The polynomial automorphisms of some certain groups

Bahman Askari* and Fariba Fattahi

Abstract

Let $A(G)$ denote the automorphism group of a group G. A polynomial automorphism of G is an automorphism of the form $x \mapsto\left(v_{1}^{-1} x^{\varepsilon_{1}} v_{1}\right) \ldots\left(v_{m}^{-1} x^{\varepsilon_{m}} v_{m}\right)$. We shall write $P(G)=\left\langle P_{0}(G)\right\rangle$ such that $P_{0}(G)$ is the set of polynomial automorphisms of G. In this paper, we will prove that $P_{0}\left(D_{8}\right) \cong V_{4}$ and $P(\mathbb{Q})=A(\mathbb{Q})$, where \mathbb{Q} is the additive group.

AMS 2010 subject classifications

20D45, 11C08
Keywords: Polynomial automorphism, Nilpotent group, Additive group, Abelian group

Introduction

Let G be a group. We shall write $A(G)$ for the automorphism group of G. According to Schweigert [1], we say that an element $f \in A(G)$ is a polynomial automorphism of G if there exist integers $\varepsilon_{1}, \ldots, \varepsilon_{m} \in \mathbb{Z}$ and elements $u_{0}, \ldots, u_{m} \in G$ such that

$$
f(x)=u_{0} x^{\varepsilon_{1}} u_{1} \ldots u_{m-1} x^{\varepsilon m} u_{m},
$$

for all $x \in G$. Since $f(1)=1$, it is easy to see that $f(x)$ can be expressed as a product of inner automorphisms, that is,

$$
f(x)=\left(v_{1}^{-1} x^{\varepsilon_{1}} v_{1}\right) \ldots\left(v_{m}^{-1} x^{\varepsilon_{m}} v_{m}\right)
$$

We shall write $P_{0}(G)$ for the set of polynomial automorphisms of G. Actually, Schweigert defined a polynomial automorphism in the context of finite groups. In particular, in this context, the set $P_{0}(G)$ is clearly a subgroup of $A(G)$. On the other hand, this is not necessarily the case when G is infinite.
In this paper, we shall consider the subgroup $P(G)=$ $\left\langle P_{0}(G)\right\rangle$ of $A(G)$, generated by all polynomial automorphisms of G. Hence, $P_{0}(G)=P(G)$, when G is finite. For instance, we will prove that $P_{0}\left(D_{8}\right) \cong V_{4}$. Instead, $P(G)$ is distinct from $P_{0}(G)$ when G is the additive group of a rational number; in this case, we will prove that $P(\mathbb{Q})=$ $A(\mathbb{Q})$, and the set of polynomial automorphisms forms a monoid with respect to the operation of functional

[^0]composition, which is isomorphic to the multiplicative monoid $\mathbb{Z} \backslash\{0\}$.
It is easy to verify that $P_{0}(G)$ is a normal subset of $A(G)$. Thus, $P(G)$ is a normal subgroup of $A(G)$. In addition, we have
$$
I(G) \unlhd P(G) \unlhd A(G),
$$
where $I(G)$ is the group of inner automorphisms of G.

Preliminaries

If G is abelian, each polynomial automorphism is of the form $x \mapsto x^{\varepsilon}$, and so $P(G)$ is abelian. We show here that if G is a nilpotent group of class $k=2$, then $P(G)$ is abelian.

Lemma 1. Let f, g be two functions over a group G, respectively defined by the relations

$$
\begin{aligned}
& f(x)=\left(v_{1}^{-1} x^{\varepsilon_{1}} v_{1}\right) \ldots\left(v_{m}^{-1} x^{\varepsilon_{m}} v_{m}\right), \\
& g(x)=\left(w_{1}^{-1} x^{\eta_{1}} w_{1}\right) \ldots\left(w_{n}^{-1} x^{\eta_{n}} w_{n}\right)
\end{aligned}
$$

(we do not suppose that f and g are automorphisms). Let t be an element of G such that any two conjugates of t commute. Then, we have the relation

$$
f(g(t))=\prod_{i=1}^{m} \prod_{j=1}^{n} t^{\varepsilon_{i} \eta_{j}}\left[t^{\varepsilon_{i} \eta_{j}}, v_{i}\right]\left[t^{\varepsilon_{i} \eta_{j}}, w_{j}\right]\left[t^{\varepsilon_{i} \eta_{j}}, w_{j}, v_{i}\right]
$$

(notice that in this product, the order of the factors is of no consequence).

Proof. Using the fact that any two conjugates of t commute, we can write

$$
\begin{aligned}
f(g(t)) & =\prod_{i=1}^{m} v_{i}^{-1}\left(\prod_{j=1}^{m} w_{j}^{-1} t^{\eta_{j}} w_{j}\right)^{\varepsilon_{i}} v_{i} \\
& =\prod_{i=1}^{m} \prod_{j=1}^{n} v_{i}^{-1} w_{j}^{-1} t^{\varepsilon_{i} \eta_{j}} w_{j} v_{i} \\
& =\prod_{i=1}^{m} \prod_{j=1}^{n} t^{\varepsilon_{i} \eta_{j}}\left[t^{\varepsilon_{i} \eta_{j}}, w_{j}, v_{i}\right] .
\end{aligned}
$$

We conclude thanks to the relation $[x, y z]=[x, z]$ $[x, y][x, y, z]$.

When G is a finite nilpotent group of class ≤ 2, it is proved in [2], that $P(G)$ is abelian. In a nilpotent group G of class ≤ 2, two conjugates of any element $t \in G$ commute. Therefore, as an immediate consequence of Lemma 1, we observe that any two polynomial automorphisms of G commute. Since these automorphisms generate $P(G)$, we obtain:

Proposition 1. If G is a nilpotent group of class ≤ 2, then $P(G)$ is abelian.

Proof. It is enough to show that all generators of $P(G)$ commute. Let G be a nilpotent group of class 1 . Then, by [3], we have

$$
P_{0}(G)=\left\{f \mid f(x)=x^{\varepsilon}, \varepsilon \in \mathbb{Z} \backslash\{0\}\right\} .
$$

Now, we consider $f(x)=x^{\varepsilon}, g(x)=x^{\delta}$. We have

$$
\begin{aligned}
& f(g(x))=f\left(x^{\delta}\right)=x^{\delta \varepsilon}, \\
& g(f(x))=g\left(x^{\varepsilon}\right)=x^{\varepsilon \delta},
\end{aligned}
$$

where $\delta, \varepsilon \in \mathbb{Z} \backslash\{0\}$. Hence, $f(g(x))=g(f(x))$.
Let G be a nilpotent group of class 2 and let f, g be two elements of $P_{0}(G)$ such that

$$
\begin{aligned}
& f(x)=\left(v_{1}^{-1} x^{\varepsilon_{1}} v_{1}\right) \ldots\left(v_{m}^{-1} x^{\varepsilon_{m}} v_{m}\right) \\
& g(x)=\left(w_{1}^{-1} x^{\eta_{1}} w_{1}\right) \ldots\left(w_{n}^{-1} x^{\eta_{n}} w_{n}\right)
\end{aligned}
$$

Then by Lemma 1 , for all $t \in G$, we have

$$
\begin{aligned}
& f(g(t))=\prod_{i=1}^{m} \prod_{j=1}^{n} t^{\varepsilon \eta_{j}}\left[t^{\varepsilon \eta_{j}}, v_{i}\right]\left[t^{\varepsilon} \eta_{j}, w_{j}\right]\left[t^{\varepsilon_{i} \eta_{j}}, w_{j}, v_{i}\right], \\
& g(f(t))=\prod_{i=1}^{m} \prod_{j=1}^{n} t^{\varepsilon i \eta_{j}}\left[t^{\varepsilon i \eta_{j}}, w_{j}\right]\left[t^{\varepsilon i \eta_{j}}, v_{i}\right]\left[t^{\varepsilon i \eta_{j}}, v_{i}, w_{j}\right] .
\end{aligned}
$$

Since G is a nilpotent group of class $2, \gamma_{3}(G)=1$. So,

$$
\left[t^{\varepsilon_{i} \eta_{j}}, w_{j}, v_{i}\right]=\left[t^{\varepsilon_{i} \eta_{j}}, v_{i}, w_{j}\right]=1
$$

Therefore, $f(g(t))=g(f(t))$ and the proof is complete.

Main results

In this section, we suppose that D_{8} is the dihedral group of order $8, V_{4}$ is the Klein 4 -group, and \mathbb{Q} is the additive group of a rational number [4,5]. First, in Theorem 1, we will show that $P_{0}\left(D_{8}\right) \cong V_{4}$, and then in Theorem 2, we will prove that $P(\mathbb{Q})=A(\mathbb{Q})$.

Theorem 1. Let D_{8} be the dihedral group of order 8, and let V_{4} be the Klein 4-group. Then, $P_{0}\left(D_{8}\right) \cong V_{4}$.

Proof. Since $D_{8}=\left\langle t, s \mid t^{2}=s^{4}=1,(t s)^{2}=1\right\rangle$, so the eight elements of D_{8} are

$$
D_{8}=\left\{1, s, s^{2}, s^{3}, t, t s, t s^{2}, t s^{3}\right\} .
$$

It is straightforward to verify that $\operatorname{Aut}\left(D_{8}\right) \cong D_{8}$. On the other hand, we have $D_{8} / Z\left(D_{8}\right) \cong \operatorname{Inn}\left(D_{8}\right)$. Since $Z\left(D_{8}\right)=$ $\left\langle s^{2}\right\rangle$, we have $\left|\operatorname{Inn}\left(D_{8}\right)\right|=4$. The order of each non-trivial element of $D_{8} / Z\left(D_{8}\right)$ is 2 , so $D_{8} / Z\left(D_{8}\right) \cong V_{4}$; hence, $\operatorname{Inn}\left(D_{8}\right) \cong V_{4}$. Therefore,

$$
V_{4} \unlhd P_{0}\left(D_{8}\right) \unlhd D_{8}
$$

Since $\left|D_{8}: V_{4}\right|=2$, so $P_{0}\left(D_{8}\right) \cong D_{8}$ or V_{4}. However, D_{8} is the nilpotent group of order 2; according to the Proposition $1, P_{0}\left(D_{8}\right)$ is abelian group. The result now follows.

Theorem 2. Let \mathbb{Q} be the additive group of rational numbers. Then, the set of polynomial automorphisms forms a monoid with respect to the operation of functional composition, which is isomorphic to the multiplicative monoid $\mathbb{Z} \backslash\{0\}$. Further, we have $P(\mathbb{Q})=A(\mathbb{Q}) \cong(\mathbb{Q} \backslash$ $\{0\}, \cdot)$.

Proof. Since \mathbb{Q} is the additive group, so each element of $P_{0}(\mathbb{Q})$ is of the form $f(x)=k x$ for every $x \in \mathbb{Q}$, where $k \in$ $\mathbb{Z} \backslash\{0\}$. Now, since \mathbb{Q} is a torsion-free group, so $f(x)=k x$ is the element of $P_{0}(\mathbb{Q})$ for every $k \in \mathbb{Z} \backslash\{0\}$. Hence,

$$
P_{0}(\mathbb{Q})=\{f: \mathbb{Q} \rightarrow \mathbb{Q} \mid f(x)=k x, k \in \mathbb{Z} \backslash\{0\}\} .
$$

It can be easily verified that $P_{0}(\mathbb{Q})$ has only two commutative elements. We consider the mapping $\varphi: P_{0}(\mathbb{Q}) \rightarrow$ $\mathbb{Z} \backslash\{0\}$ defined like this: for any $f \in P_{0}(\mathbb{Q}), \varphi(f(x))=k$, where $k \in \mathbb{Z} \backslash\{0\}$ and $x \in \mathbb{Q}$. It is easy to see that $P_{0}(\mathbb{Q}) \cong(\mathbb{Z} \backslash\{0\}, \cdot)$.
It is straightforward to verify that every element of $\operatorname{End}(\mathbb{Q})$, for every $x \in \mathbb{Q}$, is the form $f_{t}(x)=t x$, where $t=f_{t}(1)$ is the arbitrary element of \mathbb{Q}. The mapping ψ : $\operatorname{End}(\mathbb{Q}) \rightarrow \mathbb{Q}$ of the form

$$
g_{t} \mapsto g_{t}(1) \quad\left(g_{t} \in \operatorname{End}(\mathbb{Q})\right)
$$

is an isomorphism.
Since $A(\mathbb{Q}) \leq \operatorname{End}(\mathbb{Q})$ and $A(\mathbb{Q})$ is the group of invertible elements of $\operatorname{End}(\mathbb{Q})$, so we have $A(\mathbb{Q}) \cong(\mathbb{Q} \backslash\{0\}, \cdot)$.

Further, we have

$$
A(\mathbb{Q})=\{f: \mathbb{Q} \rightarrow \mathbb{Q} \mid f(x)=t x, t \in \mathbb{Q} \backslash\{0\}\}
$$

It is clear that $P(\mathbb{Q}) \leq A(\mathbb{Q})$. Let $f \in A(\mathbb{Q})$. Then, there exist $m, n \in \mathbb{Z} \backslash\{0\}$ such that

$$
f(x)=\frac{m}{n} x
$$

for every $x \in \mathbb{Q}$.
Let f_{1}, f_{2} be two elements of $P_{0}(\mathbb{Q})$, respectively defined by the relations

$$
f_{1}(x)=m x, \quad f_{2}(x)=n x
$$

Then, $f_{1} o f_{2}^{-1}(x)=\frac{m}{n} x=f(x)$. Now, since $f_{1} o f_{2}^{-1}$ is the element of $P(\mathbb{Q})$, so $f(x)$ is the element of $P(\mathbb{Q})$. This complete the proof of Theorem 2.

Competing interests

Both authors declare that they have no competing interests.

Authors' contributions

BA and FF contributed equally. Both authors read and approved the final manuscript.

Acknowledgements

The author would like to thank the referees for their valuable suggestion and comments.

Received: 2 March 2013 Accepted: 5 May 2013
Published: 22 May 2013

References

1. Schweigert, D: Polynomautomorphismen auf endlichen Gruppen. Arch. Math. 29, 34-38 (1977)
2. Corsi Tani, G, Rinaldi Bonafede, MF: Polynomial automorphisms in nilpotent finite groups. Boll. U.M.I. 5, 285-292 (1986)
3. Huppert, B: Endliche Gruppen I. Springer, Berlin - New York (1967)
4. Johnson, DL: Presentations of Groups. Cambridge University Press, Cambridge (1990)
5. Suzuki, M: Group Theory I. Springer, New York (1980)
[^1]
Submit your manuscript to a SpringerOpen ${ }^{\circ}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

[^0]: *Correspondence: bahman_askari2003@yahoo.com
 Department of Mathematics, Ghorveh Branch, Islamic Azad University, Ghorveh 66619-83435, Iran

[^1]: doi:10.1186/2251-7456-7-27
 Cite this article as: Askari and Fattahi: The polynomial automorphisms of some certain groups. Mathematical Sciences 2013 7:27.

