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Abstract

Motivated by an Conjecture in the literature “Dynamics of Second Order Rational Difference Equations with Open
Problems and Conjecture”, we introduce a difference equation system:

xn+1 = yn + yn−2

xn−1
, yn+1 = xn + xn−2

yn−1

where xi , yi ∈ (0,∞), i ∈ {−2,−1, 0}. If the initial value satisfy xi = yi , i = {−2,−1, 0}, then the system reduces into the
Conjecture. In this paper, we investigate the asymptotic behaviors, periodicity and oscillatory of the system.
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Introduction
Recently, there has been great interest in studying dif-
ference equation systems. One of the reasons for this is
the necessity for some techniques that can be used in
investigating equations arising in mathematical models
describing real life situations in population biology, eco-
nomics, probability theory, etc. There are many papers
related to the difference equations system for example,
such as [1-10].
Cinar [1] studied the solutions of the system of differ-

ence equations:

xn+1 = 1
yn

, yn+1 = yn
xn−1yn−1

, n = 0, 1, · · · , (1)

Camouzis and Papaschinnopoulos [2] studied the global
asymptotic behavior of positive solution of the system of
rational difference equations:

xn+1 = 1+ xn
yn−m

, yn+1 = 1+ yn
xn−m

, n = 0, 1, · · · ,
(2)

*Correspondence: jwqyikeshu@163.com
Institute of Systems Science and Mathematics, Naval Aeronautical and
Astronautical University Yantai, Shandong 264001, People’s Republic of China

Ozban [3] studied the system of rational difference
equations:

xn = a
yn−3

, yn = byn−3
xn−qyn−q

, n = 0, 1, · · · , (3)

Kurbanli et al. [4] studied the behavior of positive solu-
tions of the system of rational difference equations:

xn = xn−1
ynxn−1 + 1

, yn = yn−1
xnyn−1 + 1

, n = 0, 1, · · · .
(4)

In the monograph of Dynamics of second order rational
difference equations with open problems and conjecture
[11], Kulenović and Ladas give a conjecture (see [11] p196)
as following:
Conjecture 11.4.10. Show that every positive solution of

the equation

xn+1 = xn + xn−2
xn−1

, n = 0, 1, · · · , (5)

converges to a period-four solution.
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Stević [12] has solved the Conjecture.
In this paper, we introduce the difference equation

system

xn+1 = yn + yn−2
xn−1

, yn+1 = xn + xn−2
yn−1

, n = 0, 1, · · ·
(6)

where xi, yi ∈ (0,∞), i ∈ {−2,−1, 0}.
Obviously, we can see that if the initial value satisfy xi =

yi for i ∈ {−2,−1, 0}, then the system (6) reduces into the
Eq. (5). Hence, we can also solve the Conjecture 11.4.10.
However, we study the system (6).
In this paper, we can obtain the solution of system (6)

converges to periodic solution. At the same time, we can
get the oscillatory of the system (6).
Before giving some results of the system (6), we need

some definitions as follows [5]:

Definition 1. A pair of sequences of positive real num-
bers

{
xn, yn

}∞
n=−3 that satisfies system (6) is a positive

solution of system (6). If a positive solution of system (6)
is a pair of positive constants (x̄, ȳ), that solution is the
equilibrium solution.

Definition 2. A ‘string’ of consecutive terms {xs, · · · ,
xm}(resp. {ys, · · · , ym}),(s ≥ −3, m ≤ ∞) is said to be a
positive semicycle if xi ≥ x̄(resp. yi ≥ ȳ), {i ∈ s, · · · ,m},
xs−1 < x̄(resp. ys−1 < ȳ), and xm+1 < x̄(resp. ym+1 < ȳ).
Otherwise, that is said to be a negative semicycle.
A ‘string’ of consecutive terms

{
(xs, ys), · · · , (xm, ym)

}
is said to be a positive(resp.negative) semicycle if
{xs, · · · , xm}, {

ys, · · · , ym
}

are positive (resp.negative)
semicycle.
A solution {xn}(resp.

{
yn

}
) oscillates about x̄(resp.ȳ) if for

every i ∈ N , there exist s,m ∈ N ,s ≤ i,m ≥ i, such
that (xs − x̄) (xm − x̄) < 0(resp. ( ys − c) ( ym − c) < 0).
We say that a solution

{
xn, yn

}∞
n=−3 of system oscillates

about(x̄, ȳ) if {xn} oscillates about x̄ or
{
yn

}
oscillates

about ȳ.

Some Lemmas
We now present some Lemmas which will be usefully in
the proof of the following Theorems.

Lemma 1. The system of (6) has a unique positive
equilibrium x̄ = ȳ = 2.

The proof of Lemma 1 is very easy , thus we omit it.

Lemma 2. Assume that p > 0, q > 0, pm > 1, r > 0,
m > 0, rq > 1. Then

{
p, q

}
, {r,m},

{
m+p2
pm−1 ,

q+r2
rq−1

}
,
{
r+q2
rq−1 ,

p+m2

pm−1

}
,· · · , {

p, q
}
,{r,m},

{
m+p2
pm−1 ,

q+r2
rq−1

}
,
{
r+q2
rq−1 ,

p+m2

pm−1

}
is a

period-four solution of the system (6).

Proof. Let
{
p1, p2

}
,
{
p3, p4

}
,
{
p5, p6

}
,
{
p7, p8

}
,· · ·,{p1, p2},{

p3, p4
}
,
{
p5, p6

}
,
{
p7, p8

} · · · be a period-four solution of
system (6).
Then by Eq. (6), we obtain

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p1 = p4+p8
p5

p4 = p1+p5
p8

p5 = p4+p8
p1

p8 = p1+p5
p4

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p2 = p3+p7
p6

p3 = p2+p6
p7

p6 = p3+p7
p2

p7 = p2+p6
p3

(7)

Noting that Eq. (7) can be changed into

⎧⎪⎪⎨
⎪⎪⎩
p1p5 = p4 + p8
p4p8 = p1 + p5
p2p6 = p3 + p7
p3p7 = p2 + p6

(8)

We suppose that p1 = p, p2 = q, p3 = r, p4 = m.
Then by Eq. (8) we can get

p5 = m + p2

pm − 1
, p6 = q + r2

rq − 1
, p7 = r + q2

rq − 1
, p8 = p + m2

pm − 1
.

Hence, we complete the proof.

Lemma 3. Assume that the initial points xi, yi ∈
(0,∞), i ∈ {−2,−1, 0}, {xn, yn}∞

n=−2 is a positive solution
of system (6). Then the following statements are true:

(a) If y2−1 + x0 + x−2 < x−2y−1x0,
x2−1 + y0 + y−2 < y−2x−1y0, then

{
x4n+i, y4n+i

}∞
n=0 is

decreasing, where i ∈ {−2,−1, 0, 1}.
(b) If y2−1 + x0 + x−2 = x−2y−1x0,

x2−1 + y0 + y−2 = y−2x−1y0, then x4n−2 = x−2,
x4n−1 = x−1, x4n = x0 and x4n+1 = x1; y4n−2 = y−2,
y4n−1 = y−1, y4n = y0 and
y4n+1 = y1, n = 0, 1, · · · .

(c) If y2−1 + x0 + x−2 > x−2y−1x0,
x2−1 + y0 + y−2 > y−2x−1y0, then

{
x4n+i, y4n+i

}∞
n=0 is

increasing, where i ∈ {−2,−1, 0, 1}.
(d) If y2−1 + x0 + x−2 ≤ x−2y−1x0,

x2−1 + y0 + y−2 ≥ y−2x−1y0, then {x4n−2}∞n=0,
{x4n}∞n=0,

{
y4n−1

}∞
n=0,

{
y4n+1

}∞
n=0 is decreasing, and{

y4n−2
}∞
n=0,

{
y4n

}∞
n=0, {x4n−1}∞n=0, {x4n+1}∞n=0 is

increasing.
(e) If y2−1 + x0 + x−2 ≥ x−2y−1x0,

x2−1 + y0 + y−2 ≤ y−2x−1y0, then {x4n−2}∞n=0,
{x4n}∞n=0,

{
y4n−1

}∞
n=0,

{
y4n+1

}∞
n=0 is increasing, and{

y4n−2
}∞
n=0,

{
y4n

}∞
n=0, {x4n−1}∞n=0, {x4n+1}∞n=0

is decreasing.
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Proof. Part(a):
By system (6), we can get

xn+1 = yn + yn−2
xn−1

= yn + yn−2
yn−2+yn−4

xn−3

,

yn+1 = xn + xn−2
yn−1

= xn + xn−2
xn−2+xn−4

yn−3

i.e.
xn+3
xn−1

= yn + yn
yn + yn−2

,
yn+3
yn−1

= xn + xn
xn + xn−2

, (9)

for n ≥ 0.
By the condition y2−1+x0+x−2 < x−2y−1x0 , x2−1+y0+

y−2 < y−2x−1y0, we can obtain

x2= y−1 + y1
x0

=
y−1 + x−2+x0

y−1

x0
= y−12 + x−2 + x0

y−1x0
< x−2

y2= x−1 + x1
y0

=
x−1 + y−2+y0

x−1

y0
= x−12 + y−2 + y0

x−1x0
< y−2

Next, by Eq. (9), we can get

y3 < y−1, x4 < x0, y5 < y1, x6 < x2, y7 < y3,
x8 < x4, y9 < y5, x10 < x6, · · ·
x3 < x−1, y4 < y0, x5 < x1, y6 < y2, x7 < x3,
y8 < y4, x9 < x5, y10 < y6, · · ·

Therefore by induction, we can get
{
x4n+i, y4n+i

}∞
n=0 is

decreasing for i ∈ {−2,−1, 0, 1}.
Part(b): By system (6), we can easily prove that part(b)

holds. Hence, we omit the proof of part(b).
Using the same method in the proof of part(a), we can

prove part(c) also holds.
Part(d): By the condition y2−1 + x0 + x−2 ≤ x−2y−1x0 ,

x2−1 + y0 + y−2 ≥ y−2x−1y0, we obtain

x2= y−1 + y1
x0

=
y−1 + x−2+x0

y−1

x0
= y−12 + x−2 + x0

y−1x0
≤ x−2

y2= x−1 + x1
y0

=
x−1 + y−2+y0

x−1

y0
= x−12 + y−2 + y0

x−1x0
≥ y−2

Then, by Eq. (9), we can get

y3 ≤ y−1, x4 ≤ x0, y5 ≤ y1, x6 ≤ x2, y7 ≤ y3,
x8 ≤ x4, y9 ≤ y5, x10 ≤ x6, · · ·
x3 ≥ x−1, y4 ≥ y0, x5 ≥ x1, y6 ≥ y2, x7 ≥ x3,
y8 ≥ y4, x9 ≥ x5, y10 ≥ y6, · · ·

Therefore by induction, we can get part(d) also holds.
Part(e): The proof is similar with the part(d), so we

omit it.
Hence, we complete the proof of Lemma 3.

Lemma 4. Assume that xi, yi ∈ (2,∞), i ∈ {−2,−1, 0}.
Then there does not exist a positive solution

{
xn, yn

}∞
n=−2

of the system (6) such that
{
x4n+i, y4n+i

}∞
n=0 is increasing,

where i ∈ {−2,−1, 0, 1}.

Proof. Assume, for the sake of contradiction, that
there exists a positive solution

{
xn, yn

}∞
n=−2, such that{

x4n+i, y4n+i
}∞
n=0 is increasing, where i ∈ {−2,−1, 0, 1},

xi, yi ∈ (2,∞), i ∈ {−2,−1, 0}.
By system (6), we can get{

xn+1 = yn+yn−2
xn−1

≤ yn+yn−2
2 ≤ max

{
yn, yn−2

}
yn+1 = xn+xn−2

yn−1
≤ xn+xn−2

2 ≤ max {xn, xn−2} (10)

Then, we can get{
xn+1 ≤ max {xn−1, xn−3, xn−5}
yn+1 ≤ max

{
yn−1, yn−3, yn−5

}
.

(11)

Because of xn−5 < xn−1, we can get xn+1 ≤
max {xn−1, xn−3}.
More, we can get⎧⎪⎪⎪⎨

⎪⎪⎪⎩

xn+1 ≤ max {xn−1, xn−3}
xn+2 ≤ max {xn, xn−2}
xn+3 ≤ max {xn+1, xn−1}
xn+4 ≤ max {xn+2, xn} ,

which can be written as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xn+1 ≤ max {xn−1, xn−3}
xn+2 ≤ max {xn, xn−2}
xn+3 ≤ max {xn−1, xn−3}
xn+4 ≤ max {xn, xn−2} .

If xn−1 ≥ xn−3, then xn+3 ≤ xn−1, which is contradic-
tion;
If xn−3 ≥ xn−1, then xn+1 ≤ xn−3, which is contradic-

tion;
If xn ≥ xn−2, then xn+4 ≤ xn, which is contradiction;
If xn−2 ≥ xn, then xn+2 ≤ xn−2, which is contradiction.
They are contradictions and we complete the proof.

Lemma 5. Assume that xi, yi ∈ (0, 2), i = {−2,−1, 0}.
Then there does not exist a positive solution

{
xn, yn

}∞
n=−2

of the system (6) such that
{
x4n+i, y4n+i

}∞
n=0 is decreasing,

where i ∈ {−2,−1, 0, 1}.
The proof of Lemma 5 is similar with the proof of

Lemma 4, so we omit it.

Results and discussion
In this section, we study five cases of the solution of the
system (6). We get the solution of system (6) eventually
converges to period-four solution.

Theorem 1. Assume that the initial points xi, yi ∈
(0,∞), i ∈ {−2,−1, 0}, {xn, yn}∞

n=−2 is a positive solution
of the system (6). Then the following statement are true:
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If y2−1 + x0 + x−2 < x−2y−1x0, x2−1 + y0 + y−2 <

y−2x−1y0, then
{
x4n−i, y4n−i

}∞
n=0 is decreasing, where i ∈

{−2,−1, 0, 1}, and {
xn, yn

}∞
n=−2 converges to a period-four

solution as following{
p1, p5

} {
p2, p6

} {
p3, p7

} {
p4, p8

}
, · · · ,{

p1, p5
} {

p2, p6
} {

p3, p7
} {

p4, p8
}
, · · · .

Proof. By Lemma 3(a), we can get{
x4n−i, y4n−i

}∞
n=0 is decreasing for i ∈ {−2,−1, 0, 1}

Because ‘Monotone bounded sequence must have limit,’
we can set

lim
n→∞

{
x4n−2, y4n−2

} = (p1, p2), lim
n→∞

{
x4n−1, y4n−1

}
= (p3, p4).

lim
n→∞

{
x4n, y4n

} = (p5, p6), lim
n→∞

{
x4n+1, y4n+1

}
= (p7, p8)

With no loss of generality, we consider these three cases
as followings:

(a) p1 = p2 = p3 = p4 = p5 = p6 = p7 = p8 = 0

(b)
8∑

i=1
p2i > 0,

8∏
i=1

pi = 0

(c)
8∑

i=1
p2i > 0,

8∏
i=1

pi > 0

Now, if we can prove case(a) and cade(b) do not hold,
then we can obtain only case(c) holds.
By Lemma 5, we know that case(a) does not hold.
Next we try to prove the case(b) do not hold.
By the system (6), we can get{

xn+1xn−1 = yn + yn−2

yn+1yn−1 = xn + xn−2.
(12)

By limiting both sides of Eq. (12), we can get⎧⎨
⎩

lim
n→∞ xn+1xn−1 = lim

n→∞ yn + lim
n→∞ yn−2

lim
n→∞ yn+1yn−1 = lim

n→∞ xn + lim
n→∞ xn−2.

(13)

If
8∏

i=1
pi = 0, the identical Equation (12) do not hold.

Hence, case(b) does not hold.
At last, only case(c) holds. We complete the proof.

Corollary 1. Suppose that
{
xn, yn

}∞
n=−2 is a positive

solution of system (6). Then the following statement is
true:
If y2−1+x0+x−2 < x−2y−1x0 , x2−1+y0+y−2 < y−2x−1y0,

then the solution of system (6) oscillates about equilib-
rium (x̄, ȳ). Besides the positive semicycle have at most
three terms, at least one term; the negative semicycle have
at most three terms and at least one term.

Theorem 2. Assume that the initial points xi, yi ∈
(0,∞), i ∈ {−2,−1, 0}, {xn, yn}∞

n=−2 are a positive solution
of the system (6). Then the following statements are true:
If y2−1 + x0 + x−2 = x−2y−1x0 , x2−1 + y0 + y−2 =

y−2x−1y0, then
{
x−2, y−2

}
,

{
x−1, y−1

}
,

{
x0, y0

}
,
{
x1, y1

}
,

· · · , {
x−2, y−2

}
,

{
x−1, y−1

}
,

{
x0, y0

}
,
{
x1, y1

}
, · · · is a

period-four solution of the system (6), where x0 = x−2+x2−1
x−2x−1−1 ,

x1 = x2−2+x−1
x−2x−1−1 .

Proof. By the Lemma 8 and Lemma 3(b), we can prove
the Theorem 2. Hence, we omit it.

Theorem 3. Assume that the initial points xi, yi ∈
(0,∞), i ∈ {−2,−1, 0}, {xn, yn}∞

n=−2 are a positive solution
of the system (6). Then the following statements are true:
If y2−1 + x0 + x−2 > x−2y−1x0 , x2−1 + y0 + y−2 >

y−2x−1y0, then
{
x4n−i, y4n−i

}∞
n=0 is decreasing, where i ∈

{−2,−1, 0, 1} and {
xn, yn

}∞
n=−2 converges to a period-four

solution as following:{
p1, p5

} {
p2, p6

} {
p3, p7

} {
p4, p8

}
, · · · ,{

p1, p5
} {

p2, p6
} {

p3, p7
} {

p4, p8
}
, · · · .

Proof. By Lemma 3(c), we can get:{
x4n−i, y4n−i

}∞
n=0 is increasing for i ∈ {−2,−1, 0, 1 · · · } .

Then, by Eq. (3), we can get⎧⎪⎪⎨
⎪⎪⎩

xn+3
xn−1

= yn+2 + yn
yn + yn−2

<
yn+2
yn−2

yn+3
yn−1

= xn+2 + xn
xn + xn−2

<
xn+2
xn−2

(14)

i.e.
xn−2
xn+2

<
yn−1
yn+3

<
xn
xn+4

<
yn+1
yn+5

(15)

yn−2
yn+2

<
xn−1
xn+3

<
yn
yn+4

<
xn+1
xn+5

(16)

Next, we can get:
y−2
y2

<
x−1
x3

<
y0
y4

<
x1
x5

<
y2
y6

<
x3
x7

<
y4
y8

<
x5
x9

<
y6
y10

<
x7
x11

<
y8
y12

· · ·
x−2
x2

<
y−1
y3

<
x0
x4

<
y1
y5

<
x2
x6

<
y3
y7

<
x4
x8

<
y5
y9

<
x6
x10

<
y7
y11

<
x8
x12

· · ·

Besides, if 0 < a < b < c < d, we can get ac < bc < bd.
Hence by induction and the above inequality, we can get:

y−2
y4n+2

<
x−1
x4n+3

<
y0

y4n+4
<

x1
x4n+5

<
y2

y4n+6
<

x3
x4n+7

(17)
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x−2
x4n+2

<
y−1
y2n+3

<
x0

x4n+4
<

y1
y4n+5

<
x2

x4n+6
<

y3
y4n+7

(18)

We can set lim
n→∞ x4n+1 = p1, limn→∞ x4n+2 = p2,

lim
n→∞ x4n+3 = p3, limn→∞ x4n+4 = p4, lim

n→∞ y4n+1 =
p5, limn→∞ y4n+2 = p6, lim

n→∞ y4n+3 = p7, limn→∞ y4n+4 = p8.
From Lemma 10, we know that there at least one pi < 2.

Then by Limiting Theorem, we can get at least one of the
limiting of pi must exist. With no loss ordinary, we set the
limit of {x4n+1} exists, i.e. p1 < 2.
By limiting the inequation (17), we can get

lim
n→∞

y−2
y4n+2

≤ lim
n→∞

x−1
x4n+3

≤ lim
n→∞

y0
y4n+4

≤ lim
n→∞

x1
x4n+5

≤ lim
n→∞

y2
y4n+6

(19)

Hence, we can get the limits of
{
y4n+2

}
, {x4n+3} and{

y4n+4
}
are all exists. We can prove p3 < ∞, p6 < ∞, and

p8 < ∞.
From Eq (18), we can get:

x−2
y−1

<
x4n+2
y4n+3

<
x4n+6
y4n+3

<
x2
y−1

,

x0
y1

<
x4n+4
y4n+5

<
x4n+8
y4n+5

<
x4
y1

Hence, we can obtain lim
n→∞

x4n+2
y4n+3

= k, lim
n→∞

x4n+4
y4n+5

= l,
and 0 < k < ∞, 0 < l < ∞
Assume that lim

n→∞ x4n+2 = ∞, lim
n→∞ x4n+4 = ∞,

lim
n→∞ y4n+1 = ∞, lim

n→∞ y4n+3 = ∞.
By the system (6), we can get

x4n+2x4n = y4n+1 + y4n−1

which can be changed into

1 = y4n+1 + y4n−1
x4n+2x4n

. (20)

By limiting the both side of Eq. (20), we can get the
right side of equation is lim

n→∞
y4n+1+y4n−1
x4n+2x4n = 0, which is

contradiction.
Hence, use the same method, we can get lim

n→∞ x4n+2 <

∞, lim
n→∞ x4n+4 < ∞, lim

n→∞ y4n+1 < ∞, lim
n→∞ y4n+3 < ∞.

i.e.

pi < +∞, i = {1, 2, 3, 4, 5, 6, 7, 8}
Therefore, we complete the proof.

Corollary 2. Suppose that
{
xn, yn

}∞
n=−2 is a positive

solution of system (6). Then the following statement
is true:

If y2−1+x0+x−2 > x−2y−1x0 , x2−1+y0+y−2 > y−2x−1y0,
then the solution of system (6) oscillates about equilib-
rium (x̄, ȳ). Besides, the positive semicycle have at most
three terms, at least one term; the negative semicycle have
at most three terms, at least one term.

Theorem 4. Assume that the initial points xi, yi ∈
(0,∞), i ∈ {−2,−1, 0}, {xn, yn}∞

n=−2 are a positive solution
of the system (6). Then, the following statements are true:
If y2−1+x0+x−2 ≤ x−2y−1x0 , x2−1+y0+y−2 ≥ y−2x−1y0,

then the solution of system (6) converges to a period-four
solution as following

{
p1, p5

} {
p2, p6

} {
p3, p7

} {
p4, p8

}
, · · · ,{

p1, p5
} {

p2, p6
} {

p3, p7
} {

p4, p8
}
, · · · .

Proof. By the Theorem 1 and Theorem 3, we can get
Theorem 4 holds. Hence, we omit it.

Theorem 5. Assume that the initial points xi, yi ∈
(0,∞), i ∈ {−2,−1, 0}, {xn, yn}∞

n=−2 are a positive solution
of the system (6). Then the following statements are true:
If y2−1+x0+x−2 ≥ x−2y−1x0 , x2−1+y0+y−2 ≤ y−2x−1y0,

then the solution of system (6) converges to a period-four
solution as following:

{
p1, p5

} {
p2, p6

} {
p3, p7

} {
p4, p8

}
, · · · ,{

p1, p5
} {

p2, p6
} {

p3, p7
} {

p4, p8
}
, · · · .

Proof. By the Theorem 1 and Theorem 3, we can get
Theorem 5 holds. Hence, we omit it.
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11. Kulenović, MRS, Ladas, G: Dynamics of second order rational difference
equation with open problems and conjectures. Chapman Hall/CRC Press,
Virginia Beach (2002)

12. Stevo, S: Periodic character of a class of difference equation. J. Difference
Equations Appl. 6, 615–619 (2004)

doi:10.1186/2251-7456-7-34
Cite this article as: Ji et al.: Dynamics and behaviors of a third-order system
of difference equation.Mathematical Sciences 2013 7:34.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	AMS Mathematics Subject Classification (2010)
	Keywords

	Introduction
	Some Lemmas
	Results and discussion
	Competing interests
	Authors' contributions
	Acknowledgements
	References

