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Introduction

Throughout this paper, w, x, and A denote the classes
of all, gai, and analytic scalar valued single sequences,
respectively. We write w? for the set of all complex
sequences (x,,,), where m, n € N, the set of positive inte-
gers. Then, w? is a linear space under the coordinatewise
addition and scalar multiplication.

Some initial works on double sequence spaces is found
in Bromwich [1]. Later on, they were investigated by
Hardy [2], Moricz [3], Moricz and Rhoades [4], Basarir
and Solankan [5], Tripathy [6], Turkmenoglu [7], and
many others. We procure the following sets of double
sequences:

My (t) = {(xmn) e w? : SUPm,neN |xmn|tmn < 00} ,

Cp(t) = {(xmn) ew 2p = limy o0 | — "
=1

for some € C},

Cop(®) = { mn) € W* 2 p — limy e [Xpun|™™ = 1},

Ly(@) = [(xmn) ew: Z:le:il |xmn|tmn < OO} ’

Cup() :=Cp(®) [ ) Mu(t) and Cop(£) = Cop(®) | MLu(),

where ¢t = (t,,) is the sequence of strictly positive reals
tyy for all myn € N and p — lim,,,,—.oc denotes the
limit in the Pringsheim’s sense. In the case where t,,, =
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1 for all m,n e N, My(),Cy(t), Cop(t), Ly (2), Cpp(t),
and Cop,(t) reduce to the sets My, Cp, Cop, Ly, Cpp, and
Cobp: respectively. Now, we may summarize the knowl-
edge given in some document related to the double
sequence spaces. Gokhan and Colak [8,9] have proved
that M, (¢) and Cy(¢),Cp,(t) are complete paranormed
spaces of double sequences and gave the a—,8—,y—
duals of the spaces M, (¢) and Cp,(?). Quite recently,
in her PhD thesis, Zeltser [10] has essentially studied
both the theory of topological double sequence spaces
and the theory of summability of double sequences. Mur-
saleen and Edely [11], and Tripathy [6] have independently
introduced the statistical convergence and Cauchy for
double sequences and given the relation between statis-
tical convergent and strongly Cesaro summable double
sequences. Altay and BaSar [12] have defined the spaces
BS,BS(t),CSy, CSpp, CSy, and BY of double sequences
consisting of all double series whose sequence of par-
tial sums is in the spaces M, M, (t), Cp, Cpp, Cy, and Ly,
respectively, and also examined some properties of those
sequence spaces and determined the o— duals of the
spaces BS, BV, (S, and the B(¥)— duals of the spaces
CSpp and CS, of double series. Basar and Sever [13] have
introduced the Banach space £, of double sequences cor-
responding to the well-known space ¢, of single sequences
and examined some properties of the space £;. Quite
recently, Subramanian and Misra [14] have studied the
space x3 (»,q,u) of double sequences and gave some
inclusion relations.

The class of sequences which is strongly Cesaro
summable with respect to a modulus was introduced
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by Maddox [15] as an extension of the definition of
strongly Cesaro summable sequences. Connor [16] fur-
ther extended this definition to a definition of strong A-
summability with respect to a modulus, where A = (an,k)
is a non-negative regular matrix, and established some
connections between strong A- summability, strong A-
summability with respect to a modulus, and A- statistical
convergence. In [17], the notion of convergence of double
sequences was presented by Pringsheim. Also, in [18,19],
and [20], the four-dimensional matrix transformation
(AX) ke = D g1 D1 ARy %mn Was studied extensively by
Hamilton.

We need the following inequality in the sequel of the

paper. For a,b,> 0and 0 < p < 1, we have

(a+by <a”+b". 1)
The double series Y17 _; X is called convergent if and
only if the double sequence (s;;) is convergent, where
Smn = Z:’;;’l xij(m,n € N). A sequence x = (Xyn)
is said to be double analytic if sup,,, [ |1/ < 00,
The vector space of all double analytic sequences will be
denoted by A2. A sequence x = () is called double
gai sequence if((m + n)! 1% DY > 0 as m,n — oo.
The double gai sequences will be denoted by x2. Let ¢ =
{all finite sequences}.

Consider a double sequence x = (x;). The (m, n)th
section "] of the sequence is defined by x"" =
> Z’«i’oxijsl’j for all m,n € N, where J;; denotes the dou-
ble sequence whose only non-zero term is a @ in the

(i,j)th place for each i,j € N.

A Fréchet coordinate space (FK-space or a metric space)
X is said to have an AK property if (J,,) is a Schauder
basis for X, or equivalently x”"/ — x. An FDK-space
is a double sequence space endowed with a complete
metrizable space, locally convex topology under which the
coordinate mappings x = (xx) — (%) (m,n € N) are
also continuous.

Let M and ® be mutually complementary modulus
functions. Then, we have

(1) Forallu,y >0,

uy < M(u) + ®(y), (Young's inequality; see [21]).
(2)

(2) Forallu >0,
un(u) = M(u) + @ (n(w)) . 3)
(3) Forallu >0and0 <A < 1,

M () < AM(u). (4)
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Lindenstrauss and Tzafriri [22] used the idea of Orlicz
function to construct Orlicz sequence space

_ N %k |
Ly = {x EwW: Zk:1M (,o) < 00, for some p > 0}.
The space £ with the norm
) 00 k|
x| = inf {,o >0: Zk=1M <p> < 1}

becomes a Banach space which is called an Orlicz
sequence space. For M(t) = # (1 < p < 00), the spaces
£ coincide with the classical sequence space £,,.

A sequence f = (fiun) of modulus function is called
a Musielak-modulus function. A sequence g = ( m,,)
defined by

Gmn (V) = sup {[v|u = (fin) ) : >0} ,mn=1,2,- -

is called the complementary function of a Musielak-
modulus function f. For a given Musielak modulus func-
tion f, the Musielak-modulus sequence space #r and its
subspace /i are defined, respectively, as follows:

DY s 0asm,n — oo}

tr = {x e w?: Iy (|,
and

n|)1/m+n

hf:{xewzzlfﬂxm —>0asm,n—>oo},

where Ir is a convex modular defined by

() = Z:lezilfmn (|xmn|)1/m+n X = (Xmn) € tf.

We consider that #; is equipped with the Luxemburg
metric

d (x, y) = SUPmn {ll’lf (ZC::IZZC;lfmn

1/m+n
mn

If X is a sequence space, we give the following definitions:

(1) X = the continuous dual of X;
(2) X = {a = (@mn) Zznzl | @mnXmn| < 00,
for each x € X};
(3) X8 = {a = (@mn) : Y. Crf,n:l“mnxmn is convergent,
for each x € X};
(4) XV = {ﬂ: (@mn) Supmn>1 ‘Zly\i,y]l\[:l AmnXmn| < 00,
for each x € X};
(5) let X be an FK-space D ¢, then
X =@ if ex';
(6) X0 = {ﬂ = (@mn) : SUPmn |ﬂmnxmn|1/m+n < 00,
for each x € X},

where X%, X#, and X” are called o — (or Kothe-Toeplitz)
dual of X, 8— (or generalized Kothe-Toeplitz) dual of X,
y — dual of X, and §— dual of X, respectively. X* is defined
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by Kantham and Gupta [21]. It is clear that X* ¢ X# and
X% C X7, but X? c X” does not hold since the sequence
of partial sums of a double convergent series needs not to
be bounded.

The notion of difference sequence spaces (for single
sequences) was introduced by Kizmaz [23] as follows:

Z(A) ={x=(xr) e w: (Axy) € Z}

for Z = ¢, cp and £, where Axy = x; — x4y forall k € N.

Here, ¢, cg, and £+ denote the classes of convergent,
null, and bounded scalar valued single sequences, respec-
tively. The difference sequence space bv, of the classical
space £, is introduced and studied in the case 1 < p < 0o
and in the case 0 < p < 1 by Altay and BaSar in [12]. The
spaces ¢ (A), cg (A), £ (A), and by, are Banach spaces
normed by

%l = lx1] + supr=1 | Axi| and [|x]py,
00 1/p
= (>, ) T a=p<oo).

Later on, the notion was further investigated by many oth-
ers. We now introduce the following difference double
sequence spaces defined by

Z(A) = {x = @) € W : (D) € Z},

A21 X2 and Axyn = Fmn — Xmnt1) —
Xmt1n — Xmt1n+1) = Xmn — X1 — Xmt+1n T Xmt 1nt1 for
all m,n € N.

where Z =

Definition and preliminaries
Let n € N and X be a real vector space of dimension w,
where # < w. A real valued function d,(x1,...,%x,) =

I(d1(x1), ..., dn(x)) |, on X satisfying the following four
conditions:
1) I(d1(x1)s ..., du(xn)]lp = 0 if and and only if
di1(x1), .. .,dn(x,) are linearly dependent,
(2) Id1(x1), .., dn(xn))lp is invariant under
permutation,

B Madix1), ..., dn(xa))llp = le| [(d1(x1), ...,
dn(xn))”p,a eR

(4) dp ((x1,y1), %2,¥2) - - (X, Yn)) = (dx (X1, %2, - - - X))
+dy (1,92, - y)P) P forl < p < o0; (or)

(5) d ((xlryl)t (x21y2)7 T (xmyn)) =
sup {dX(xlyx% o 'xn):dY(yl’er o ')’n)}, for
x1,%2, %y € X, 91,92, - ¥» € Y which is called the
p product metric of the Cartesian product of n
metric spaces is the p norm of the n-vector of the
norms of the n subspaces.

A trivial example of the p product metric of the n metric
space is the p norm space which is X = R equipped with
the following Euclidean metric in the product space:
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(d1(x1), ..., du(x) | E = sup (|det(dn Xmn))|) =
dir (x11) diz2 (%12) -+ din (X10)
dyy (021) daa (%22) -+ doy (X14)
sup . ,

dn1 (Xn1) du2 Kn2) -+ dun Kun)

where x; = (x;1,---x;,) € R* foreachi=1,2,---n.

If every Cauchy sequence in X converges to some L € X,
then X is said to be complete with respect to the p- metric.
Any complete p- metric space is said to be p- Banach
metric space.

Let X be a linear metric space. A function w : X — Riis
called paranorm if

1
2
3
4

w(x) > 0forallx € X;

w(—x) = w(x) forallx € X,

wx+y) <wx) +w(y)forallx,y € X;

If (0, is a sequence of scalars with o,,,;, — o as
m, n — 00, and (x,,,) is a sequence of vectors with
W (X — %) — 0as m,n — 00, then

W (OpmnXmn — 0x) — 0as m,n — o0.

= = —

A paranorm w for which w(x) = 0 implies x = 0 is called
a total paranorm, and the pair (X, w) is called a total para-
normed space. It is well known that the metric of any
linear metric space is given by some total paranorm (see
[24], Theorem 10.4.2, p.183).

The notion of A— double gai and double analytic
sequences is as follows: Let A = (Amn),,; ,—o be a strictly
increasing sequence of positive real numbers tending to
infinity, that is,

0<Xtyg<Ap <---and Ay, — coasm,n — 00

and that a sequence x = (x,,,;,) € w? is A— convergent to
0, called a the A— limit of w, if i, (x) — O0asm,n — o0,
where

1
H=—3 >
an( ) MEeo,0 EPyg NneEo,0 EPy

Prs

1
X ()\m,n — A+l — Amtin t )»m-H,n-H) [ fmin

The sequence x = (¥,,,) € w? is A— double analytic if
supyy | mn(x)| < oo. If limyuxy,, = 0 in the ordinary
sense of convergence, then

1
limyn | — Z Z ()Lm,n = Al — At
Prs meo,0 €Pys n€T,0 €L

Fhm 1) (1 + 1) ! iy — 0|)1/’”+”> =0.

This implies that it yields limypym(x) = 0, and
hence, ¥ = (xu,) € w? is A— convergent to
0. Let f = (fm,,) be a Musielak-modulus function,

(1@ @), d @), d @)l ) beap-metric space,
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and ¢ = (gmn) be double analytic sequence of strictly pos-
itive real numbers. By w? (p — X), we denote the space

of all sequences as (X, I(d (x1),d (x2),- - ,d(x,,_l))llp).
The following inequality will be used throughout the
paper. If 0 < gy < supqmn = H,K = max (1,2H’1),
then

l@mn + byn| ™™ < K {|ﬂmn|qmn + |bmn|qmn} (5)

for all m, n and a,,1, by € C. Also, |a|?™ < max (1, IaIH)
foralla € C.

In the present paper, we define the following sequence
spaces:

(e e, d ),

Cd Gl ]

= limy;, {|: mn (”an(x)! (dx1),dx2),---,

qmn
d(an))n,,)] = o},

(A7 1@ @0 d ), d @)

= SUPmn { |:fmn (”an(x): (dx1),dx2),---,

qmn
d(xn_l))np)] < oo} :
If we take f,;,(x) = x, we get
[ 1@ 0, d @), d )]

= limy,, {[(IIumn(x), (dx1),dx2),---,

qmn
d(an))npﬂ - o},

(Al 1@ @), d o), d @l ]

= SUPmn {|:<||an(x)» d@x1),d@x2),---,

qmn
d(xn_l))npﬂ < oo}.

If we take ¢ = (g) = 1
[ @@, d @), d ea)lg]
= lim,y, {[ mn (Ilumn(x), (d @), dx),---,
d(xn_n)n,,ﬂ - o},
(A2, 1@ @) d @), d @)

= SUPmn {|: mn (”an(x), dx1),dx2),---,

d(xn_n)np)} < oo}.
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In the present paper, we plan to study some topologi-
cal properties and inclusion relation between the above

defined sequence spaces, [X;Z, I(d(x1),d (x2),--,

d o)l | and [AZ2, 1@ Ge0), d ()1 1)
which we shall discuss in this paper.

Main results

Theorem 1. Let f = ( fmn) be a Musielak-modulus func-
tion and q = (qmu) be a double analytic sequence
of strictly positive real numbers; the sequence spaces

[X}Z I(d (x1),d (x2), -+ - ,d(xn_1))||§§] and [Aﬁz I(d (x1) »

dx), - ,d (xnfl))llg] are linear spaces.

Proof. 1t is routine verification. Therefore, the proof is
omitted. O

Theorem 2. Let f = ( fm,,) be a Musielak-modulus
function and q = (qmn) be a double analytic sequence
of strictly positive real numbers; the sequence space

[0 1@ 0, d (2), o d @1 is @ paranormed
space with respect to the paranorm defined by

gx) =inf { (|: mn (”an(x): (dx1),dx2),--,
mn 1/H
dweig) ™) <1l

where H = max (1, Supuqmn < 00).

Proof. Clearly, g(x) > 0 for x = (xun) €
[ 1@ 1), d (2, 1d a-1)]2)] Since fun(0) =
0, we get g(0) = 0.

Conversely, suppose that g(x) = 0, then

inf { <|:fmn (I mn (%), (d (x1) ,d (x2) , -+ -,

d(xn_1>)||,‘ﬁ)]q'””)1/H} <1-0.

Suppose that p,(x) # 0 for each myn € N
Then, ||mn(x), (d (x1),d (%2),- -+ ,d (xu—1))l; — o0.

It follows that ( [fm,, ( o (), (d (%1),d (%), -+,

1/H

d(xn—l))||;/2)]qmn> — oo which is a contradiction.

Therefore, 14;,,,(x) = 0. Let

([fmn (”an(x):(d (x1),d (x2),- - ’d(xnil))nﬁ)]qmn)l/l‘[ -

and

1/H

([ nn (Humn(y), d(x1),d (x2), - ,d(xnfl))nﬁ)]qmn)
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Then, by using Minkowski’s inequality, we have
([ mn (”an (x+y), (d (x1),d (x2),- - ,d(xnil))H;J)] mn)l/H
< ([fon (1m0, (d ) d ) d Gea ) ]

+([fon (I, @ ) d ), s d e [5) ™) H

So, we have

qmn\ 1/H
1/

gty = inf{([fmn (Lt 4+ 9), @ ), d 2,
d(xnfl))H;)]qmn)l/H < 1}
< inf{ ([ mn ( | mn (%), (d (x1) ,d (x2) -~ -,

deeoig)]") " <1

+inf{ (Lo (1t @ ), G120 -

deeoig)|") " <1},

Therefore,

gx+y) =gl +g0).

Finally, to prove that the scalar multiplication is continu-
ous, let A be any complex number. By definition,

g0x) = inf{ ([fmn ( | tmn Ax), (d (1), d (x2) -+,

d (xu-1)) ||£)]qmn>l/H < 1} .

Then,

gO) = inf {«m P ([fon (Wt ), (@ (1)1 (2),

,d(xH))HZ)]qmn)l/H = 1}’

where t = ﬁ Since |A|9™ < max (1, I)LIS””””‘"), we have
g (x) < max (1, |A["PPm)
x inf{tqm"/H: ([ (M2 ), @ 1) d G2+,
qmn\ 1/H
delg) ") < 1}.
O

Theorem 3. The B— dual space of [X;Z, | i (%),
B
@), d (3, d GueE] = [A7E litnn (0, (@ G20,
d@), e d @]
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Proof. First, we observe that
& i
X a0, (@ (61) (32 -+ o) S
C [T7 o (), (@ (51, 2) -+ a1 |-
Therefore,
B
[T W), (@ Ge1) d (32) -+ o)
& 7
[0 M0, @ (1), @2 -+ 2 eI ]
But
g C
[F74] # [A78 M), (@ 1) ) d e

Hence,

[A;Z litmn (), (d (1), d (x2),- -~ ,d (xH))IIﬁ]
5 ©
C [xfz,’f, llitmn %), (d (x1) , d (x2) , - - ,d(xn_l))”;] )

Next, we show that

B
[ Wrmn @, (@ 1) @), )G

< [A7 ), @ 51),d @)+ d a0

Let y = (mn) € [xf,‘f,IIan(x),(d(xl),d(xz),~~~,

B
d (x,,_l))||;f] .Consider f(x) = Y o7 1 >0 | XynYmn With

%= Gomn) € [0 litomn @0, (d (1), (52) -+ 1 d () S

%= [Qmn — Amnt1) — Amt1n — Amtint1)]

00 ...0 0 ... 0
00 ...0 0 ... 0
Prs —Prs
00... Al (m+n)t - Al (m+n)t ° " 0
00 ...0 0 ... 0
00 ...0 0 ... 0
00 ...0 0 ... 0
Prs —Prs
00... Ay (m+n)!t Ay (m+n)! =" 0
00 ...0 0 ... 0
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[ (1), @ 1), 2), - @I )]

00 ...0 0 ... 0
00 ...0 0, ... 0

Prs —Prs
= 00.. ‘fmn (Akmn(m+n)!> fmn (Almn(m+n)!) -0

—Prs Prs
0.0 - fom (st ) Som (i) -+ 0

00 ...0 0, ... 0

Hence, it converges to zero.
Therefore,

[()\mn - )\mn+1) - (km+1n - km+1n+1)]

€ [sz;’, Il mn (%), (d (1), d (x2) - -~ ,d(xn,l))”g],

Hence, d (A
But

- )\mn+1) - (Am+1n - )Wn+1n+1) ,00 = 1.

|ymn| = Hf” d ((Amn
<1<

- )"mn—Q—I) - ()\m+1n - )\m+1n+1) ’ O)

for each m,n. Thus, (y,,) is a p- metric paranormed
space of double analytic sequence and, hence, an p- metric
double analytic sequence.

In other words. y € [ A7, It (), (d 1), d (),
d(xnfl))Hz]. But y = (Jmn) is arbitrary in [X;Z’
B
I tmn (x), (d (x1),d (x2),-- ,d (xn_l))llz] Therefore,

B
[ Vtmn 30, @ 51) 320 -+ o)

7
C [Afzﬁ | i (), (d (1), (2) 5+ ,d(xn,l))ug]. 7
From (6) and (7), we get
(42 Vi), @ 1), d )+ d a1 ]
= [ A7 Mm@, (@ 1), d 2) -+, d )G
O

Theorem 4. The dual space of [szz, | s (X)), (d (1),
d @), d @IS | is [ A7 im0, (@ 1) d @),
,d(xn_l))lljﬁ]- In  other words. [xfz,i’ Il i (),
@), d @), od @S] = (AR D), @ ),
d @), d ) g |
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Proof. We recall that

00 ...0 0...
00 ...0 0...
)\mn= :
00...—% -0
A ypn (m+1)!

00 ...0 0...

with m in the (m, n)th position and zeros else-
where,

[0 ), @ @), 2) -+, d )G
0. . .0

’ 1/m+n
0 f (A)»mrjﬂ(m—b—n)!>
(m, )
0 . .0

which is a p- metric of double gai sequence. Hence,
x € 70 im0, (@ (1), @2) -+ 1 d )] £ )
= Z:nzlxmn_ymn

with x € |20, (), (@ (1), d (52 -+ d a1
and f € [x20 (), (d @), d (2), - d oG]
where [ 7, (@), (d (1), d @)+ ,d )l | s
the dual space of [XfZZ' |l (%), (d (x1),d (x2) ,---,
d Geae)lf |

Take & = Gom) € [ X (), (d (1), d 2), -
d @)} |- Then,

‘ymn| < Hf” d(q’rs: 0) < ocoVm, n. (8)

Thus, (Ymun) is a p- metric of the double analytic
sequence and an p- metric of double analytic sequence.

In other words, y € [A;Z, | tmn (%), (d (%1) ,d (x2) -+,
d (x,-1)) |I$]. Therefore,

[ @, @ ), @2) -+ o d el |
= [0 it (), (@ Ge1) d (32) -+ Gon ) S

This completes the proof. O
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Theorem 5. (1) If the sequence ( fun) satisfies uniform
Ao— condition, then

[ ), (@ 1), d 32+, d DI
= [ @, (@ 1) d 32+ d a0

(2) If the sequence ( m,,) satisfies uniform Ay— condition,
then

[ N, (@ 1), d () -+, eI |

= [ W00, @ 1), (320 -+ Gon ) S

Proof. Let the sequence (fiu,) satisfies uniform As—
condition; we get

[xgzq“, Itmn @), (d 1), d (x2), -+ W—l))“?]
9)

o

[0 M, @ (51, @2+ o 1)
To prove the inclusion
[ @, @ @), ), d )]
< ™ Mm@, (@ 1) d @2+ Gon0) 5]
let a € [t (), (@ (x1),d @), d G)S]
Then, for all (s} With (mn) € [ 170 | tn (), (d (1),

d @), d ()} ], we have

00 00
Z Z [%pmn@mn| < 00.

m=1n=1

(10)

Since the sequence (mn) satisfies the uniform Aj;—
condition and then

(ym}’l) € I:XI%Z’ ”ﬂmn(x)’ (d (xl) ’ d (xZ) P )d (xn—l)) ”z:l )

we get > oo >0 ’% < o0. by (10). Thus,
@rstmn) € [ Nitonn @), (d (1), 2) -+ )
= 6™ It @, (@ (51) @)+ d a1 |, and
hence, (@m) € [ xg™, Iiom(0), (d 1), d @) 1+,
d ()| ;j]. This gives that

[ Vit 0, @ 51), 32D+ G|

< ™ M), (@ (e1) d @2) -+ Gn0) 5]
(11)
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We are granted with (9) and (11) that
[ @, @ ), @21 e |
= [ Wn 0, @ 21), d (x2) -+ a0 S
(3) Similarly, one can prove that
[ it 0, @ 51), (520, G|
[ Mt ), @ (51, @2+ o d 1)

if the sequence ( m,,) satisfies the uniform A, — condition.
O

Proposition 1. If0 < gy < pPmn < 00 for each m and
m, then

(A7 o), (@ Ge1), d G52 -+ )
< (A7 it @), @ 1), d @), d )]
Proof. Let x = (%) € [AJ%Z, | tmn (%), (d (x1) , d (x2) ,
cee,d (x,,_l))||$]. We have
P [ A F 1 (20, d32) -+ 1 ()] < 0.
This implies that
(A7 Mtn ), (d @0),d (52) -+ 1 G | < 1

for sufficiently large value of m and n. Since f;,,;s are non-
decreasing, we get

$tPn | A tn @, (d 1), (52) -+ a1
= 5P [ A8 (), (@ (51) ,d (2), -+ a1 DI |-

Thus, & = (o) € [ A7 (), (@ (31),d (52) -+
d @)l O

Proposition 2. (1) If0 < infqu, < qmn < 1, then
[A;Z, | wmn(x), (d (x1) ,d (x2) ,- -, d (xnfl))llﬁ]
[ A2 Mm@, (@ 1) @)+ d @)
2)If1 < qun < supqmn < 00, then [A}M, l mn (%) 5

@d@),d @), d eS| © (AL I @), @
@), d @), d ) 8|
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Proof. Let x = (%) € [A}u’ |t (%), (d (x1) , d (x2) ,

e ,d(xn_l))”g]. Since 0 < infg,, < 1, we have

Py | A3 1), (@ (61), d (52) -+, a1
= [AFE I (0, @ (51, @)+ 2 eI
and hence
%= Gimn) € [ A3, (), (@ (e1), d (52) -+, o) |-

(3) Let gy, for each (m, n) and supugmn < 0.
Letx = (o) € [A2, 1@, (@ (1), d @),

d(x,,_l))llp‘f’]. Then, for each 0 < € < 1, there exists a
positive integer N such that

Py [AF,0 1), (@ (61), d (12) -+ d o) | < € < 1,
for all m, n > N. This implies that
SUpn [ A7 mn (@, (d 1), (52), - d (a0 S

= 5Py [ tnn @, (d (1), (52) -2 D).

Thus, = Gom) € [A7L, (), (@ @1),d (32) -
d @)l | O

Proposition 3. Let ' = (f;,) and " = (f},,) be
sequences of Musielak functions; we have

(A7 rtnn @, @ 1) d (12 -+ 2 G

X V[ ), (@ 1) @) o) ]

X [P ), (@ (51, (2), - Genm DI ]
Proof. The proof is easy, so we omit it. O
Proposition 4. For any sequence of Musielak functions

f= (fmn) and q = (qmu) be double analytic sequence of
strictly positive real numbers. Then,

[0 @, (@ @) 2), - )
< (A8 it @), @ 1), d @) d )]
Proof. The proof is easy, so we omit it. O

Proposition 5. The sequence space [A}Z, Il mn (),

d(x1),d (x2), - ,d(xn_l))n;g] is solid.

Page 8 of 13

Proof. Let x = (i) € [ AZL, I12un(), (@ (31, (52),
o d @eD)S ) e

SUpn | AT o 0), (@ (51) 1 (2), -+ o) ] < 0.

Let (&y,) be double sequence of scalars such that o, | <
1forallm,n € N x N. Then, we get

Sttpn | AP itnn (@), (@ (61),d (52) -+, a1 )

< st | AT (), (@ (e1), d (12) -+ a1 )G
O

Proposition 6. The sequence space [A;Z, | sz (%),
dx1),d(x2),--+,d (xn71))||$] is monotone.

Proof. The proof follows from Proposition 5. O

Proposition 7. If f = ( fm,,) is any Musielak function,

then
(A7 Wrmn ), @0) 1 (52) -1 )|

- [A;Z [ itmn (%), (d (1), (x2) , - - - ,d(xn_l))n;j**]

N
if and only if sup, ¢>1 % < 0.
- rs

Proof. Let x ¢ [A;Z, | mn (), (d (1), d (x2) 5+ - -,

d (x,,_l))llz*] and N = supr,szl% < 00. Then, we get
(A7 Mt @), @ 1) d 32 -+ G |

= N[ A7 lttmn @), (@ (51),d (52),+ d Geum D |
=0.

Thus, & € [AZL It ), (@ 1), d (52), -+, d GaD)IE |
Conversely, suppose that

(A7 litn @), (@ 51),d (52) -+, d )]
< [AF0 it @), @ ), d @) )]

and x € [ A7 it (), (d (1), d (52) -+, d a1 |
Then, [ A2, 1t (0), (d (1), d (82), -+ Gue DI | < €

.
for every ¢ > 0. Suppose that supmzlgﬁ = o009, then

there exists a sequence of members (rs,-k) such that

5

. ik 2
limjr o0 ﬁ = 00. Hence, we have [A fZ’ | 1122 (),
J

@@),d @), d @] =

[A74 Mrtmn @), (A @0),d (52) 1 d u)S |, which s
contradiction. O

0o. Therefore, x ¢
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Proposition 8. If f = (fiu) is any Musielak function,
then
[ A7 litmn @), (@ (51,0 (52),++d Gn )]

= [ A3 M), (@ 1), 2) -, d S |

* ok

if and only ifsupmzl% < oo,supy,szl%i > 00.
rs rs

Proof. 1t is easy to prove, so we omit it. O

Proposition 9. The sequence space [xfzg, Nl n (),

dx1),d (x2),- -+ ,d (xy-1)) |I$] is not solid.

Proof. The result follows from the following example.
Consider

11...1
11...1

x = (Xmn) =
11...1

€ [xf,f, it @0), (d (1), (x2) - - - ,d(xn_l))”g] ,

Let
_1m+n _1m+n _1m+n
_1m+n _1m+n _1m+n
Amn = . ,
_1;:n+n _1m+n _1m+n

for all m, n € N. Then, o, %mn ¢ [X;/Z, | ey (%), (d (1),

d@), - d @) | Hence, X7, It (), @ (x1),
d @), ,d w,-))f | is not solid. O

Proposition 10. The sequence space [szg, | typan (%),

dx1),d(x2),- - ,d (x,—1)) |I$] is not monotone.

Proof. The proof follows from Proposition 9. O

Generalized four-dimensional infinite matrix
sequence spaces

Let A = (afe”) be a four-dimensional infinite matrix
of complex numbers. Then, we have A(x) = (Ax)xy =
Yot Domet @) %mn which converges for each &, £.

Page 9 0of 13

In this section, we introduce the following sequence
spaces:

(i@ ) d ), d o)
= litt | [frn (1 Amntmn (), (@ (31) 1 (12) -+,
del,) | =ol,
(A7 1@ ) d )+ 1 d )
= supn | [fon (WA a3, (d @1), d (32) -+
d@l,)|"" < oo}
If we take fi, (x) = x, we get
[ 1 @) d @) d o) ]
= lintyn ([ (1Amnttomn(0), @ (51),d (52) -+
dn-nl,)|"" =0},
A I @ d ), d Gl
= sty { | (WAmnttonn @, (d @1),d (22),

dGely) | < o).
If we take ¢ = (gmn) = 1,
[ @), d ), d )]
= littys {[fomn (VAminttonn ), @ @1), d (32) -
d@-0)l,)] =0},
(A2 1@ @), d (2), o d )
= sty | [fon (WA mnttons (), (@ (51), d (52) -+
d@-D)l,)] < oo}

Theorem 6. For a Musielak-modulus function, f =
(finn).  Then, the sequence spaces [X;ZA: II(d (x1),
d@), e d@eD)g) and [A 1@ G),d @),

vy d (xy-1)) ||$] are linear spaces over the set of complex
numbers C.

Proof. It is routine verification. Therefore, the proof is
omitted. O
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Theorem 7. For any Musielak-modulus  func-
tion f = (fm,,) and a double analytic sequence
q = (qmn) of strictly positive real numbers, the space

[ 1@ @ d @), d @)l s a topological
linear space paranormed by

gx) =inf { (|: mn (”Amnﬂmn(x); (d(x1),dx2),---,

deig)]™)" < 1},

where H = max (1, SUpyngmn < 00).

2qA
XfZ )
1@ ), d (2), -+ d @12 - Since fun©) = 0,
we get g(0) = 0. Conversely, suppose that g(x) =

0, then ll’lf{([ mn (”Amn,uvmn(x)r(d(xl)rd(WZ):”’ ’

Proof. Clearly, g(x) > 0 for x = (xmn) € [

mn\ 1/H
d(xn—l))Hg)]q) } < 1 = 0. Suppose that

Apnimn(x) # 0 for each m, n € N, then

NAmnthmn (%), (d (x1) ,d (%2) ,-- - ,d (xn—l))Hz — OQ.
(12)

It follows that ([fmn (IlAmnumn(x), d@x1),dx2),- -+,

V. qmn\ 1/H
d(x,,_l))llpZ)] ) — 00 which is a contradiction.

Therefore, A,uptmn(x) = 0. Let ([fmn LA mn mn (%),
mn l/H
@@, de), o d@wlg) ") = 1 and ([fun

mn 1/1—[
(st ), (@ @), d @), d @ [2)]™)
Then, by using Minkowski’s inequality, we have

([ o ([ Amattn G+ ), (@ 61),d r2) -+
aenlp)]") "
= ([fon (1A mattn ), (@ @1)d (52) -
d i)™
([ ([ Amttn 0, @ 1)1 G12), -

daig)]™) "

Page 10 0f 13

So, we have

gx+y) :lnf{([fmn( ||Amnﬂmn(x+y):(d (x1),d (x2),---,

deemig)]")" < 1}

inf :([ o (WAt (@ 1), @),

d i)™ < 1}

+inf {([fm ( | At @), @ (x1),d (62) - -,

deeoig)]™) " < 1} :

IA

Therefore,

gx+y) =g +g().

Finally, to prove that the scalar multiplication is continu-
ous, let A be any complex number. By definition,

g 0) = inf { (oo WArinttons ) (@ 1)1 2D+
daig)]™)" < 1} .

Then,

g Ox) = inf =<<|x| P (| fon WAmnttonn ), @ (50),

d (), - ,d<xn_1)>||;§)]q”“”)w < 1},

where t = ﬁ Since |A|9™ < max (1, Iklsuppm”), we have

g(x) <max (1’|)\|Suppmn)inf=tqmn/H: (E(mn(”Amnlen (Ax),

mn\ 1/ H
@@, d @), d @) ™) 51}.

O

Theorem 8. The 8— dual space of [XJ,ZZA, 1A 1520 o (%),

B
@ @),d @), 0d DS | = [AFE 1A a0,
@@),d @), d we)g]
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Proof. First, we observe that

B
[ At (61, @ (51) @2 -+ )]

TP At (39, (d 1), d (52 -+ o D) S

Therefore,

B
[ WA nttonn @, (@ (1), @2+ a0

B
[ WAt (51, @ (21), d (520 -+ a0 S

But

B C
I:FJ%ZA] # [ ZqA’ | Amntemn (%), (d (x1), d(x2),---,

d @)l -
Hence,

[ A WAt 0), @ (31),d (52) -+ a1 DI

I:XfZZA: A thmn (%), (d (x1) ,d (x2) , - - -

Next, we show that
B
[ At 0), (@ Ge1) d (52) -+ o)

C (A7 WAmmnttonn ), (@ (e1) o @2) -+ D) S

Let y = Omn) € [0 1Ambtn @), (d 1), d (52),

: ;d(xn—l))”go] Consider f(x) Zm 12 —1 XmnYmn

B
A Ge)E]

Page 11 of 13

with

5= o) € [ WA mnbtonn 00, (@ (51) 1 32) - a1 )

% = [Amn = Amnt1) — Qmgin — At int1D)]
00 ...0 0 ... 0
00 ) 0 .. 0
0 Ay Axm,,(m+n)v agmmmn(m+n)' Y
...0 0 .. 0
00 ... 0 0 . 0
00 ) 0 .. 0
00 ... ors —¢rs )
ayy Bdomn (m+m)! - @l Ay (m+n)!
00 -0 0 ... 0

[ (14t 61, @ (51 32 -2 1) )|

00 .0 0 .. 0
00 .0 0, .. 0

= Pr: —Prs
00 fmn (a;’;”A)»m:(m-&-n)!) fmn (a,’(”[‘A)Lmnfm+n)!) Y

‘ﬂrs
00 "fmn( m”AAmn(m+n)'> Smn (a;';"mmn(mﬂ)!) Y

00 .0 0, .. 0
Hence, converges to zero.
Therefore,
[()Lmn - )\mn+1) - ()\m+1n - )Lm+1n+1)]

& [ N At (00, (51),d @2 -, d G- D)S].

Hence, (ﬂ/};nn()hmn )\mn—&-l) Am+1n—rms1n+1) ,0)=1.
However, ymnﬁ <|fld (6Z Amn — 2mn+1) — Qm+ 10—
Am+1n+1),0) < ||IfIl - 1 < oo for each m, n. Thus, (i) is
a p- metric paranormed space of double analytic sequence
and, hence, an p- metric double analytic sequence.

AL mn (), (d (1), (x2),

. However, y = () is arbitrary in

B
)]

In other words, y € [
vd G0 |

[ VA nttonn (0, (@ (e1) v 2 1+

Therefore,

B
[ A ttnn @0, @ (51, (32) -+ a1

[ AP N Apbtn (60, @ (51) 1 @2+ 2 (a1 -

(13)
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From (12) and (13), we get

B
IZszqA» NAmntimn (%), (@ (x1) ,d (%2) -+ -, d (Xn—1)) Hg]

i
— | p244 4
= [ A7 WAt 01, (@ (51, 2), - Gone DI ]

O

Theorem 9. The dual space of [XfZZA, |V —— B
(@ @),d (52), 2 d GO S | is [ A7 A mnttonn (5,
dx1),dx2),---,d (xn71))||$]. In other words,

[ A bt @, (@ 1), d @2+ o d )l |

"
—| p204 ¢
= [ A7 At (50, (@ (1), (52) -+, D))

Proof. We recall that

00 ... 0 0.--
00 ...0 0---
Amn = | :
(prs
00 a7t O
00 .0 0.
with W in the (m, n)th position and zero else-
where,
2gA
LG VA bt 0, (@ (51) 1 2) -+ a1
0. . .0
— 1/m+n
- ‘prs
Of (gretiom)
(m, m)'h
0 . .0

which is a p- metric of double gai sequence. Hence,
x e [X;ZA, A tbmn (%), (d (x1) , d (%2) - -+, d (xn—1))||}f’]f(x)
oo

= vanzlxmnymn
with
%€ [ At (0, (@ 1), d (32,1 d )]
and

2gA %)
felxp NAmnbtmn(®), (d x1),d (x2) -+, d a1}
where

(G4 At (d @), ), d )|

*
’

is the dual space of [sz

d@), e d @)l

'ZA: A mnthmn (%), (d (x1) ,

Page 12 0f 13

Take x = G € [ 475 1Amatton(®), (d @),
d (@), ,d @u))f |- Then,

|ym,,| < |[f|| d(¢rs, 0) < coVm, n. (14)

Thus, (¥mn) is a p- metric of double analytic
sequence and, hence, an p- metric of double analytic

sequence. In other words, y € [A;ZA,HAmann(x),

(d@x1),d(x3), - ,d (x,,_l))||$]. Therefore,
2qA oT*
[ A ttonn @, @ 51, (32) -+ a0 ]

= (A7 1At (0, (@ (e1), d (52) -+ Geam )G
O
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