmenoglu [7], and many others. We procure the following sets of double sequences:

$$\mathcal{M}_{u}(t) := \left\{ (x_{mn}) \in w^{2} : sup_{m,n \in N} |x_{mn}|^{t_{mn}} < \infty \right\},$$

$$\mathcal{C}_{p}(t) := \left\{ (x_{mn}) \in w^{2} : p - lim_{m,n \to \infty} |x_{mn}|^{t_{mn}} \right.$$

$$= 1 \text{ for some } \in \mathbb{C} \},$$

$$C_{0p}(t) := \{(x_{mn}) \in w^2 : p - \lim_{m,n \to \infty} |x_{mn}|^{t_{mn}} = 1\},$$

$$\mathcal{L}_{u}(t) := \left\{ (x_{mn}) \in w^{2} : \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |x_{mn}|^{t_{mn}} < \infty \right\},$$

$$C_{bp}(t) := C_p(t) \bigcap \mathcal{M}_u(t) \text{ and } C_{0bp}(t) = C_{0p}(t) \bigcap \mathcal{M}_u(t),$$

where $t=(t_{mn})$ is the sequence of strictly positive reals t_{mn} for all $m,n\in\mathbb{N}$ and $p-lim_{m,n\to\infty}$ denotes the limit in the Pringsheim's sense. In the case where $t_{mn}=$

1 for all $m, n \in \mathbb{N}$, $\mathcal{M}_u(t)$, $\mathcal{C}_p(t)$, $\mathcal{C}_{0p}(t)$, $\mathcal{L}_u(t)$, $\mathcal{C}_{bp}(t)$, and $C_{0bp}(t)$ reduce to the sets $\mathcal{M}_u, C_p, C_{0p}, \mathcal{L}_u, C_{bp}$, and C_{0bp} , respectively. Now, we may summarize the knowledge given in some document related to the double sequence spaces. Gökhan and Colak [8,9] have proved that $\mathcal{M}_u(t)$ and $\mathcal{C}_p(t)$, $\mathcal{C}_{bp}(t)$ are complete paranormed spaces of double sequences and gave the α -, β -, γ duals of the spaces $\mathcal{M}_{u}(t)$ and $\mathcal{C}_{bp}(t)$. Quite recently, in her PhD thesis, Zeltser [10] has essentially studied both the theory of topological double sequence spaces and the theory of summability of double sequences. Mursaleen and Edely [11], and Tripathy [6] have independently introduced the statistical convergence and Cauchy for double sequences and given the relation between statistical convergent and strongly Cesàro summable double sequences. Altay and BaŞar [12] have defined the spaces $\mathcal{BS}, \mathcal{BS}(t), \mathcal{CS}_p, \mathcal{CS}_{bp}, \mathcal{CS}_r$, and \mathcal{BV} of double sequences consisting of all double series whose sequence of partial sums is in the spaces \mathcal{M}_u , $\mathcal{M}_u(t)$, \mathcal{C}_p , \mathcal{C}_{hp} , \mathcal{C}_r , and \mathcal{L}_u , respectively, and also examined some properties of those sequence spaces and determined the α - duals of the spaces \mathcal{BS} , \mathcal{BV} , \mathcal{CS}_{bp} , and the $\beta(\vartheta)$ – duals of the spaces \mathcal{CS}_{bp} and \mathcal{CS}_r of double series. Basar and Sever [13] have introduced the Banach space \mathcal{L}_q of double sequences corresponding to the well-known space ℓ_q of single sequences and examined some properties of the space \mathcal{L}_q . Quite recently, Subramanian and Misra [14] have studied the space $\chi_M^2(p,q,u)$ of double sequences and gave some inclusion relations.

The class of sequences which is strongly Cesàro summable with respect to a modulus was introduced

^{*}Correspondence: nsmaths@yahoo.com

¹ Department of Mathematics, SASTRA University, Thanjavur, 613 401, India Full list of author information is available at the end of the article

by Maddox [15] as an extension of the definition of strongly $Ces\grave{a}ro$ summable sequences. Connor [16] further extended this definition to a definition of strong A-summability with respect to a modulus, where $A=(a_{n,k})$ is a non-negative regular matrix, and established some connections between strong A- summability, strong A-summability with respect to a modulus, and A- statistical convergence. In [17], the notion of convergence of double sequences was presented by Pringsheim. Also, in [18,19], and [20], the four-dimensional matrix transformation $(Ax)_{k,\ell} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{k\ell}^{mm} x_{mn}$ was studied extensively by Hamilton.

We need the following inequality in the sequel of the paper. For $a, b, \ge 0$ and 0 , we have

$$(a+b)^p \le a^p + b^p. \tag{1}$$

The double series $\sum_{m,n=1}^{\infty} x_{mn}$ is called convergent if and only if the double sequence (s_{mn}) is convergent, where $s_{mn} = \sum_{i,j=1}^{m,n} x_{ij}(m,n \in \mathbb{N})$. A sequence $x = (x_{mn})$ is said to be double analytic if $\sup_{mn} |x_{mn}|^{1/m+n} < \infty$. The vector space of all double analytic sequences will be denoted by Λ^2 . A sequence $x = (x_{mn})$ is called double gai sequence if $((m+n)!|x_{mn}|)^{1/m+n} \to 0$ as $m,n \to \infty$. The double gai sequences will be denoted by χ^2 . Let $\phi = \{$ all finite sequences $\}$.

Consider a double sequence $x = (x_{ij})$. The $(m, n)^{\text{th}}$ section $x^{[m,n]}$ of the sequence is defined by $x^{[m,n]} = \sum_{i,j=0}^{m,n} x_{ij} \Im_{ij}$ for all $m, n \in \mathbb{N}$, where \Im_{ij} denotes the double sequence whose only non-zero term is a $\frac{1}{(i+j)!}$ in the (i,j)th place for each $i,j \in \mathbb{N}$.

A Fréchet coordinate space (FK-space or a metric space) X is said to have an AK property if (\mathfrak{I}_{mn}) is a Schauder basis for X, or equivalently $x^{[m,n]} \to x$. An FDK-space is a double sequence space endowed with a complete metrizable space, locally convex topology under which the coordinate mappings $x = (x_k) \to (x_{mn})(m, n \in \mathbb{N})$ are also continuous.

Let M and Φ be mutually complementary modulus functions. Then, we have

(1) For all $u, y \ge 0$,

$$uy \le M(u) + \Phi(y)$$
, (Young's inequality; see [21]).

(2) For all $u \ge 0$,

$$u\eta(u) = M(u) + \Phi(\eta(u)). \tag{3}$$

(3) For all $u \ge 0$ and $0 < \lambda < 1$,

$$M(\lambda u) \le \lambda M(u). \tag{4}$$

Lindenstrauss and Tzafriri [22] used the idea of Orlicz function to construct Orlicz sequence space

$$\ell_M = \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}.$$

The space ℓ_M with the norm

$$||x|| = inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1 \right\}$$

becomes a Banach space which is called an Orlicz sequence space. For $M(t)=t^p$ $(1 \le p < \infty)$, the spaces ℓ_M coincide with the classical sequence space ℓ_p .

A sequence $f = (f_{mn})$ of modulus function is called a Musielak-modulus function. A sequence $g = (g_{mn})$ defined by

$$g_{mn}(v) = \sup\{|v| \ u - (f_{mn})(u) : u \ge 0\}, m, n = 1, 2, \cdots$$

is called the complementary function of a Musielak-modulus function f. For a given Musielak modulus function f, the Musielak-modulus sequence space t_f and its subspace h_f are defined, respectively, as follows:

$$t_f = \{ x \in w^2 : I_f (|x_{mn}|)^{1/m+n} \to 0 \text{ as } m, n \to \infty \}$$

and

$$h_f = \{x \in w^2 : I_f(|x_{mn}|)^{1/m+n} \to 0 \text{ as } m, n \to \infty \},$$

where I_f is a convex modular defined by

$$I_f(x) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f_{mn} (|x_{mn}|)^{1/m+n}, x = (x_{mn}) \in t_f.$$

We consider that t_f is equipped with the Luxemburg metric

$$d(x,y) = \sup_{mn} \left\{ \inf \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f_{mn} \right) \times \left(\frac{|x_{mn}|^{1/m+n}}{mn} \right) \right\} \le 1 \right\}.$$

If *X* is a sequence space, we give the following definitions:

- (1) X' = the continuous dual of X;
- (2) $X^{\alpha} = \{a = (a_{mn}) : \sum_{m,n=1}^{\infty} |a_{mn}x_{mn}| < \infty,$ for each $x \in X\};$
- (3) $X^{\beta} = \{a = (a_{mn}) : \sum_{m,n=1}^{\infty} a_{mn} x_{mn} \text{ is convergent, } for each <math>x \in X\};$
- (4) $X^{\gamma} = \left\{ a = (a_{mn}) : sup_{mn} \ge 1 \left| \sum_{m,n=1}^{M,N} a_{mn} x_{mn} \right| < \infty, \right.$ for each $x \in X$;
- (5) let *X* be an FK-space $\supset \phi$, then

$$X^f = \left\{ f(\mathfrak{I}_{mn}) : f \in X' \right\};$$

(6)
$$X^{\delta} = \{a = (a_{mn}) : \sup_{mn} |a_{mn}x_{mn}|^{1/m+n} < \infty,$$
 for each $x \in X\},$

where X^{α} , X^{β} , and X^{γ} are called $\alpha-$ (or Köthe-Toeplitz) dual of X, $\beta-$ (or generalized Köthe-Toeplitz) dual of X, $\gamma-$ dual of X, and $\delta-$ dual of X, respectively. X^{α} is defined

by Kantham and Gupta [21]. It is clear that $X^{\alpha} \subset X^{\beta}$ and $X^{\alpha} \subset X^{\gamma}$, but $X^{\beta} \subset X^{\gamma}$ does not hold since the sequence of partial sums of a double convergent series needs not to be bounded.

The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz [23] as follows:

$$Z(\Delta) = \{x = (x_k) \in w : (\Delta x_k) \in Z\}$$

for $Z=c,c_0$ and ℓ_∞ , where $\Delta x_k=x_k-x_{k+1}$ for all $k\in\mathbb{N}$. Here, c,c_0 , and ℓ_∞ denote the classes of convergent, null, and bounded scalar valued single sequences, respectively. The difference sequence space bv_p of the classical space ℓ_p is introduced and studied in the case $1\leq p\leq\infty$ and in the case 0< p<1 by Altay and BaŞar in [12]. The spaces $c(\Delta),c_0(\Delta),\ell_\infty(\Delta)$, and bv_p are Banach spaces normed by

$$||x|| = |x_1| + \sup_{k \ge 1} |\Delta x_k| \text{ and } ||x||_{b\nu_p}$$

= $\left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/p}$, $(1 \le p < \infty)$.

Later on, the notion was further investigated by many others. We now introduce the following difference double sequence spaces defined by

$$Z(\Delta) = \left\{ x = (x_{mn}) \in w^2 : (\Delta x_{mn}) \in Z \right\},\,$$

where $Z = \Lambda^2$, χ^2 and $\Delta x_{mn} = (x_{mn} - x_{mn+1}) - (x_{m+1n} - x_{m+1n+1}) = x_{mn} - x_{mn+1} - x_{m+1n} + x_{m+1n+1}$ for all $m, n \in \mathbb{N}$.

Definition and preliminaries

Let $n \in \mathbb{N}$ and X be a real vector space of dimension w, where $n \leq w$. A real valued function $d_p(x_1, \ldots, x_n) = \|(d_1(x_1), \ldots, d_n(x_n))\|_p$ on X satisfying the following four conditions:

- (1) $\|(d_1(x_1), \dots, d_n(x_n))\|_p = 0$ if and and only if $d_1(x_1), \dots, d_n(x_n)$ are linearly dependent,
- (2) $\|(d_1(x_1), \dots, d_n(x_n))\|_p$ is invariant under permutation,
- (3) $\|(\alpha d_1(x_1), \dots, d_n(x_n))\|_p = |\alpha| \|(d_1(x_1), \dots, d_n(x_n))\|_p, \alpha \in \mathbb{R}$
- (4) $d_p((x_1, y_1), (x_2, y_2) \cdots (x_n, y_n)) = (d_X(x_1, x_2, \cdots x_n)^p + d_Y(y_1, y_2, \cdots y_n)^p)^{1/p}$ for $1 \le p < \infty$; (or)
- (5) $d((x_1, y_1), (x_2, y_2), \dots (x_n, y_n)) := \sup \{d_X(x_1, x_2, \dots x_n), d_Y(y_1, y_2, \dots y_n)\}$, for $x_1, x_2, \dots x_n \in X, y_1, y_2, \dots y_n \in Y$ which is called the p product metric of the Cartesian product of n metric spaces is the p norm of the n-vector of the norms of the n subspaces.

A trivial example of the p product metric of the n metric space is the p norm space which is $X = \mathbb{R}$ equipped with the following Euclidean metric in the product space:

$$\|(d_{1}(x_{1}), \dots, d_{n}(x_{n}))\|_{E} = \sup (|\det(d_{mn}(x_{mn}))|) =$$

$$\sup \begin{pmatrix} |d_{11}(x_{11}) & d_{12}(x_{12}) & \cdots & d_{1n}(x_{1n}) \\ |d_{21}(x_{21}) & d_{22}(x_{22}) & \cdots & d_{2n}(x_{1n}) \\ |\vdots \\ |d_{n1}(x_{n1}) & d_{n2}(x_{n2}) & \cdots & d_{nn}(x_{nn}) \end{pmatrix},$$

where $x_i = (x_{i1}, \dots x_{in}) \in \mathbb{R}^n$ for each $i = 1, 2, \dots n$.

If every Cauchy sequence in X converges to some $L \in X$, then X is said to be complete with respect to the p- metric. Any complete p- metric space is said to be p- Banach metric space.

Let *X* be a linear metric space. A function $w: X \to \mathbb{R}$ is called paranorm if

- (1) $w(x) \ge 0$ for all $x \in X$;
- (2) w(-x) = w(x) for all $x \in X$,
- (3) $w(x + y) \le w(x) + w(y)$ for all $x, y \in X$;
- (4) If (σ_{mn}) is a sequence of scalars with $\sigma_{mn} \to \sigma$ as $m, n \to \infty$, and (x_{mn}) is a sequence of vectors with $w(x_{mn} x) \to 0$ as $m, n \to \infty$, then $w(\sigma_{mn}x_{mn} \sigma x) \to 0$ as $m, n \to \infty$.

A paranorm w for which w(x) = 0 implies x = 0 is called a total paranorm, and the pair (X, w) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [24], Theorem 10.4.2, p.183).

The notion of λ — double gai and double analytic sequences is as follows: Let $\lambda = (\lambda_{mn})_{m,n=0}^{\infty}$ be a strictly increasing sequence of positive real numbers tending to infinity, that is,

$$0 < \lambda_0 < \lambda_1 < \cdots$$
 and $\lambda_{mn} \to \infty$ as $m, n \to \infty$

and that a sequence $x = (x_{mn}) \in w^2$ is λ – convergent to 0, called a the λ – limit of x, if $\mu_{mn}(x) \to 0$ as $m, n \to \infty$, where

$$\mu_{mn}(x) = \frac{1}{\varphi_{rs}} \sum_{m \in \sigma, \sigma \in P_{rs}} \sum_{n \in \sigma, \sigma \in P_{rs}} \times \left(\lambda_{m,n} - \lambda_{m,n+1} - \lambda_{m+1,n} + \lambda_{m+1,n+1} \right) |x_{mn}|^{1/m+n}.$$

The sequence $x = (x_{mn}) \in w^2$ is λ - double analytic if $\sup_{uv} |\mu_{mn}(x)| < \infty$. If $\lim_{mn} x_{mn} = 0$ in the ordinary sense of convergence, then

$$\lim_{mn} \left(\frac{1}{\varphi_{rs}} \sum_{m \in \sigma, \sigma \in P_{rs}} \sum_{n \in \sigma, \sigma \in P_{rs}} \left(\lambda_{m,n} - \lambda_{m,n+1} - \lambda_{m+1,n} + \lambda_{m+1,n+1} \right) \left((m+n)! |x_{mn} - 0| \right)^{1/m+n} \right) = 0.$$

This implies that it yields $\lim_{uv} \mu_{mn}(x) = 0$, and hence, $x = (x_{mn}) \in w^2$ is λ — convergent to 0. Let $f = (f_{mn})$ be a Musielak-modulus function, $\left(X, \|(d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p\right)$ be a p-metric space,

and $q=(q_{mn})$ be double analytic sequence of strictly positive real numbers. By $w^2(p-X)$, we denote the space of all sequences as $\left(X, \|(d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p\right)$. The following inequality will be used throughout the paper. If $0 \leq q_{mn} \leq supq_{mn} = H, K = max\left(1, 2^{H-1}\right)$, then

$$|a_{mn} + b_{mn}|^{q_{mn}} \le K \left\{ |a_{mn}|^{q_{mn}} + |b_{mn}|^{q_{mn}} \right\} \tag{5}$$

for all m, n and a_{mn} , $b_{mn} \in \mathbb{C}$. Also, $|a|^{q_{mn}} \leq max(1, |a|^H)$ for all $a \in \mathbb{C}$.

In the present paper, we define the following sequence spaces:

$$\left[\chi_{f\mu}^{2q}, \|(d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]$$

$$= \lim_{mn} \left\{ \left[f_{mn} \left(\|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right) \right]^{q_{mn}} = 0 \right\},$$

$$\left[\Lambda_{f\mu}^{2q}, \|(d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]$$

$$= \sup_{mn} \left\{ \left[f_{mn} \left(\|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right) \right]^{q_{mn}} < \infty \right\}.$$

If we take $f_{mn}(x) = x$, we get

$$\left[\chi_{\mu}^{2q}, \|(d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]$$

$$= \lim_{mn} \left\{ \left[\left(\|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right) \right]^{q_{mn}} = 0 \right\},$$

$$\left[\Lambda_{\mu}^{2q}, \| (d(x_1), d(x_2), \cdots, d(x_{n-1})) \|_p^{\varphi} \right]$$

$$= \sup_{mn} \left\{ \left[\left(\| \mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1})) \|_p \right) \right]^{q_{mn}} < \infty \right\}.$$

If we take $q = (q_{mn}) = 1$

$$\begin{split} \left[\chi_{f\mu}^{2}, \|(d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p}^{\varphi}\right] \\ &= \lim_{mn} \left\{ \left[f_{mn} \left(\|\mu_{mn}(x), (d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p}^{\varphi} \right) \right] \\ &= d(x_{n-1}) \|_{p} \right) \right] = 0 \right\}, \\ \left[\Lambda_{f\mu}^{2}, \|(d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p}^{\varphi} \right] \\ &= \sup_{mn} \left\{ \left[f_{mn} \left(\|\mu_{mn}(x), (d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p}^{\varphi} \right) \right] \\ &= d(x_{n-1}) \|_{p} \right) \right\} < \infty \right\}. \end{split}$$

In the present paper, we plan to study some topological properties and inclusion relation between the above defined sequence spaces, $\left[\chi_{f\mu}^{2q}, \|(d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^\varphi\right]$ and $\left[\Lambda_{f\mu}^{2q}, \|(d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^\varphi\right]$, which we shall discuss in this paper.

Main results

Theorem 1. Let $f = (f_{mn})$ be a Musielak-modulus function and $q = (q_{mn})$ be a double analytic sequence of strictly positive real numbers; the sequence spaces $\left[\chi_{f\mu}^{2q}, \|(d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^\varphi\right]$ and $\left[\Lambda_{f\mu}^{2q}, \|(d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^\varphi\right]$ are linear spaces.

Proof. It is routine verification. Therefore, the proof is omitted. \Box

Theorem 2. Let $f = (f_{mn})$ be a Musielak-modulus function and $q = (q_{mn})$ be a double analytic sequence of strictly positive real numbers; the sequence space $\left[\chi_{f\mu}^{2q}, \|(d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^\varphi\right]$ is a paranormed space with respect to the paranorm defined by

$$\begin{split} g(x) = &\inf\left\{\left(\left[f_{mn}\left(\left\|\mu_{mn}(x), \left(d\left(x_{1}\right), d\left(x_{2}\right), \cdots, d\left(x_{n-1}\right)\right)\right\|_{p}^{\varphi}\right)\right]^{q_{mn}}\right)^{1/H} \leq 1\right\}, \end{split}$$

where $H = max(1, sup_{mn}q_{mn} < \infty)$.

Proof. Clearly, $g(x) \ge 0$ for $x = (x_{mn}) \in \left[\chi_{f\mu}^{2q}, \|(d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{V_2}\right]$. Since $f_{mn}(0) = 0$, we get g(0) = 0.

Conversely, suppose that g(x) = 0, then

$$\inf \left\{ \left(\left[f_{mn} \left(\|\mu_{mn}(x), \left(d\left(x_{1}\right), d\left(x_{2}\right), \cdots, d\left(x_{mn}\right) \right) \right] \right) \right\} \right) d\left(x_{mn} \right) \right\} \leq 1 = 0.$$

Suppose that $\mu_{mn}(x) \neq 0$ for each $m,n \in \mathbb{N}$. Then, $\|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \rightarrow \infty$. It follows that $\left(\left[f_{mn}\left(\|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{V_2}\right)\right]^{q_{mn}}\right)^{1/H} \rightarrow \infty$ which is a contradiction. Therefore, $\mu_{mn}(x) = 0$. Let

$$\left(\left[f_{mn}\left(\|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right)\right]^{q_{mn}}\right)^{1/H} \leq 1$$

and

$$\left(\left[f_{mn}\left(\|\mu_{mn}(y),(d(x_1),d(x_2),\cdots,d(x_{n-1}))\|_p^{\varphi}\right)\right]^{q_{mn}}\right)^{1/H} \le 1.$$

Then, by using Minkowski's inequality, we have

$$\left(\left[f_{mn}\left(\left\|\mu_{mn}(x+y), (d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\right\|_{p}^{\varphi}\right)\right]^{q_{mn}}\right)^{1/H} \\
\leq \left(\left[f_{mn}\left(\left\|\mu_{mn}(x), (d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\right\|_{p}^{\varphi}\right)\right]^{q_{mn}}\right)^{1/H} \\
+ \left(\left[f_{mn}\left(\left\|\mu_{mn}(y), (d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\right\|_{p}^{\varphi}\right)\right]^{q_{mn}}\right)^{1/H}.$$

So, we have

$$\begin{split} g\left(x+y\right) &= \inf \left\{ \left(\left[f_{mn} \left(\left\| \mu_{mn} \left(x+y\right), \left(d\left(x_{1}\right), d\left(x_{2}\right), \cdots, d\left(x_{n-1}\right) \right) \right\|_{p}^{\varphi} \right) \right]^{q_{mn}} \right)^{1/H} \leq 1 \right\} \\ &\leq \inf \left\{ \left(\left[f_{mn} \left(\left\| \mu_{mn} (x), \left(d\left(x_{1}\right), d\left(x_{2}\right), \cdots, d\left(x_{n-1}\right) \right) \right\|_{p}^{\varphi} \right) \right]^{q_{mn}} \right)^{1/H} \leq 1 \right\} \\ &+ \inf \left\{ \left(\left[f_{mn} \left(\left\| \mu_{mn} (y), \left(d\left(x_{1}\right), d\left(x_{2}\right), \cdots, d\left(x_{n-1}\right) \right) \right\|_{p}^{\varphi} \right) \right]^{q_{mn}} \right)^{1/H} \leq 1 \right\}. \end{split}$$

Therefore,

$$g(x+y) \le g(x) + g(y).$$

Finally, to prove that the scalar multiplication is continuous, let λ be any complex number. By definition,

$$g(\lambda x) = \inf \left\{ \left(\left[f_{mn} \left(\left\| \mu_{mn} \left(\lambda x \right), \left(d\left(x_{1} \right), d\left(x_{2} \right), \cdots, d\left(x_{m-1} \right) \right) \right] \right) \right\} \right\} d(x_{n-1}) d(x_{m-1}) d(x_$$

$$g(\lambda x) = \inf \left\{ \left(\left(\left| \lambda \right| t \right)^{q_{mn}/H} : \left(\left[f_{mn} \left(\left\| \mu_{mn} \left(x \right), \left(d \left(x_1 \right), d \left(x_2 \right), \right) \right) \right] \right)^{q_{mn}} \right)^{1/H} \right\} \right\},$$

where $t = \frac{1}{|\lambda|}$. Since $|\lambda|^{q_{mn}} \leq max(1, |\lambda|^{supp_{mn}})$, we have $g(\lambda x) \leq max(1, |\lambda|^{supp_{mn}})$

$$\times \inf \left\{ t^{q_{mn}/H} : \left(\left[f_{mn} \left(\| \mu_{mn} \left(\lambda x \right), \left(d \left(x_{1} \right), d \left(x_{2} \right), \cdots, d \left(x_{n-1} \right) \right) \right]_{p}^{q_{mn}} \right)^{1/H} \leq 1 \right\}.$$

Theorem 3. The β - dual space of $\left[\chi_{fu}^{2q}, \|\mu_{mn}(x),\right]$ $(d(x_1), d(x_2), \cdots, d(x_{n-1}))|_p^{\varphi}|_p^{\beta} = \left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), \dots, d(x_n))\right]_p^{\varphi}$ $d(x_2), \cdots, d(x_{n-1}))|_p^{\varphi}$

Proof. First, we observe that

$$\left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]^{\beta}$$

$$\subset \left[\Gamma_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right].$$

Therefore,

$$\begin{split} \left[\Gamma_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right]^{\beta} \\ &\subset \left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right]^{\beta}. \end{split}$$

$$\left[\Gamma_{f\mu}^{2q}\right]^{\beta} \stackrel{\subseteq}{\neq} \left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right].$$

Hence.

$$\left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right] \\
\subset \left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]^{\beta}.$$
(6)

Next, we show that

$$\left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]^{\beta}$$

$$\subset \left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right].$$

Let
$$y = (y_{mn}) \in \left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^\varphi\right]^\beta$$
. Consider $f(x) = \sum_{m=1}^\infty \sum_{n=1}^\infty x_{mn} y_{mn}$ with

$$-\begin{pmatrix} 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & & 0 & \dots & 0 \\ \vdots & & & & & & & \\ 0 & 0 & \dots & \frac{\varphi_{rs}}{\Delta \lambda_{mn}(m+n)!} & \frac{-\varphi_{rs}}{\Delta \lambda_{mn}(m+n)!} & \dots & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{bmatrix}
f_{mn} \left(\| \mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1})) \|_p^{\varphi} \right) \end{bmatrix} \\
= \begin{pmatrix}
0 & 0 & \dots & 0 & 0 & \dots & 0 \\
0 & 0 & \dots & 0 & 0, & \dots & 0 \\
\vdots & & & & & & \\
0 & 0 & \dots & f_{mn} \left(\frac{\varphi_{rs}}{\Delta \lambda_{mn}(m+n)!} \right) f_{mn} \left(\frac{-\varphi_{rs}}{\Delta \lambda_{mn}(m+n)!} \right) \dots & 0 \\
0 & 0 & \dots & f_{mn} \left(\frac{-\varphi_{rs}}{\Delta \lambda_{mn}(m+n)!} \right) f_{mn} \left(\frac{\varphi_{rs}}{\Delta \lambda_{mn}(m+n)!} \right) \dots & 0 \\
0 & 0 & \dots & 0 & 0, & \dots & 0
\end{pmatrix}$$

Hence, it converges to zero.

Therefore,

$$\begin{split} & \left[(\lambda_{mn} - \lambda_{mn+1}) - (\lambda_{m+1n} - \lambda_{m+1n+1}) \right] \\ & \in \left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1})) \|_p^{\varphi} \right]. \end{split}$$

Hence, $d((\lambda_{mn} - \lambda_{mn+1}) - (\lambda_{m+1n} - \lambda_{m+1n+1}), 0) = 1.$ But

$$|y_{mn}| \le ||f|| d\left((\lambda_{mn} - \lambda_{mn+1}) - (\lambda_{m+1n} - \lambda_{m+1n+1}), 0\right)$$

$$\le ||f|| \cdot 1 < \infty$$

for each m, n. Thus, (y_{mn}) is a p- metric paranormed space of double analytic sequence and, hence, an p- metric double analytic sequence.

In other words. $y \in \left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^\varphi\right]$. But $y = (y_{mn})$ is arbitrary in $\left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^\varphi\right]^\beta$. Therefore,

$$\left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]^{\beta} \\
\subset \left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right].$$
(7)

From (6) and (7), we get

$$\begin{split} \left[\chi_{f\mu}^{2q}, \| \mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1})) \|_p^{\varphi} \right]^{\beta} \\ &= \left[\Lambda_{f\mu}^{2q}, \| \mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1})) \|_p^{\varphi} \right]. \end{split}$$

Theorem 4. The dual space of $\left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^\varphi\right]$ is $\left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^\varphi\right]$. In other words. $\left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^\varphi\right]^* = \left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^\varphi\right]$.

Proof. We recall that

$$\lambda_{mn} = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 & \dots \\ 0 & 0 & \dots & 0 & 0 & \dots \\ \vdots & & & & & \\ 0 & 0 & \dots & \frac{\varphi_{rs}}{\Delta \lambda_{mn}(m+n)!} & 0 & \dots \\ 0 & 0 & \dots & 0 & 0 & \dots \end{pmatrix}$$

with $\frac{\varphi_{rs}}{\Delta\lambda_{mn}(m+n)!}$ in the (m,n)th position and zeros elsewhere,

$$\begin{bmatrix} \chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \end{bmatrix}$$

$$= \begin{pmatrix} 0. & . & . & 0 \\ . & & & \\ . & & & \\ 0 & f\left(\frac{\varphi_{rs}}{\Delta \lambda_{mn}(m+n)!}\right)^{1/m+n} & . & 0 \\ & & & & (m, n)^{th} & & 0 \end{pmatrix}$$

which is a p- metric of double gai sequence. Hence,

$$x \in \left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right] f(x)$$

$$= \sum_{m,n=1}^{\infty} x_{mn} y_{mn}$$

with $x \in \left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^\varphi\right]$ and $f \in \left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^\varphi\right]^*$, where $\left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^\varphi\right]^*$ is the dual space of $\left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^\varphi\right]$.

Take $x = (x_{mn}) \in \left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]$. Then,

$$|y_{mn}| \le ||f|| d(\varphi_{rs}, 0) < \infty \forall m, n.$$
 (8)

Thus, (y_{mn}) is a p- metric of the double analytic sequence and an p- metric of double analytic sequence. In other words, $y \in \left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^\varphi\right]$. Therefore,

$$\left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]^*$$

$$= \left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right].$$

This completes the proof.

Theorem 5. (1) If the sequence (f_{mn}) satisfies uniform Δ_2 —condition, then

$$\begin{split} \left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right]^{\alpha} \\ &= \left[\chi_g^{2q\mu}, \|\mu_{uv}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right]. \end{split}$$

(2) If the sequence (g_{mn}) satisfies uniform Δ_2 – condition, then

$$\left[\chi_{g}^{2q\mu}, \|\mu_{mn}(x), (d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p}^{\varphi}\right]^{\alpha}$$

$$= \left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p}^{\varphi}\right].$$

Proof. Let the sequence (f_{mn}) satisfies uniform Δ_2 —condition; we get

$$\left[\chi_{g}^{2q\mu}, \|\mu_{mn}(x), (d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p}^{\varphi}\right] \\
\subset \left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p}^{\varphi}\right]^{\alpha}.$$
(9)

To prove the inclusion

$$\begin{split} \left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]^{\alpha} \\ &\subset \left[\chi_g^{2q\mu}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right], \end{split}$$

let $a \in \left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]^{\alpha}$. Then, for all $\{x_{mn}\}$ with $(x_{mn}) \in \left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]$, we have

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |x_{mn} a_{mn}| < \infty.$$
 (10)

Since the sequence (f_{mn}) satisfies the uniform Δ_2 condition and then

$$(y_{mn}) \in \left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right],$$

we get $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left| \frac{\varphi_{rs} y_{mn} a_{mn}}{\Delta \lambda_{mn} (m+n)!} \right| < \infty$. by (10). Thus, $(\varphi_{rs} a_{mn}) \in \left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right] = \left[\chi_g^{2q\mu}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right],$ and hence, $(a_{mn}) \in \left[\chi_g^{2q\mu}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right].$ This gives that

$$\left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p}^{\varphi}\right]^{\alpha}$$

$$\subset \left[\chi_{g}^{2q\mu}, \|\mu_{mn}(x), (d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p}^{\varphi}\right].$$
(11)

We are granted with (9) and (11) that

$$\begin{split} \left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right]^{\alpha} \\ &= \left[\chi_g^{2q\mu}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right]. \end{split}$$

(3) Similarly, one can prove that

$$\left[\chi_{g}^{2q\mu}, \|\mu_{mn}(x), (d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p}^{\varphi}\right]^{\alpha}$$

$$\subset \left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p}^{\varphi}\right]^{\alpha}$$

if the sequence (g_{mn}) satisfies the uniform Δ_2 – condition.

Proposition 1. If $0 < q_{mn} < p_{mn} < \infty$ for each m and m, then

$$\begin{split} \left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right] \\ & \leq \left[\Lambda_{f\mu}^{2p}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right]. \end{split}$$

Proof. Let
$$x=(x_{mn})\in \left[\Lambda_{f\mu}^{2q},\|\mu_{mn}(x),(d(x_1),d(x_2),\dots,d(x_{n-1}))\|_p^\varphi\right]$$
. We have

$$sup_{mn}\left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right] < \infty.$$

This implies that

$$\left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right] < 1$$

for sufficiently large value of m and n. Since f_{mn} s are non-decreasing, we get

$$sup_{mn} \left[\Lambda_{f\mu}^{2p}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right]$$

$$\leq sup_{mn} \left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right].$$

Thus,
$$x = (x_{mn}) \in \left[\Lambda_{f\mu}^{2p}, \| \mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1})) \|_p^{\varphi} \right].$$

Proposition 2. (1) If $0 < infq_{mn} \le q_{mn} < 1$, then

$$\left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]$$

$$\subset \left[\Lambda_{f\mu}^2, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right].$$

(2) If
$$1 \leq q_{mn} \leq supq_{mn} < \infty$$
, then $\left[\Lambda_{f\mu}^{2}, \|\mu_{mn}(x), (d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p}^{\varphi} \right] \subset \left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p}^{\varphi} \right].$

Proof. Let
$$x = (x_{mn}) \in \left[\Lambda_{f\mu}^2, \|\mu_{mn}(x), (d(x_1), d(x_2), \dots, d(x_{n-1}))\|_p^\varphi\right]$$
. Since $0 < \inf q_{mn} \le 1$, we have

$$sup_{uv} \left[\Lambda_{f\mu}^{2}, \|\mu_{mn}(x), (d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p}^{\varphi} \right]$$

$$\leq \left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p}^{\varphi} \right],$$

and hence

$$x = (x_{mn}) \in \left[\Lambda_{f\mu}^{2}, \|\mu_{mn}(x), (d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p}^{\varphi}\right].$$

(3) Let q_{mn} for each (m,n) and $\sup_{mn}q_{mn} < \infty$. Let $x = (x_{mn}) \in \left[\Lambda_{f\mu}^2, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]$. Then, for each $0 < \epsilon < 1$, there exists a positive integer $\mathbb N$ such that

$$\sup_{uv}\left[\Lambda_{f\mu}^{2},\left\Vert \mu_{mn}(x),\left(d\left(x_{1}\right),d\left(x_{2}\right),\cdots,d\left(x_{n-1}\right)\right)\right\Vert _{p}^{\varphi}\right]\leq\epsilon<1,$$

for all $m, n \ge N$. This implies that

$$sup_{mn} \left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right]$$

$$\leq sup_{mn} \left[\Lambda_{f\mu}^2, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right].$$

Thus,
$$x = (x_{mn}) \in \left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right].$$

Proposition 3. Let $f' = (f'_{mn})$ and $f'' = (f''_{mn})$ be sequences of Musielak functions; we have

$$\begin{split} \left[\Lambda_{f'\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right] \\ & \times \bigcap \left[\Lambda_{f''\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right] \\ & \times \subseteq \left[\Lambda_{f'+f''\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right]. \end{split}$$

Proof. The proof is easy, so we omit it.

Proposition 4. For any sequence of Musielak functions $f = (f_{mn})$ and $q = (q_{mn})$ be double analytic sequence of strictly positive real numbers. Then,

$$\left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]$$

$$\subset \left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right].$$

Proof. The proof is easy, so we omit it. \Box

Proposition 5. The sequence space $\left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]$ is solid.

Proof. Let
$$x = (x_{mn}) \in \left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \dots, d(x_{n-1}))\|_p^{\varphi} \right]$$
, i.e.,

$$sup_{mn}\left[\Lambda_{f\mu}^{2q},\left\Vert \mu_{mn}(x),\left(d\left(x_{1}\right),d\left(x_{2}\right),\cdots,d\left(x_{n-1}\right)\right)\right\Vert _{p}^{\varphi}\right]<\infty.$$

Let (α_{mn}) be double sequence of scalars such that $|\alpha_{mn}| \le 1$ for all $m, n \in N \times N$. Then, we get

$$sup_{mn} \left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(\alpha x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right]$$

$$\leq sup_{mn} \left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right].$$

Proposition 6. The sequence space $\left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]$ is monotone.

Proof. The proof follows from Proposition 5. \Box

Proposition 7. If $f = (f_{mn})$ is any Musielak function, then

$$\left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi^*}\right]$$

$$\subset \left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi^{**}}\right]$$

if and only if $\sup_{r,s\geq 1} \frac{\varphi_{rs}^*}{\varphi_{rs}^{**}} < \infty$.

Proof. Let
$$x \in \left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi^*}\right]$$
 and $N = \sup_{r,s \ge 1} \frac{\varphi_{rs}^*}{\varphi_{rs}^{**}} < \infty$. Then, we get
$$\left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi_{rs}^{**}}\right]$$
$$= N\left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi_{rs}^*}\right]$$
$$= 0.$$

Thus, $x \in \left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi^{**}}\right]$. Conversely, suppose that

$$\begin{bmatrix} \Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi^*} \end{bmatrix}$$

$$\subset \begin{bmatrix} \Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi^{**}} \end{bmatrix}$$
and $x \in \begin{bmatrix} \Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi^*} \end{bmatrix}$.

Then,
$$\begin{bmatrix} \Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi^*} \end{bmatrix} < \epsilon$$
for every $\epsilon > 0$. Suppose that $\sup_{r,s \geq 1} \frac{\varphi_{rs}^*}{\varphi_{rs}^{**}} = \infty$, then there exists a sequence of members (rs_{jk}) such that $\lim_{j,k \to \infty} \frac{\varphi_{jk}^*}{\varphi_{jk}^{**}} = \infty$. Hence, we have
$$\begin{bmatrix} \Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_{n-1}), d(x_{n-1}))\|_p^{\varphi^{**}} \end{bmatrix} = \infty$$
. Therefore, $x \notin \begin{bmatrix} \Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_{n-1}), d(x_{n-1}))\|_p^{\varphi^{**}} \end{bmatrix}$, which is a contradiction.

Proposition 8. If $f = (f_{mn})$ is any Musielak function, then

$$\begin{split} \left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi^*} \right] \\ &= \left[\Lambda_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi^{**}} \right] \end{split}$$

if and only if $\sup_{r,s\geq 1} \frac{\varphi^*_{rs}}{\varphi^{**}_{rs}} < \infty$, $\sup_{r,s\geq 1} \frac{\varphi^*_{rs}}{\varphi^*_{rs}} > \infty$.

Proof. It is easy to prove, so we omit it.

Proposition 9. The sequence space $\left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]$ is not solid.

Proof. The result follows from the following example. Consider

$$x = (x_{mn}) = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \vdots & & & \\ 1 & 1 & \dots & 1 \end{pmatrix}$$

$$\in \left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \dots, d(x_{n-1}))\|_p^{\varphi} \right].$$

Let

$$\alpha_{mn} = \begin{pmatrix} -1^{m+n} & -1^{m+n} & \dots & -1^{m+n} \\ -1^{m+n} & -1^{m+n} & \dots & -1^{m+n} \\ \vdots & & & & \\ -1^{m+n} & -1^{m+n} & \dots & -1^{m+n} \end{pmatrix},$$

for all
$$m, n \in \mathbb{N}$$
. Then, $\alpha_{mn}x_{mn} \notin \left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]$. Hence, $\left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]$ is not solid.

Proposition 10. The sequence space $\left[\chi_{f\mu}^{2q}, \|\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]$ is not monotone.

Proof. The proof follows from Proposition 9. \Box

Generalized four-dimensional infinite matrix sequence spaces

Let $A = (a_{k\ell}^{mn})$ be a four-dimensional infinite matrix of complex numbers. Then, we have $A(x) = (Ax)_{k\ell} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{k\ell}^{mn} x_{mn}$ which converges for each k, ℓ .

In this section, we introduce the following sequence spaces:

$$\begin{split} \left[\chi_{f\mu}^{2qA}, \|(d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right] \\ &= \lim_{mn} \left\{ \left[f_{mn} \left(\|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right) \right]^{q_{mn}} = 0 \right\}, \\ \left[\Lambda_{f\mu}^{2qA}, \|(d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right] \\ &= \sup_{mn} \left\{ \left[f_{mn} \left(\|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p \right) \right]^{q_{mn}} < \infty \right\}. \end{split}$$

If we take $f_{mn}(x) = x$, we get

$$\begin{split} \left[\chi_{\mu}^{2qA}, \|(d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p}^{\varphi}\right] \\ &= \lim_{mn} \left\{ \left[\left(\|A_{mn}\mu_{mn}(x), (d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p}^{\varphi} \right), \\ &d(x_{n-1})\|_{p} \right) \right]^{q_{mn}} = 0 \right\}, \\ \left[\Lambda_{\mu}^{2qA}, \|(d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p}^{\varphi} \right] \\ &= \sup_{mn} \left\{ \left[\left(\|A_{mn}\mu_{mn}(x), (d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p}^{\varphi} \right), \\ &d(x_{n-1})\|_{p} \right) \right]^{q_{mn}} < \infty \right\}. \end{split}$$

If we take $q = (q_{mn}) = 1$,

$$\begin{split} \left[\chi_{f\mu}^{2A}, \| (d(x_1), d(x_2), \cdots, d(x_{n-1})) \|_p^{\varphi} \right] \\ &= \lim_{mn} \left\{ \left[f_{mn} \left(\| A_{mn} \mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1})) \|_p \right) \right] = 0 \right\}, \\ \left[\Lambda_{f\mu}^{2A}, \| (d(x_1), d(x_2), \cdots, d(x_{n-1})) \|_p^{\varphi} \right] \\ &= \sup_{mn} \left\{ \left[f_{mn} \left(\| A_{mn} \mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1})) \|_p \right) \right] < \infty \right\}. \end{split}$$

Theorem 6. For a Musielak-modulus function, $f = (f_{mn})$. Then, the sequence spaces $\left[\chi_{f\mu}^{2qA}, \|(d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^\varphi\right]$ and $\left[\Lambda_{f\mu}^{2qA}, \|(d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^\varphi\right]$ are linear spaces over the set of complex numbers \mathbb{C} .

Proof. It is routine verification. Therefore, the proof is omitted. $\hfill\Box$

Theorem 7. For any Musielak-modulus function $f = (f_{mn})$ and a double analytic sequence $q = (q_{mn})$ of strictly positive real numbers, the space $\left[\chi_{f\mu}^{2qA}, \|(d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^\varphi\right]$ is a topological linear space paranormed by

$$g(x) = \inf \left\{ \left(\left[f_{mn} \left(\|A_{mn} \mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1})) \|_p^\varphi \right) \right]^{q_{mn}} \right)^{1/H} \le 1 \right\},$$

where $H = max(1, sup_{mn}q_{mn} < \infty)$.

Proof. Clearly, $g(x) \ge 0$ for $x = (x_{mn}) \in \left[\chi_{f\mu}^{2qA}, \| (d(x_1), d(x_2), \cdots, d(x_{n-1})) \|_p^{V_2} \right]$. Since $f_{mn}(0) = 0$, we get g(0) = 0. Conversely, suppose that g(x) = 0, then $\inf \left\{ \left(\left[f_{mn} \left(\| A_{mn} \mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1})) \|_p^{\varphi} \right) \right]^{q_{mn}} \right)^{1/H} \right\} \le 1 = 0$. Suppose that $A_{mn} \mu_{mn}(x) \ne 0$ for each $m, n \in \mathbb{N}$, then

$$||A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))||_p^{\varphi} \to \infty.$$
(12)

It follows that $\left(\left[f_{mn}\left(\|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_{p}^{V_2}\right)\right]^{q_{mn}}\right)^{1/H} \to \infty$ which is a contradiction. Therefore, $A_{mn}\mu_{mn}(x) = 0$. Let $\left(\left[f_{mn}\left(\|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_{p}^{\varphi}\right)\right]^{q_{mn}}\right)^{1/H} \le 1$ and $\left(\left[f_{mn}\left(\|A_{mn}\mu_{mn}(y), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_{p}^{\varphi}\right)\right]^{q_{mn}}\right)^{1/H} \le 1$. Then, by using Minkowski's inequality, we have

$$\left(\left[f_{mn}\left(\|A_{mn}\mu_{mn}(x+y), (d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p}^{\varphi}\right)\right]^{q_{mn}}\right)^{1/H} \\
\leq \left(\left[f_{mn}\left(\|A_{mn}\mu_{mn}(x), (d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p}^{\varphi}\right)\right]^{q_{mn}}\right)^{1/H} \\
+ \left(\left[f_{mn}\left(\|A_{mn}\mu_{mn}(y), (d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p}^{\varphi}\right)\right]^{q_{mn}}\right)^{1/H} \\
d(x_{n-1}))\|_{p}^{\varphi}\right)\right]^{q_{mn}}\right)^{1/H}.$$

So, we have

$$\begin{split} g(x+y) &= \inf \left\{ \left(\left[f_{mn} \left(\left\| A_{mn} \mu_{mn}(x+y), (d(x_1), d(x_2), \cdots, d(x_{n-1})) \right\|_p^\varphi \right) \right]^{q_{mn}} \right)^{1/H} \leq 1 \right\} \\ &\leq \inf \left\{ \left(\left[f_{mn} \left(\left\| A_{mn} \mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1})) \right\|_p^\varphi \right) \right]^{q_{mn}} \right)^{1/H} \leq 1 \right\} \\ &+ \inf \left\{ \left(\left[f_{mn} \left(\left\| A_{mn} \mu_{mn}(y), (d(x_1), d(x_2), \cdots, d(x_{n-1})) \right\|_p^\varphi \right) \right]^{q_{mn}} \right)^{1/H} \leq 1 \right\}. \end{split}$$

Therefore,

$$g(x+y) \le g(x) + g(y).$$

Finally, to prove that the scalar multiplication is continuous, let λ be any complex number. By definition,

$$g(\lambda x) = \inf \left\{ \left(\left[f_{mn} \left(\| A_{mn} \mu_{mn} \left(\lambda x \right), \left(d \left(x_1 \right), d \left(x_2 \right), \cdots, d \left(x_{n-1} \right) \right) \right]_p^{\varphi} \right)^{1/H} \leq 1 \right\}.$$

Then,

$$g(\lambda x) = \inf \left\{ \left(\left(\left| \lambda \right| t \right)^{q_{mn}/H} : \left(\left[f_{mn} \left(\left\| A_{mn} \mu_{mn} (x), \left(d \left(x_{1} \right), d \left(x_{2} \right), \cdots, d \left(x_{n-1} \right) \right) \right]_{p}^{\varphi} \right) \right]^{q_{mn}} \right)^{1/H} \le 1 \right\},$$

where $t = \frac{1}{|\lambda|}$. Since $|\lambda|^{q_{mn}} \leq max(1, |\lambda|^{supp_{mn}})$, we have

$$g(\lambda x) \leq \max\left(1, |\lambda|^{\sup p_{mn}}\right) \inf \left\{ t^{q_{mn}/H} : \left(\left[f_{mn}(\|A_{mn}\mu_{mn}(\lambda x), (d(x_1), d(x_2), \cdots, d(x_{n-1})) \|_p^{\varphi} \right) \right]^{q_{mn}} \right)^{1/H} \leq 1 \right\}.$$

Theorem 8. The β – dual space of $\left[\chi_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]^{\beta} = \left[\Lambda_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right].$

Proof. First, we observe that

$$\left[\chi_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]^{\beta} \\
\subset \left[\Gamma_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right].$$

Therefore,

$$\left[\Gamma_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]^{\beta} \\
\subset \left[\chi_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]^{\beta}.$$

But

$$\left[\Gamma_{f\mu}^{2qA}\right]^{\beta} \stackrel{\subset}{\neq} \left[\Lambda_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right].$$

Hence,

$$\left[\Lambda_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right] \\
\subset \left[\chi_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right]^{\beta}.$$

Next, we show that

$$\left[\chi_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]^{\beta}$$

$$\subset \left[\Lambda_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right].$$

Let
$$y = (y_{mn}) \in \left[\chi_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \dots, d(x_{n-1}))\|_p^q\right]^{\beta}$$
. Consider $f(x) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} x_{mn} y_{mn}$

with

$$\begin{split} x &= (x_{mn}) \in \left[\chi_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^\varphi \right] \\ x &= \left[(\lambda_{mn} - \lambda_{mn+1}) - (\lambda_{m+1n} - \lambda_{m+1n+1}) \right] \\ &= \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \cdots & & & & & & & & & & \\ 0 & 0 & \cdots & \frac{q_{rs}}{a_{\ell\ell}^m \Delta \lambda_{mn}(m+n)!} & \frac{-q_{rs}}{a_{\ell\ell}^{mn} \Delta \lambda_{mn}(m+n)!} & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix} \\ &- \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix} \\ &- \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix} \\ &- \begin{pmatrix} f_{mn} \left(\|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^\varphi \right) \right] \\ &- \begin{pmatrix} 0 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0, & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0, & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0, & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0, & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0, & \cdots & 0 \end{pmatrix} \\ &- \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ a_{\ell\ell}^{mn} \Delta \lambda_{mn}(m+n)! \end{pmatrix} f_{mn} \left(\frac{-q_{rs}}{a_{\ell\ell}^{mn} \Delta \lambda_{mn}(m+n)!} \right) \cdots & 0 \\ &- \begin{pmatrix} 0 & \cdots & 0 & 0 & \cdots & 0 \\ a_{\ell\ell}^{mn} \Delta \lambda_{mn}(m+n)! \end{pmatrix} f_{mn} \left(\frac{q_{rs}}{a_{\ell\ell}^{mn} \Delta \lambda_{mn}(m+n)!} \right) \cdots & 0 \\ &- \begin{pmatrix} 0 & \cdots & 0 & 0 & \cdots & 0 \\ a_{\ell\ell}^{mn} \Delta \lambda_{mn}(m+n)! \end{pmatrix} f_{mn} \left(\frac{q_{rs}}{a_{\ell\ell}^{mn} \Delta \lambda_{mn}(m+n)!} \right) \cdots & 0 \\ &- \begin{pmatrix} 0 & \cdots & 0 & 0 & \cdots & 0 \\ a_{\ell\ell}^{mn} \Delta \lambda_{mn}(m+n)! \end{pmatrix} f_{mn} \left(\frac{q_{rs}}{a_{\ell\ell}^{mn} \Delta \lambda_{mn}(m+n)!} \right) \cdots & 0 \\ &- \begin{pmatrix} 0 & \cdots & 0 & 0 & \cdots & 0 \\ a_{\ell\ell}^{mn} \Delta \lambda_{mn}(m+n)! \end{pmatrix} f_{mn} \left(\frac{q_{rs}}{a_{\ell\ell}^{mn} \Delta \lambda_{mn}(m+n)!} \right) \cdots & 0 \\ &- \begin{pmatrix} 0 & \cdots & 0 & 0 & \cdots & 0 \\ a_{\ell\ell}^{mn} \Delta \lambda_{mn}(m+n)! \end{pmatrix} f_{mn} \left(\frac{q_{rs}}{a_{\ell\ell}^{mn} \Delta \lambda_{mn}(m+n)!} \right) \cdots & 0 \\ &- \begin{pmatrix} 0 & \cdots & 0 & \cdots & 0 \\ a_{\ell\ell}^{mn} \Delta \lambda_{mn}(m+n)! \end{pmatrix} f_{mn} \left(\frac{q_{rs}}{a_{\ell\ell}^{mn} \Delta \lambda_{mn}(m+n)!} \right) \cdots & 0 \\ &- \begin{pmatrix} 0 & \cdots & 0 & \cdots & 0 \\ a_{\ell\ell}^{mn} \Delta \lambda_{mn}(m+n)! \end{pmatrix} f_{mn} \left(\frac{q_{rs}}{a_{\ell\ell}^{mn} \Delta \lambda_{mn}(m+n)!} \right) \cdots & 0 \\ &- \begin{pmatrix} 0 & \cdots & 0 & \cdots & 0 \\ a_{\ell\ell}^{mn} \Delta \lambda_{mn}(m+n)! \end{pmatrix} f_{mn} \left(\frac{q_{rs}}{a_{\ell\ell}^{mn} \Delta \lambda_{mn}(m+n)!} \right) \cdots & 0 \\ &- \begin{pmatrix} 0 & \cdots & 0 & \cdots & 0 \\ a_{\ell\ell}^{mn} \Delta \lambda_{mn}(m+n)! \end{pmatrix} f_{mn} \left(\frac{q_{rs}}{a_{\ell\ell}^{mn} \Delta \lambda_{mn}(m+n)!} \right) \cdots & 0 \\ &- \begin{pmatrix} 0 & \cdots & 0 & \cdots & 0 \\$$

Hence, converges to zero.

Therefore,

$$\begin{split} & \left[(\lambda_{mn} - \lambda_{mn+1}) - (\lambda_{m+1n} - \lambda_{m+1n+1}) \right] \\ & \times \in \left[\chi_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1})) \|_p^{\varphi} \right]. \end{split}$$

Hence, $d\left(a_{k\ell}^{mn}(\lambda_{mn}-\lambda_{mn+1})-(\lambda_{m+1n}-\lambda_{m+1n+1}),0\right)=1$. However, $\left|y_{mn}\right|\leq \|f\|d\left(a_{k\ell}^{mn}(\lambda_{mn}-\lambda_{mn+1})-(\lambda_{m+1n}-\lambda_{m+1n+1}),0\right)\leq \|f\|\cdot 1<\infty$ for each m,n. Thus, (y_{mn}) is a p- metric paranormed space of double analytic sequence and, hence, an p- metric double analytic sequence.

In other words, $y \in \left[\Lambda_{f\mu}^{2qA}, \|\mu_{mn}(x), (d(x_1), d(x_2), \dots, d(x_{n-1}))\|_p^\varphi\right]$. However, $y = (y_{mn})$ is arbitrary in $\left[\chi_{f\mu}^{2q}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \dots, d(x_{n-1}))\|_p^\varphi\right]^\beta.$ Therefore,

$$\left[\chi_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p}^{\varphi}\right]^{\beta} \\
\subset \left[\Lambda_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_{1}), d(x_{2}), \cdots, d(x_{n-1}))\|_{p}^{\varphi}\right].$$
(13)

From (12) and (13), we get

$$\begin{split} & \left[\chi_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1})) \|_p^{\varphi} \right]^{\beta} \\ & = \left[\Lambda_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1})) \|_p^{\varphi} \right]. \end{split}$$

Theorem 9. The dual space of $\left[\chi_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]$ is $\left[\Lambda_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]$. In other words,

$$\begin{split} & \left[\chi_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right]^* \\ & = \left[\Lambda_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right]. \end{split}$$

Proof. We recall that

$$\lambda_{mn} = \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 & \cdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots \\ \vdots & & & & & \\ 0 & 0 & \cdots & \overline{a_{\ell\ell}^{mn} \Delta \lambda_{mn}(m+n)!} & 0 & \cdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots \end{pmatrix}$$

with $\frac{\varphi_{rs}}{a_{k\ell}^{mn} \Delta \lambda_{mn}(m+n)!}$ in the (m,n)th position and zero elsewhere.

$$\begin{bmatrix} \chi_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \end{bmatrix}$$

$$= \begin{pmatrix} 0. & . & . & 0 \\ \vdots & & & \\ 0 f\left(\frac{\varphi_{rs}}{a_{k\ell}^{mn}\Delta\lambda_{mn}(m+n)!}\right)^{1/m+n} & . & 0 \\ & & & (m, n)^{th} \end{pmatrix}$$

which is a p- metric of double gai sequence. Hence,

$$x \in \left[\chi_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right] f(x)$$

$$= \sum_{m,n=1}^{\infty} x_{mn} y_{mn}$$

with

$$x \in \left[\chi_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]$$

anc

$$f \in \left[\chi_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]^*,$$

where

$$\left[\chi_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]^*$$

is the dual space of
$$\left[\chi_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]$$
.

Take
$$x = (x_{mn}) \in \left[\chi_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi} \right]$$
. Then,
$$|y_{mn}| \leq \|f\| d(\varphi_{rs}, 0) < \infty \forall m, n. \tag{14}$$

Thus, (y_{mn}) is a p- metric of double analytic sequence and, hence, an p- metric of double analytic sequence. In other words, $y \in \left[\Lambda_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x),\right]$

$$(d(x_1), d(x_2), \cdots, d(x_{n-1}))|_p^{\varphi}$$
. Therefore,

$$\left[\chi_{f\mu}^{2qA}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right]^*$$

$$= \left[\Lambda_{f\mu}^{2q}, \|A_{mn}\mu_{mn}(x), (d(x_1), d(x_2), \cdots, d(x_{n-1}))\|_p^{\varphi}\right].$$

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally in introducing gai-2 sequence spaces generalized over *p*-metric defined by Musielak modulus function and in studying topological properties. All authors read and approved the final manuscript.

Author details

¹Department of Mathematics, SASTRA University, Thanjavur, 613 401, India. ²Department of Mathematics, Sri Angalamman College of Engineering and Technology, Trichirappalli, 621 105, India.

Received: 1 April 2013 Accepted: 5 May 2013 Published: 12 August 2013

References

- Bromwich, TJI'A: An Introduction to the Theory of Infinite Series. Macmillan, New York (1965)
- Hardy, GH: On the convergence of certain multiple series. Proc. Camb. Phil. Soc. 19, 86–95 (1917)
- Moricz, F: Extentions of the spaces c and c₀ from single to double sequences. Acta. Math. Hung. 57(1-2), 129–136 (1991)
- 4. Moricz, F, Rhoades, BE: Almost convergence of double sequences and strong regularity of summability matrices. Math. Proc. Camb. Phil. Soc. **104**, 283–294 (1988)
- Basarir, M, Solancan, O: On some double sequence spaces. J. Indian Acad. Math. 21(2), 193–200 (1999)
- Tripathy, BC: On statistically convergent double sequences. Tamkang J. Math. 34(3), 231–237 (2003)
- Turkmenoglu, A: Matrix transformation between some classes of double sequences. J. Inst. Math. Comp. Sci. Math. Ser. 12(1), 23–31 (1999)
- 8. Gökhan, A, Çolak, R: The double sequence spaces $c_2^P\left(p\right)$ and $c_2^{PB}\left(p\right)$. Appl. Math. Comput. **157**(2), 491–501 (2004)
- Gökhan, A, Çolak, R: Double sequence spaces ℓ₂∞. ibid. 160(1), 147–153 (2005)
- Zeltser, M: Investigation of double sequence spaces by soft and hard analytical methods. Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, University of Tartu (2001)
- Mursaleen, M, Edely, OHH: Statistical convergence of double sequences. J. Math. Anal. Appl. 288(1), 223–231 (2003)
- Altay, B, BaŞar, F: Some new spaces of double sequences. J. Math. Anal. Appl. 309(1), 70–90 (2005)
- 13. BaŞar, F, Sever, Y: The space \mathcal{L}_p of double sequences. Math. J. Okayama Univ. **51**, 149–157 (2009)
- Subramanian, N, Misra, UK: The semi normed space defined by a double gai sequence of modulus function. Fasciculi Math. 45, 111–120 (2010)
- Maddox, IJ: Sequence spaces defined by a modulus. Math. Proc. Cambridge Philos. Soc. 100(1), 161–166 (1986)

- Cannor, J: On strong matrix summability with respect to a modulus and statistical convergence. Canad. Math. Bull. 32(2), 194–198 (1989)
- Pringsheim, A: Zurtheorie derzweifach unendlichen zahlenfolgen. Math. Ann. 53, 289–321 (1900)
- Hamilton, HJ: Transformations of multiple sequences. Duke Math. J. 2, 29–60 (1936)
- Hamilton, HJ: A generalization of multiple sequences transformation. Duke Math. J. 4, 343–358 (1938)
- 20. Hamilton, HJ: Preservation of partial limits in multiple sequence transformations. Duke Math. J. **4**, 293–297 (1939)
- 21. Kamthan, PK, Gupta, M: Sequence Spaces and Series, Lecture notes, Pure and Applied Mathematics. 65 Marcel Dekker, Inc., New York (1981)
- 22. Lindenstrauss, J, Tzafriri, L: On Orlicz sequence spaces. Israel J. Math. **10**, 379–390 (1971)
- 23. Kizmaz, H: On certain sequence spaces. Cand. Math. Bull. **24**(2), 169–176 (1981)
- Wilansky, A: Summability Through Functional Analysis, Vol. 85.
 North-Holland Mathematical Studies, North-Holland Publishing, Amsterdam (1984)

doi:10.1186/2251-7456-7-39

Cite this article as: Nagarajan $\it et al.$: The generalized χ^2 sequence spaces over $\it p$ - metric spaces defined by Musielak. $\it Mathematical Sciences 2013 7:39.$

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com