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Abstract

In this paper, numerical solution of nonlinear Hammerstein integral equations via collocation method based on
double exponential transformation is considered. Some remarks with respect to the computational cost and stability
and implementation are discussed. Examples are presented to illustrate effectiveness of method.
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Introduction
In this paper, we consider the nonlinear Hammerstein
integral equations of this form:

u(x) = g(x)+λ

∫
�

K(x, t)F(t,u(t))dt, x, t ∈ � =[ a, b] ,

(1)

where a, b, and λ are real constants; g(x),K(x, t), and
F(t,u(t)) are given functions; and u(x) is to be deter-
mined. Equation 1 is applied in various areas of elec-
tromagnetic, fluid dynamics, reformulation of two-point
boundary value problems [1]. Many different methods
are usually used to solve Equation 1 such as the polyno-
mial approximation [2], radial basis function [3], Adomian
decomposition method [4], Chebyshev and Taylor collo-
cation [5], and wavelets [6].
The Sinc method is a powerful numerical tool for

finding fast and accurate solutions in various areas of
problems. In [7,8], a full overview of the Sinc function
and appropriate conditions and theorems have been dis-
cussed. In [9], the Sinc collocation method for numerical
solutions of Hammerstein integral equations was used.
Double exponential transformation, abbreviated as DE
was first proposed by Takahasi and Mori [10] in 1974 for
one-dimensional numerical integration, and it has come
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to be widely used in applications. It is known that the dou-
ble exponential transformation gives an optimal result for
the numerical evaluation of definite integrals of an ana-
lytic function [11-13]. Indeed it has been demonstrated
that the use of the Sincmethod in cooperation with the DE
transformation gives highly efficient numerical methods
for approximation of function, indefinite numerical inte-
gration, and solution of differential equations [14]. How-
ever, Sugihara [15-17] has recently found that the errors in
the Sinc numerical methods are O(exp(−cN/logN)) with
some c > 0, which is also practically meaningful.
The main purpose of the present research is to consider

the numerical solution of Hammerstein integral equations
based on double exponential transformation and investi-
gate computational cost and stability and implementation
of the algorithm. Also, some remarkable properties of this
method are explained.
The layout of the paper is as follows: in the

“Methods” section, we give basic definitions, assumptions
and preliminaries of the Sinc approximations and main
idea of the work. In the “Results and discussion” section,
the proposed algorithm is applied to solve some nonlin-
ear Hammerstien integral equations and the details of the
numerical implementation and some experimental results
are mentioned; finally, the “Conclusion” section, contains
the conclusion remarks.
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Algorithm 1
1: Step1: Input a, b,N ,α, g(x),K(x, t),φ(x),
2: Step2: Execute nested loops
3: z := 1,
4: for i = −N ..N do
5: xi = φ(ih),
6: ss := 0,
7: eq[ z]= 0,
8: for j = −N ..N do
9: ss := ss + ∗K(xk ,φ(jh))φ′(jh)( 12 + 1

π
Si(π(k − j)))Fj,

10: end do
11: eq[ z] := ui − g(xi) − h ∗ ss,
12: z := z + 1,
13: end do
14: Step3: Solve nonlinear system of equations

eq[ z]= 0, z = 1..2N + 1 by the Newton method
15: Step4: Output uj where Fj = F(tj,u(tj)),

j = −N ..N .

Methods
Basic definitions and preliminaries
Let f be a function defined on R, h > 0 as the step size,
and then the Whittaker cardinal defined by the series

C(f , h)(x) =
∞∑

j=−∞
f (jh)S(j, h)(x), (2)

whenever this series is convergent, and

S(j, h)(x) = sin[π(x − jh)/h]
π(x − jh)/h

, j = 0,±1,±2, ..., (3)

where S(j, h)(x) is known as j− th Sinc function evaluated
at x. Throughout this paper, let d > 0 and Dd denote the
region {z = x + iy |y| < d} in the complex plan C and φ

the conformal map of a simply connected domainD in the
complex domain onto Dd, such that φ(a) = −∞,φ(b) =
∞, where a, b are boundary points of D with a, b ∈ ∂D.
Let ψ denote the inverse map of φ, and let the arc �, with
end points a, b (a, b ∈ �), given by � = ψ(−∞,∞).
For h > 0, let the points xk on � given by xk = ψ(kh),
k ∈ Z.

Moreover, let us consider H1(Dd) be the family of all
functions g analytic in Dd, such that

N1(g,Dd) = limε→0

∫
∂Dd(ε)

|g(t)||dt| < ∞,

Dd(ε) = {t ∈ C, |Ret| <
1
ε
, |Imt| < d(1 − ε)}.

We recall the following definition from [10,16], which
will become instrumental in establishing our useful
formulas:

Definition 1. A function g is said to decay double expo-
nentially if there exist constants α and C, such that

|g(t)| ≤ C exp(−α exp |t|), t ∈ (−∞,∞).

Equivalently, a function g is said to decay double exponen-
tially with respect to conformal map φ if there exist positive
constants α and C such that

|g(φ(t))φ′(t)| ≤ C exp(−α exp |t|), t ∈ (−∞,∞).

Here, we suppose that Kα
φ (Dd) denote the family of

functions g, where g(φ(t))φ′(t) belongs to H1(Dd) and
decays double exponentially with respect to φ. If f belongs
to Kα

φ (Dd) with respect to φ, then we have the following
formulas for definite and indefinite integrals based on DE
transformation which is given and fully discussed in [18]:∫ b

a
f (x)dx = h

j=N∑
j=−N

f (φ(jh))φ′(jh)

+O (exp(
−2πdN

log(2πdN/α)
))

(4)

and∫ s

a
f (x)dx = h

∑j=N

j=−N
f (φ(jh))φ′(jh)

× (
1
2

+ 1
π
Si(

πφ−1(s)
h

− jπ))

+ O (
logN
N

exp(− πdN
log(πdN/α)

)),

where

φ(t) = b − a
2

tanh(
π

2
sinht) + a + b

2
, (5)

φ′(t) = b − a
2

π/2cosh(t)
cosh2(π/2sinh(t)).

(6)

Table 1 Results of Example 1 by Sinc collocationmethod

N T(s) ‖.‖∞ ‖.‖2 RMS Cond

5 34.60 9.36E-004 1.96E-002 5.90E-004 3.86E+000

8 480.80 8.72E-005 1.29E-004 5.56E-005 5.56E+000

11 100.1 9.15E-006 2.73E-005 5.70E-006 7.19E+000
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Figure 1 The exact u(x) and the approximate uN (x) solution of Example 1 for N=5.

Also, Si(t) is the Sine integral defined by:

Si(t) =
∫ t

0

sinw
w

dw,

and the mesh size h satisfies h = 1
N log(πdN/α).

Main idea
To apply DE transformation for approximation of
Equation 1, first, we use indefinite integration for the

second term of its right-hand side:∫ x

a
K(x, t)F(t,u(t))dt � h

N∑
j=−N

K(x,φ(jh))φ′(jh)

(
1
2

+ 1
π
Si(

πφ−1(x)
h

− jπ))Fj.

(7)

Similarly, for definite integral we have:

∫ b

a
K(x, t)F(t,u(t))dt � h

N∑
j=−N

K(x,φ(jh))φ′(jh))Fj,

Figure 2 The plot of error (with infinity norm) versusN in Example 2.
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Table 2 Results of Example 2 by Sinc collocationmethod

N T(s) ‖.‖∞ ‖.‖2 RMS Cond

5 2.12 3.86E-006 9.15E-006 2.76E-006 3.47E+000

8 146.8 6.74E-009 1.06E-008 2.56E-009 3.74E+000

11 1195.18 3.37E-010 6.66E-010 1.53E-010 9.12E+001

where Fj = F(tj,u(tj)), j = −N ...N . If we substitute
Equation 7 in right-hand side of Equation 1,

u(x) − h
N∑

j=−N
K(x,φ(jh))φ′(jh)

× (
1
2

+ 1
π
Si(

πφ−1(x)
h

− jπ))Fj � g(x).

(8)

To find unknown Fj = F(tj,u(tj), j = −N ...N , we can
apply the Sinc collocation points xk as xk = φ(kh),
k = −N ...N , so we have the following nonlinear system
of (2N + 1)(2N + 1) unknown Fj:

u(xk) − h
N∑

j=−N
K(xk ,φ(jh))φ′(jh)

× (
1
2

+ 1
π
Si (π(k − j))) Fj = g(xk). k, j = −N ..N .

(9)

By solving a system of nonlinear equations, we obtain
approximate solution uj which corresponds to the exact

solution u(xj) at the Sinc points xk = φ(kh). To obtain
an approximation in arbitrary x, we use a method simi-
lar to the Nyström method [19] for the Volterra integro
differential equation:

uN (x) = g(x) + λh
N∑

j=−N
K(x,φ(jh))φ′(jh)

× (
1
2

+ 1
π
Si(

πφ−1(x)
h

− jπ)))Fj.

(10)

By using the notations

A = (akj), akj =[K(xk ,φ(jh))φ′(jh)

× (
1
2

+ 1
π
Si(π(k − j)))] , k, j = −N ..N

U = (u−N , . . . ,uN )t , g = (g(x−N ), . . . , g(xN ))t ,
F = (F−N , . . . , FN )t ,

the system in Equation 9 can be shown in matrix form:

U − AF = g. (11)

Finally, we give Algorithm 1 to compute numerical solu-
tion of Equation 1.

Figure 3 u(x) the exact and uN (x) the approximate solution of Example 2 withN = 3.
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Table 3 Results of Example 3 by Sinc collocationmethod

N T(s) ‖.‖∞ ‖.‖2 RMS Cond

5 4.2 3.38E-005 7.43E-005 2.24E-005 2.62E+00

8 247.25 1.24E-007 3.41E-007 8.27E-008 2.62E+00

11 401.36 1.00E-009 2.04E-009 4.24E-010 2.62E+00

Results and discussion
Numerical experiments
In this section, three examples are presented based on
Algorithm 1 to illustrate the effectiveness and importance
of proposed method. All programs have been provided by
Maple 13. Also, in order to show the error and the accu-
racy of approximation, we apply the following criteria:

1) Absolute error between the exact and approximate
solution (L∞ error norm) is defined forM = 2N + 1 by

‖.‖∞ = Maxi = −N ..N |u(xi) − uM(xi)|. (12)

2) The L2 error norm is defined by

‖.‖2 =
√√√√ N∑

i=−N
[u(xi) − uM(xi)]2. (13)

3) The root mean square (RMS) is defined by

RMS =
√

1
M

∑
−N≤i≤N

[u(xi) − uM(xi)]2 , (14)

where M = 2N + 1 is the number of test points (Sinc
points).
4) Run time of program which is showed by T(s),

(smeans second).

Example 1. Consider the integral equation [3]:

u(x) = 1+ sin2(x) +
∫ x

0
−3 sin(x − t)u2(t)dt, 0 ≤ x ≤ 1

(15)

with the exact solution: u(x) = cos(x).
To obtain results, we take three sample numbers of

basic functions, such asN = 5, 8, 11. Also, in order to have
better results, we concentrate on thementioned criteria as
runtime (column T(s) in Table 1), infinity norm (column
‖.‖∞), L2 error norm (column ‖.‖2), RMS error (column
RMS), condition number (column Cond based on infinity
norm). The results in Sinc collocation method are shown
in Table 1.
As observed in Table 1, numerical results show simplic-

ity and very good accuracy of the method. By decreas-
ing the number of basic functions, the errors have been
decreased. Also, in comparison with the results of [3],
which used MQ Radial Basis function, condition number
in each row is very small, which is a good factor in the Sinc
method. For example, in the Sinc method for N = 10, we
have a 21×21 system of nonlinear equations, with condi-

Figure 4 The plot of error (with infinity norm) versusN in Example 3.
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Figure 5 The exact u(x) and the approximate uN (x) solution of Example 3 withN = 3.

tion number 7.19E + 000, but in [3], condition number is
2.45E+013, which is very noticeable. Also, wemust notice
the size of system which in this case is 10 × 10. Run time
of program in comparison with the size of nonlinear sys-
tem in the Sinc method is remarkable. Figure 1 shows the
exact and the approximate solution of this example.
Example 2. Consider the following integral equation [9]:

u(x) = exp(x+1) −
∫ 1

0
exp(x−2t)u3(t)dt, 0 ≤ x ≤ 1

(16)

with the exact solution: u(x) = exp(x).
In this example, results show good approximation based

on the Sinc collocation method. Clearly, these remarkable
factors are mostly due to structure of coefficient matrix
which is very important. Also, in [9], Sinc collocation with
single transformation φ(x) = ln( x

1−x ) was applied and for
N = 35 maximum error. ‖.‖∞ = 9.37E− 10 was obtained
which in comparisonwith double exponential transforma-
tion is very remarkable since in this manner, the size of
nonlinear system is 71 × 71. Figure 2 shows convergence
behavior of the Sinc collocation method in terms of infin-
ity norm versus reciprocal of number of collocation points
N. Similar to column ‖.‖∞ in Table 2, Figure 2 shows that
infinity norm decreases by increasing the number of col-
location points. Figure 3 shows the exact and approximate
solution of this example.
Example 3. Consider the following nonlinear Hammer-
stein integral equation [9]:

u(x) =
∫ 1

0
xtu2(t)dt − 5

12
x + 1, 0 ≤ x ≤ 1 (17)

with the exact solution: u(x) = 1 + 1
3x

The results in Table 3, show the efficiency and rate of
convergence of the method. By decreasing the number of
basic functions, the errors have been decreased. Condi-
tion number in each row is small, that is a good factor
in Sinc method. This property is caused by special struc-
ture of coefficientMatrix. In comparison with [9] by single
exponential transformation and maximum error ‖.‖∞ =
5.88E − 9 with N = 45, results in Table 3 are very con-
siderable. Figure 4 shows convergence behavior of Sinc
collocation method. Also, Figure 5 shows the exact and
the approximate solution of this example.
However, the results show that the proposed method

is practically reliable. Also, Sinc collocation method gives
better accuracy in very small run time with low computa-
tional cost. Based on results and other works [20,21], the
Sinc collocation method gives better accuracy at the com-
putational cost; also, the implementing and coding are
very easy.

Conclusion
We applied the Sinc collocation method based on dou-
ble exponential transformation to nonlinear Hammerstein
integral equations. The Sinc collocation method in run
time and condition number have good reliability and effi-
ciency. Also, we can improve the accuracy of the solution
by selecting the appropriate shape parameters and select-
ing the large values of N. Results show the high accuracy
of method by taking this view that storing in time and
memory is another useful property in the Sinc method.
In addition, this method is portable to other areas of
problems and is easy to program.
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