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Abstract

Let A(G) denote the automorphism group of a group G. A polynomial automorphism of G is an automorphism of the
form x �→ (v−1

1 xε1v1) . . . (v−1
m xεmvm). We shall write P(G) = 〈P0(G)〉 such that P0(G) is the set of polynomial

automorphisms of G. In this paper, we will prove that P0(D8) ∼= V4 and P(Q) = A(Q), whereQ is the additive group.
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Introduction
Let G be a group. We shall write A(G) for the automor-
phism group of G. According to Schweigert [1], we say
that an element f ∈ A(G) is a polynomial automorphism
of G if there exist integers ε1, . . . , εm ∈ Z and elements
u0, ..., um ∈ G such that

f (x) = u0xε1u1...um−1xεmum,

for all x ∈ G. Since f (1) = 1, it is easy to see that f (x) can
be expressed as a product of inner automorphisms, that is,

f (x) = (v−1
1 xε1v1) . . . (v−1

m xεmvm).

We shall write P0(G) for the set of polynomial automor-
phisms of G. Actually, Schweigert defined a polynomial
automorphism in the context of finite groups. In particu-
lar, in this context, the set P0(G) is clearly a subgroup of
A(G). On the other hand, this is not necessarily the case
when G is infinite.
In this paper, we shall consider the subgroup P(G) =

〈P0(G)〉 of A(G), generated by all polynomial automor-
phisms of G. Hence, P0(G) = P(G), when G is finite. For
instance, we will prove that P0(D8) ∼= V4. Instead, P(G)

is distinct from P0(G) when G is the additive group of a
rational number; in this case, we will prove that P(Q) =
A(Q), and the set of polynomial automorphisms forms
a monoid with respect to the operation of functional
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composition, which is isomorphic to the multiplicative
monoid Z \ {0}.
It is easy to verify that P0(G) is a normal subset of A(G).

Thus, P(G) is a normal subgroup of A(G). In addition, we
have

I(G) � P(G) � A(G),

where I(G) is the group of inner automorphisms of G.

Preliminaries
If G is abelian, each polynomial automorphism is of the
form x �→ xε , and so P(G) is abelian. We show here that if
G is a nilpotent group of class k = 2, then P(G) is abelian.

Lemma 1. Let f , g be two functions over a group G,
respectively defined by the relations

f (x) = (v−1
1 xε1v1) . . . (v−1

m xεmvm),

g(x) = (w−1
1 xη1w1) . . . (w−1

n xηnwn)

(we do not suppose that f and g are automorphisms). Let
t be an element of G such that any two conjugates of t
commute. Then, we have the relation

f (g(t)) =
m∏

i=1

n∏

j=1
tεiηj [ tεiηj , vi] [ tεiηj ,wj] [ tεiηj ,wj, vi]

(notice that in this product, the order of the factors is of no
consequence).
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Proof. Using the fact that any two conjugates of t com-
mute, we can write

f (g(t)) = ∏m
i=1 v

−1
i (

∏m
j=1 w

−1
j tηjwj)

εi vi

= ∏m
i=1

∏n
j=1 v

−1
i w−1

j tεiηjwjvi

= ∏m
i=1

∏n
j=1 tεiηj [ tεiηj ,wj, vi] .

We conclude thanks to the relation [ x, yz]=[ x, z]
[ x, y] [ x, y, z].

When G is a finite nilpotent group of class ≤ 2, it is
proved in [2], that P(G) is abelian. In a nilpotent group
G of class ≤ 2, two conjugates of any element t ∈ G
commute. Therefore, as an immediate consequence of
Lemma 1, we observe that any two polynomial auto-
morphisms of G commute. Since these automorphisms
generate P(G), we obtain:

Proposition 1. If G is a nilpotent group of class ≤ 2, then
P(G) is abelian.

Proof. It is enough to show that all generators of P(G)

commute. Let G be a nilpotent group of class 1. Then, by
[3], we have

P0(G) = {f | f (x) = xε , ε ∈ Z \ {0}}.
Now, we consider f (x) = xε ,g(x) = xδ . We have

f (g(x)) = f (xδ) = xδε ,

g(f (x)) = g(xε) = xεδ ,

where δ, ε ∈ Z \ {0}. Hence, f (g(x)) = g(f (x)).
Let G be a nilpotent group of class 2 and let f , g be two

elements of P0(G) such that

f (x) = (v−1
1 xε1v1) . . . (v−1

m xεmvm),

g(x) = (w−1
1 xη1w1) . . . (w−1

n xηnwn).

Then by Lemma 1, for all t ∈ G, we have

f (g(t)) = ∏m
i=1

∏n
j=1 tεiηj [ tεiηj , vi] [ tεiηj ,wj] [ tεiηj ,wj, vi] ,

g(f (t)) = ∏m
i=1

∏n
j=1 tεiηj [ tεiηj ,wj] [ tεiηj , vi] [ tεiηj , vi,wj] .

Since G is a nilpotent group of class 2, γ3(G) = 1. So,

[ tεiηj ,wj, vi]=[ tεiηj , vi,wj]= 1.

Therefore, f (g(t)) = g(f (t)) and the proof is complete.

Main results
In this section, we suppose that D8 is the dihedral group
of order 8, V4 is the Klein 4−group, and Q is the additive
group of a rational number [4,5]. First, in Theorem 1, we
will show that P0(D8) ∼= V4, and then in Theorem 2, we
will prove that P(Q) = A(Q).

Theorem 1. Let D8 be the dihedral group of order 8, and
let V4 be the Klein 4−group. Then, P0(D8) ∼= V4.

Proof. Since D8 = 〈t, s|t2 = s4 = 1, (ts)2 = 1〉, so the
eight elements of D8 are

D8 = {1, s, s2, s3, t, ts, ts2, ts3}.
It is straightforward to verify that Aut(D8) ∼= D8. On the
other hand, we have D8/Z(D8) ∼= Inn(D8). Since Z(D8) =
〈s2〉, we have |Inn(D8)| = 4. The order of each non-trivial
element of D8/Z(D8) is 2, so D8/Z(D8) ∼= V4; hence,
Inn(D8) ∼= V4. Therefore,

V4 � P0(D8) � D8.

Since |D8 : V4| = 2, so P0(D8) ∼= D8 or V4. How-
ever, D8 is the nilpotent group of order 2; according to
the Proposition 1, P0(D8) is abelian group. The result now
follows.

Theorem 2. Let Q be the additive group of rational
numbers. Then, the set of polynomial automorphisms
forms a monoid with respect to the operation of functional
composition, which is isomorphic to the multiplicative
monoid Z \ {0}. Further, we have P(Q) = A(Q) ∼= (Q \
{0}, ·).

Proof. Since Q is the additive group, so each element of
P0(Q) is of the form f (x) = kx for every x ∈ Q, where k ∈
Z \ {0}. Now, since Q is a torsion-free group, so f (x) = kx
is the element of P0(Q) for every k ∈ Z \ {0}. Hence,

P0(Q) = {f : Q → Q|f (x) = kx, k ∈ Z \ {0}}.
It can be easily verified that P0(Q) has only two commu-
tative elements. We consider the mapping ϕ : P0(Q) →
Z \ {0} defined like this: for any f ∈ P0(Q), ϕ(f (x)) = k,
where k ∈ Z \ {0} and x ∈ Q. It is easy to see that
P0(Q) ∼= (Z \ {0}, ·).
It is straightforward to verify that every element of
End(Q), for every x ∈ Q, is the form ft(x) = tx, where
t = ft(1) is the arbitrary element of Q. The mapping ψ :
End(Q) → Q of the form

gt �→ gt(1) (gt ∈ End(Q))

is an isomorphism.
Since A(Q) ≤ End(Q) and A(Q) is the group of invert-

ible elements of End(Q), so we have A(Q) ∼= (Q \ {0}, ·).
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Further, we have

A(Q) = {f : Q → Q|f (x) = tx, t ∈ Q \ {0}}.
It is clear that P(Q) ≤ A(Q). Let f ∈ A(Q). Then, there
existm, n ∈ Z \ {0} such that

f (x) = m
n
x

for every x ∈ Q.
Let f1, f2 be two elements of P0(Q), respectively defined

by the relations

f1(x) = mx, f2(x) = nx.

Then, f1of −1
2 (x) = m

n x = f (x). Now, since f1of −1
2 is the

element of P(Q), so f (x) is the element of P(Q). This
complete the proof of Theorem 2.
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