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Approximation of multi-parametric functions
using the differential polynomial neural network
Ladislav Zjavka
Abstract

Unknown data relations can describe a lot of complex systems through a partial differential equation solution of a
multi-parametric function approximation. Common artificial neural network techniques of a pattern classification or
function approximation in general are based on whole-pattern similarity relations of trained and tested data
samples. It applies input variables of only absolute interval values, which may cause problems by far various training
and testing data ranges. Differential polynomial neural network is a new type of neural network developed by the
author, which constructs and resolves an unknown general partial differential equation, describing a system model
of dependent variables. It creates a sum of fractional polynomial terms, defining partial mutual derivative changes
of input variables combinations. This type of regression is based on learned generalized data relations. It might
improve dynamic system models a standard time-series prediction, as the character of relative data allows to apply
a wider range of input interval values than defined by the trained data. Also the characteristics of differential
equation solutions facilitate a great variety of model forms.

Keywords: Polynomial neural network, Data relations, Partial differential equation construction, Multi-parametric
function approximation, Sum derivative term
Introduction
Solving differential equations are able to define models
for a variety of pattern recognition [1] and primarily func-
tion approximation problems, applying genetic program-
ming techniques [2] or an artificial neural network (ANN)
construction [3]. A common ANN operating principle is
based on entire similarity relations of new presented input
patterns with the trained ones. A principal lack of its func-
tionality in general is a disability of an input pattern data
relation generalization. It utilizes only input variables of
absolute interval values, which are not able to describe a
wider range of applied data. The ANN generalization from
the training data set may be difficult or problematic if
the model has not been trained with inputs in the range
covered testing data [4]. If the data involve relations,
which may become stronger or weaker character, the
neural network model should generalize it to be applied
also onto different interval values. Differential polyno-
mial neural network (D-PNN) is a new neural network
type, which creates and resolves an unknown partial
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differential equation (DE) of a multi-parametric function
approximation. A DE is replaced producing sum of frac-
tional polynomial derivative terms, forming a system
model of dependent variables. In contrast with the ANN
approach, each neuron of the D-PNN can direct take part
in the network total output calculation. Analogous to the
ANN function approximation (and pattern identification),
the study tried to create a neural network, which function
estimation (or pattern recognition) is based on any depen-
dent data relations. In a case a function approximation the
output of the neural network is a functional value. In the
case a pattern identification its response should be the same
to all input vectors, which variables keep up the trained de-
pendencies, no matter what values they become. However
the principle of both types is the same, analogous to the
ANN approach [5].

y ¼ a0 þ
Xm
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m – number of variables A(a1, a2, …, am), … - vectors
of parameters
X(x1, x2, …, xm) - vector of input variables

D-PNN’s block skeleton is formed by the GMDH
(Group Method of Data Handling) polynomial neural net-
work, which was created by a Ukrainian scientist Aleksey
Ivakhnenko in 1968, when the back-propagation tech-
nique was not known yet [6]. General connection between
input and output variables is possible to express by the
Volterra functional series, a discrete analogue of which is
Kolmogorov-Gabor polynomial (1). This polynomial can
approximate any stationary random sequence of observa-
tions and can be computed by either adaptive methods or
system of Gaussian normal equations [7]. GMDH decom-
poses the complexity of a process into many simpler rela-
tionships each described by low order polynomials (2) for
every pair of the input values.

y’ ¼ a0 þ a1xi þ a2xj þ a3xixj þ a4xi
2 þ a5xj

2 ð2Þ

Partial differential equation construction
The basic idea of the D-PNN is to create and resolve a gen-
erally true partial differential equation (3), which is not
known in advance and can describe a system of dependent
variables, with a special type of fractional multi-parametric
polynomials (4), i.e. sum derivative terms.

aþ
Xn
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∂u
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þ
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cij
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þ… ¼ 0

u ¼
X∞
k¼1

uk

ð3Þ
u = f(x1, x2,, …, xn) – searched function of all input

variables
a, B(b1, b2,, …, bn), C(c11, c12,,…) – polynomial

parameters
Elementary methods of DE solutions express the solution

in special elementary functions – polynomials (e.g. Bessel’s
functions, Fourier’s or power series). Numerical integration
of differential equation solutions is based on using:

� rational integral functions
� trigonometric series

Partial DE terms are formed by the adapted application
of the method of integral analogues, which replaces math-
ematical operators and symbols of a DE by ratio of corre-
sponding values. Derivatives are replaced by their integral
analogues, i.e. derivative operators are removed and simul-
taneously all operators are replaced by similarly or propor-
tion signs in equations, all vectors are replaced by their
absolute values [8]. However there should be possible to
form sum derivative terms replacing a general partial DE
(3) by using different math techniques, e.g. wave series
and others.

yi ¼
a0 þ a1x1 þ a2x2 þ…þ anxn þ anþ1x1x2 þ…ð Þmþ1=n

b0 þ b1x1 þ…

¼ ∂mf x1; x2;…; xnð Þ
∂x1∂x2…∂xm

Y ¼
X∞
i¼1

yi ¼ 0

ð4Þ
n – combination degree of n-input variable polynomial

of numerator
m – combination degree of denominator wt – weights

of terms

The fractional polynomials (4), defining partial relations
of n-input variables, represent summation derivative terms
(neurons) of a DE. The numerator of eq. (4) is a complete
n-variable polynomial, which realizes a new partial func-
tion u of formula (3). The denominator of eq. (4) is a de-
rivative part, which gives a partial mutual change of some
input variables combination. It arose from the partial der-
ivation of the complete n-variable polynomial in respect
to competent combination variables. Root functions of nu-
merator (4) take the polynomials into a correspondent
combination degree but needn’t be used at all if are not
necessary. They may be adapted to enable the D-PNN to
generate an adequate range of desired output values.

Multi-parametric function approximation
D-PNN can approximate a multi-parametric function
through a general partial sum DE solution (3). Consider
first only linear data relations, which describe the DE, e.g.
a simple sum function yt = x1 + x2 (however it could be
any linear function). The network with 2 inputs, forming
1 functional output value y = f(x1, x2) should approximate
the true function yt by replacing sum derivative terms of
the DE (5). It consists of only 1 block of 2 neurons, terms
of both derivative variables x1 and x2 (Figure 1).

y ¼ w1
a0 þ a1x1 þ a2x2 þ a3x1x2

b0 þ b1x1

þw2
a0 þ a1x1 þ a2x2 þ a3x1x2

b0 þ b1x2

ð5Þ

D-PNN can be trained with only very small data set
(6 samples), involving a wide range of input values
<5,500>. Figure 2 shows approximation errors (y-axis) of
the trained network, i.e. differences of the true and esti-
mated function, to random input vectors with dependent
variables. Thus X-axis represents the ideal function.
Output errors can result from some disproportional de-

pendent random vector values (Figure 2), which D-PNN was
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not trained with, e. g. 360 = 358 + 2. Figure 2 shows only
the results of the 2-variable 2D-function f(x1,x2)= x1 + x2.
The testing random output functions f(x1,x2) displayed on
x-axis (Figure 2) exceed the maximal trained sum value
500, while the approximation error increases just slowly.
If the number of input variables is increased to 3, the

DE composition can apply polynomials of higher com-
bination degree (=3), which results in raising amount of
sum derivative terms. The 3-variable D-PNN for linear
true function approximation (e.g. yt = x1 + x2 + x3) can
contain again 1 block of 6 neurons, DE terms of all 1
and 2-combination derivative variables of the complete
DE, e.g. (6)(7).

y1 ¼ w1
a0 þ a1x1 þ a2x2 þ a3x3 þ a4x1x2 þ…þ a7x1x2x3ð Þ2=3

b0 þ b1x1

ð6Þ
Figure 2 Approximation of the 2-variable function.
y4 ¼ w2
a0 þ a1x1 þ a2x2 þ a3x3 þ a4x1x2 þ…þ a7x1x2x3

b0 þ b1x1 þ b2x1 þ b3x1x2
ð7Þ

The training data set of the 3-variable function required
an extension (in comparison 2-variables) to enable the
D-PNN to get with a desired approximation error. The
parameter optimization may apply a proper difference
evolution algorithm (EA), supplied with sufficient ran-
dom mutations to prevent a parameter adjustment con-
vergence before a desired error reaching [9]. Not every
experiment succeeds in a functional model.

Multi-layered backward D-PNN
Multi-layered D-PNN, consisting of blocks of neurons,
forms composite polynomial functions (functions of func-
tions) (8) in each next hidden layer. Each block contains a
single polynomial (without derivative part) forming its
output, entranced into the next hidden layer (Figure 3).
Neurons don’t affect the block output but are applied just
directly as the sum derivative terms of a total output calcu-
lation (DE composition). The blocks of the 2nd and follow-
ing hidden layers also form additional extended neurons,
i.e. composite terms (CT), which define derivatives of com-
posite functions, applying reverse outputs and inputs of
back connected blocks of previous layers. These partial de-
rivatives in respect to variables of previous layers are
x1’’’

Y

x3’’x2’’x1’’

x3’x2’x1’

p p p

CTCT CT

CTCTCT

O = simple term

CT = compound term

P = output polynomial

Figure 3 The 3-variable multi-layered 2-combination D-PNN.
Back-connections of the 3rd layer 1st block.
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calculated according to the composite function derivation
rules (9) (10) and formed by products of partial derivatives
of outer and inner functions [10].

yi ¼ ϕi Xð Þ ¼ ϕi x1; x2;…; xnð Þ i ¼ 1;…;m ð8Þ

F x1; x2;…; xnð Þ ¼ f y1; y2;…; ymð Þ
¼ f ϕ1 Xð Þ;ϕ2 Xð Þ;…;ϕm Xð Þð Þ

ð9Þ

∂F
∂xk

¼
Xm
i¼1

∂f y1; y2;…; ymð Þ
∂yi

⋅
∂ϕi Xð Þ
∂xk

k ¼ 1;…; n

ð10Þ
The 1st block of the last (3rd) hidden layer (Figure 3)

forms 2 neurons of its own input variables as 2 simple
terms (11) of the DE (3). It creates also 4 compound terms
of the 2nd (previous) hidden layer, using reverse outputs
Figure 5 Compare approximation f(x1,x2,x3) = x1
2+x2

2+x3
2.
and inputs of 2 bound blocks in respect to 4 derivative var-
iables (12). As couples of variables of the inner functions
can differ from each other, their partial derivations are 0
and so the sum of formula (10) will consist only of 1 term.
Thus each neuron of the D-PNN represents a DE term.
Likewise compound terms can be created in respect to the
1st hidden layer variables e.g. (13). The 3 back-joint blocks
form 8 CT of the DE and this can be well performed by a
recursive algorithm.

y11 ¼ w1
a0 þ a1x

;;
1a2x

;;
2 þ a3x

;;
1x

;;
2ð Þ

4=7

b0 þ b1x
;;
1

¼ w1
ð1x;;;1 Þ

4=7

b0 þ b1x
;;
1

ð11Þ

y13 ¼ w3

3x;;;1ð Þ
2=3

x;;2
=

x;;1ð Þ
2=3

b0 þ b1x
;
1

ð12Þ

y17 ¼ w7�
7x1

;;;

x2
;; =

x;;1
x;2

=
x;1

b0 þ b1x1
ð13Þ

D-PNN should create a functional value around the
desired output. As the input vector variables can take a
wide range of values (Figure 2), the combination polyno-
mials produce big output values. Therefore the multipli-
cation (10) was replaced by division operator in fractions
of compound terms (11)(12)(13) without an negative
effect, reducing the combination degree of composite
term polynomials each previous joint layer. Without
this modification the root exponents of CT fractions
would require an adjustment. The numerator exponents
are adapted to the current layer calculation, as the
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combination degree of polynomials doubles each follow-
ing hidden layer (11)(12)(13).
Each neuron has an adjustable term weight wi but not

everyone may participate in the total network output cal-
culation (DE composition). The selection of optimal neuron
combination can perform easily a proper genetic algorithm
(GA) [11]. Parameters of polynomials are represented by
real numbers, which random initial values are generated
from the interval <0.5, 1.5>. They are adjusted with
simultaneous GA best-fit neuron combination search in
the initial phase of the DE composition. There would
be welcome to apply an adequate gradient steepest descent
method [12], in conjunction with the EA [13]. D-PNN can
be trained with only small input–output data set like-
wise the GMDH polynomial neural network does [14].
D-PNN’s total output Y is the arithmetic mean of all ac-
tive neuron output values (14) to prevent the neuron
amount to influence it.

Y ¼

Xk
i¼1

yi

k
k ¼ actual amount of active neurons

ð14Þ

Experiments
The presented 3-variable multi-layered D-PNN (Figure 3)
is able to approximate any linear function e.g. simple
sum f(x1, x2, x3) = x1 + x2 + x3. The D-PNN and ANN
comparison processes 12 fixed same training data samples.
The progress curves are typical of all following experi-
ments (benchmarks) (Figure 4). The approximation accur-
acy of both methods is co-equal on the trained interval
values <10,300>, however the ANN approximation ability
Figure 6 Compare approximation f(x1,x2,x3) = x1+x2
2+x3

3.
rapidly falls outside of this range, while the D-PNN al-
ternate errors grow just slowly. The ANN with 2-hidden
layers of neurons applied the sigmoidal activation func-
tion and the standard back-propagation algorithm. The
D-PNN output has typically a wave-like behavior as it
model is composed of sum DE terms.
Approximation of non-linear functions requires the

extension of the D-PNN block and neuron polynomials
(11)(12)(13) with square power variables. Polynomials are
the same as applied by the GMDH algorithm (2). Compe-
tent square power (16) and combination (17) derivatives
form additional sum terms of the 2nd order partial DE (15).
The compound neurons of these derivatives are also formed
according to the composite function derivative rules [10].

F x1; x2; u;
∂u
∂x1

;
∂u
∂x2

;
∂2u
∂x21

;
∂2u

∂x1∂x2
;
∂2u
∂x22

� �
¼ 0 ð15Þ

where F(x1, x2, u, p, q, r, s, t) is a function of 8 variables

y10 ¼ w10
a0 þ a1x1 þ a2x2 þ a3x21 þ a4x22 þ a5x1x2

b0 þ b1x1 þ b2x21

¼ ∂2f x1; x2ð Þ
∂x21

ð16Þ

y12 ¼ w12
a0 þ a1x1 þ a2x2 þ a3x21 þ a4x22 þ a5x1x2

b0 þ b1x1 þ b2x2 þ b3x1x2

¼ ∂2f x1; x2ð Þ
∂x1∂x2

ð17Þ
Figures 5 and 6 show the D-PNN and ANN compare

approximation of some benchmarks - growing non-linear
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Figure 7 Models of the function f(x1,x2,x3) = (x1+x2+x3)
2 with decreasing training errors (a, b, c).
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functions. The 24 training data samples were randomly
generated by benchmark functions from the interval
<10,400> for both network models. The parameter and
weight adjustment of both methods appeared heavy time-
consuming and have not succeed any experiment. The
optimal number of the D-PNN’s derivative neurons of the
non-linear benchmark models was around 100. Experiments
with other benchmarks (e.g. x2

2+x3
3+x3

4) result in similar
outcome graphs. The D-PNN wavelet output can comprise
a wider range of testing data interval values, which was not
trained, than ANN. Both method inaccuracies intensify on
untrained interval values, as the benchmarks involve power
functions. Presented experiments verified the neural net-
work capability to approximate any multi-parametric func-
tion, though the operating principles of both techniques
differ essentially.
Figure 7a-c show D-PNN models of different final training

root mean square errors (RMSE). RMSE decrease results in
a lower generalization on untrained data interval values
(Figure 7c). Vice versa the greater RMSE evoke the model is
valid for a wider data range, while the inaccuracies of the
training data interval are overvalued (Figure 7a). This effect
became evident of all experiments. As a result the D-PNN
should not be trained to a minimal achievable error value to
get with the optimal generalization of testing data. The ap-
plied incomplete adjustment and selective methods require
improvements, which could yield better results. The
presented D-PNN operating principle differs by far from
other common neural network applied techniques. Bench-
mark results enable to suppose the D-PNN will succeed
forming complex models, which can be defined in the form
of multi-parametric functions.

Conclusion
D-PNN is a new type of neural network, which function
approximation and dependence of variables identification is
based on a generalization of data relations. It does not
utilize absolute values of variables but relative ones, which
can better describe a wide range of input data interval
values. D-PNN constructs a general partial differential
equation, which defines a system model of dependent
variables, applying integral fractional polynomial sum
terms. An acceptable implementation of the sum derivative
terms is the principal part of a partial DE substitution. Arti-
ficial neural network pattern identification and function ap-
proximation models are simpler techniques, based only on
whole-pattern similarity relations. A real data example
might solve weather forecasts of 1 locality, e.g. static
pressure values prediction applying some trained data re-
lations of few nearby localities of surrounding areas.
Phases of a constant time interval, of this very complex
system could define input vectors of training data set.
Estimated multi-parametric function values, i.e. next
system states of a selected locality of a time delay form
desired network outputs. D-PNN could create better
long-time models based on a partial sum DE solution,
than a standard ANN time-series prediction (based on
entire pattern definitions too).
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