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Abstract

Let R be an associative ring with identity and let k ≥ 1 be a fixed integer. An element (x, y) ∈ R × R is said to be left
(right) k-Engel π -regular if there exists a positive integer n and an element z ∈ R such that [ x, y]nk = z[ x, y]n+1

k
([ x, y]nk =[ x, y]n+1

k z). If every element of R × R is left (right) k-Engel π -regular, then R is said to be left (right) k-Engel
π -regular. An element (x, y) ∈ R × R is strongly k-Engel π -regular if it is both left and right k-Engel π -regular. The ring
R is strongly k-Engel π -regular if every element of R × R is strongly k-Engel π -regular. In this paper, we investigate
properties of abelian strongly k-Engel π -regular ring.
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Introduction
Let R be an associative ring with identity. An element
x ∈ R is said to be right π-regular if there exists a positive
integer n and an element y ∈ R such that xn = xn+1y. If
every element of R is right π-regular, then R is said to be
right π-regular. By [1], this definition is left-right symmet-
ric. An element of R is strongly π-regular if it is both left
and right π-regular. R is strongly π-regular if every ele-
ment of R is strongly π-regular. In [2], it was shown that if
an element x in the ring R is strongly π-regular, then there
exists a positive integer n and an element y ∈ R such that
xn = xn+1y and xy = yx. In the case where n = 1, the
element x is said to be strongly regular.
If (xi)i∈N is a sequence of elements of R and k is a

positive integer, we define [ x1, . . . , xk+1] inductively as
follows:

[ x1, x2] = x1x2 − x2x1,
[ x1, . . . , xk , xk+1] =[ [ x1, . . . , xk] , xk+1] .

If x1 = x and x2 = · · · = xk+1 = y, the notation [ x, y]k
is used to denote [ x1, . . . , xk+1], and [ x, y]k is called a k-
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Engel element. For k = 1, [ x, y]k =[ x, y]1 is usually just
denoted by [ x, y]. An element (x, y) ∈ R × R is said to be
left (right) k-Engel π-regular if there exists a positive inte-
ger n and an element z ∈ R such that [ x, y]nk = z[ x, y]n+1

k
([ x, y]nk =[ x, y]n+1

k z). If every element of R × R is left
(right) k-Engel π-regular, then R is said to be left (right)
k-Engel π-regular. An element (x, y) ∈ R × R is strongly
k-Engel π-regular if it is both left and right k-Engel π-
regular. The ring R is strongly k-Engel π-regular if every
element of R × R is strongly k-Engel π-regular. Clearly, if
(x, y) is strongly k-Engel π-regular, then [ x, y]k is strongly
π-regular. Therefore, there exists a positive integer n and
an element z ∈ R such that [ x, y]nk =[ x, y]n+1

k z and
[ x, y]k z = z[ x, y]k (by [2]).
Division rings are examples of strongly k-Engel π-

regular rings. Other examples include full matrix rings
over division rings and triangular matrix rings over fields.
It is clear that rings which satisfy the k-Engel condi-
tion are strongly k-Engel π-regular. In [3], we studied
the conditions for strongly k-Engel π-regular rings to be
commutative ( hence, has k-Engel condition). Now in this
paper, we investigate the properties of abelian strongly k-
Engel π-regular rings and obtain some characterisations
of these rings. All rings in this paper are assumed to have
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identity. A ring is said to be abelian if all of its idempo-
tents are central. For a ring R, we use the notation N(R)

and Id(R) to denote the set of all nilpotent elements of R
and the set of all idempotents of R, respectively.

Main results
Proposition 2.1. Let R be an abelian strongly k-Engel

π-regular ring. Suppose that N(R) is an ideal of R. Then
for each x, y ∈ R, [ x, y]k +N(R) is strongly regular (hence
regular).

Proof. Let x, y ∈ R. Then there exist z ∈ R and a positive
integer n such that [ x, y]nk = [ x, y]n+1

k z and [ x, y]k z =
z[ x, y]k . Thus, e = [ x, y]nk z

n ∈ Id(R), and hence, 1 − e ∈
Id(R). Then since [ x, y]nk = [ x, y]2nk zn = [ x, y]nk e, it fol-
lows that (1 − e)[ x, y]nk = 0, and hence, (1 − e)[ x, y]k ∈
N(R). Therefore,

[ x, y]k +N(R) = e[ x, y]k +N(R)

=[ x, y]n+1
k zn + N(R)

= ([ x, y]k +N(R))2([ x, y]n−1
k zn + N(R)).

It follows that [ x, y]k +N(R) is strongly regular (hence
regular).
The following lemma is well known and can be found

for example in p. 72 of [4].

Lemma 2.2. Let R be a ring and I a nil ideal of R. Then
idempotents of R/I can be lifted to R.

Proposition 2.3. Let R be an abelian ring. If N(R) is an
ideal of R and for each x, y ∈ R, [ x, y]k +N(R) is regular,
then R is strongly k-Engel π-regular.

Proof. Let x, y ∈ R. Since [ x, y]k +N(R) is regular, there
exist some z ∈ R such that [ x, y]k z[ x, y]k +N(R) =
[ x, y]k +N(R). Clearly, (z[ x, y]k )2 + N(R) = z[ x, y]k +N(R).
By Lemma 2.2, there is an idempotent e ∈ R such that e +
N(R) = z[ x, y]k +N(R), that is, e − z[ x, y]k ∈ N(R). Thus,
there exists an integerm ≥ 1 such that (e−z[ x, y]k )m = 0.
Since e is central, e = t[ x, y]k for some t ∈ R .
Now [ x, y]k +N(R) = ([ x, y]k z[ x, y]k ) + N(R) = [ x, y]k e +

N(R) gives us [ x, y]k −[ x, y]k e ∈ N(R). Hence, there
exist some integer n ≥ 1 with 0 = ([ x, y]k −[ x, y]k e)n =
[ x, y]nk −[ x, y]nk e. Therefore, [ x, y]

n
k = [ x, y]nk e = e[ x, y]nk =

t[ x, y]n+1
k . Thus, R is strongly k-Engel π-regular.

By Propositions 2.1 and 2.3, we readily have the
following:

Theorem 2.4. Let R be an abelian ring such that N(R)

is an ideal of R. Then R is strongly k-Engel π-regular if and
only if for each x, y ∈ R, [ x, y]k +N(R) is regular.

Proposition 2.5. Let R be an abelian strongly k-Engel
π-regular ring and let P be a prime ideal of R. Then for
each x, y ∈ R, [ x, y]k +P is nilpotent or a unit.

Proof. Let x, y ∈ R. Since R is strongly k-Engel π-
regular, by the proof of Theorem 2.1 in [3], we may write
[ x, y]k = fu = uf for some near idempotent f and some
unit u ∈ R. By near idempotent wemean that there exists a
positive integer n such that e = f n is an idempotent. Then
[ x, y]nk = eun = une. Since (1 − e)Re = {0} ⊆ P and P is
a prime ideal, it follows that e ∈ P or 1 − e ∈ P. If e ∈ P,
then [ x, y]nk = eun ∈ P; hence, [ x, y]k +P is nilpotent. If
1− e ∈ P, then [ x, y]nk +P = eun + P = (e+ P)(un + P) =
un + P is a unit in R/P. It follows that [ x, y]k +P is a unit
in R/P.

Proposition 2.6. Let R be a strongly k-Engel π-regular
ring and I an ideal of R. Then I is strongly k-Engel π-regular
as a ring.

Proof. Let x, y ∈ I. Since R is strongly k-Engel π-
regular, then there exist z ∈ R and a positive integer n
such that [ x, y]nk = [ x, y]n+1

k z and [ x, y]k z = z[ x, y]k . If
n = 1, let t = [ x, y]k z2. Then t ∈ I, [ x, y]k t = t[ x, y]k and
[ x, y]2k t = [ x, y]2k [ x, y]k z

2 = [ x, y]k ([ x, y]2k z)z = [ x, y]2k z =
[ x, y]k . If n ≥ 2, let t =[ x, y]n−1

k zn ∈ I. Then [ x, y]k t =
t[ x, y]k . Therefore, [ x, y]nk = [ x, y]n+1

k z = ... = [ x, y]n+1
k

([ x, y]n−1
k zn) = [ x, y]n+1

k t. Thus, I is strongly k-Engel
π-regular.
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