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Abstract

In this paper, we establish a coupled fixed point result of F : X × X → X having the mixed monotone property
involving generalized altering distance functions in five variables on ordered metric spaces. An example is given to
support the usability of our results. We also give a coupled fixed point result involving a contraction of integral type.
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Introduction and preliminaries
The very famous Banach contraction principle [1] can be
stated as follows.

Theorem 1. [1]. Let (X, d) be a complete metric space
and T be a mapping of X into itself satisfying:

d(Tx,Ty) ≤ kd(x, y),∀ x, y ∈ X, (1.1)

where k is a constant in (0, 1). Then, T has a unique fixed
point x∗ ∈ X.

In the literature, there is a great number of gen-
eralizations of the Banach contraction principle.
Khan et al. [2] introduced the notion of an alter-
ing distance function, which is a control function
that alters distance between two points in a metric
space.

Definition 2. [2]. A function ϕ :[ 0,+∞) →[ 0,+∞) is
called an altering distance functionif and only if

(i) ϕ Is continuous,
(ii) ϕ Is non-decreasing, and
(iii) ϕ(t) = 0 ⇔ t = 0.
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Afterwards, a number of works have appeared in
which altering distances have been used. Altering
distances have been generalized to a two-variable
function by Choudhury and Dutta [3] and to a
three-variable function by Choudhury [4] and was
applied for obtaining fixed point results in metric
spaces.

Definition 3. [4]. Let �3 denote the set of all functions
ϕ :[ 0,+∞)×[ 0,+∞)×[ 0,+∞) →[ 0,+∞). Then ϕ is
said to be a generalized altering distance function if and
only if

(i) ϕ is continuous,
(ii) ϕ is nondecreasing in all the three variables, and
(iii) ϕ(x, y, z) = 0 ⇔ x = y = z = 0.

In [5], Rao et al. introduced the generalized altering
distance function in five variables as a generalization of
three variables.

Definition 4. [5]. Let �5 denote the set of all functions
ϕ :[ 0,+∞)×[ 0,+∞)×[ 0,+∞)×[ 0,+∞)×[ 0,+∞) →
[ 0,+∞). Then ϕ is said to be a generalized altering
distance function if and only if

(i) ϕ is continuous,
(ii) ϕ is non-decreasing in all five variables, and
(iii) ϕ(t1, t2, t3, t4, t5) = 0 ⇔ t1 = t2 = t3 = t4 = t5 = 0.
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On the other hand, the first result on existence of fixed
points in partially ordered sets was given by Turinici
[6], where he extended the Banach contraction princi-
ple in partially ordered sets. Ran and Reurings [7] pre-
sented some applications of Turinici’s theorem to matrix
equations. The obtained result by Turinici was further
extended and refined in [8-33]. Subsequently, Harjani and
Sadarangani [17] generalized their own results [18] by
considering a pair of altering functions (ψ ,ϕ). Nashine
and Altun [20] and Nashine and Bessem [22] generalized
the results of Harjani and Sadarangani [17,18]. Nashine,
Samet, and Vetro [23] also had fixed point theorems
for T-weakly isotone-increasing mappings which satisfy a
generalized nonlinear contractive condition in complete
ordered metric spaces and gave an application to an exis-
tence theorem for a solution of some integral equations.
Jachymski[30] established a geometric lemma (Lemma 1
in [30]) giving a list of equivalent conditions for some
subsets of the plane. Using this lemma, he proved that
some very recent fixed point theorems for generalized
contractions on ordered metric spaces obtained by Har-
jani and Sadarangani [17,18], and Amini-Harandi and
Emami [10] follow from an earlier result of O’Regan and
Petruşel (Theorem 3.6 in [28]).
Now, we introduce some known notations and defini-

tions that will be used later.

Definition 5. Let X be a nonempty set. Then (X, d,	)

is called an ordered metric space iff

(i) (X, d) is a metric space, and
(ii) (X,	) is partially ordered.

Definition 6. Let (X,	) be a partial ordered set. Then
x, y ∈ X are called comparable if x 	 y or y 	 x holds.

Let (X,	) be a partially ordered set. The concept
of a mixed monotone property of the mapping F :
X × X → X has been introduced by Bhaskar and
Lakshmikantham [13].

Definition 7. (see Bhaskar and Lakshmikantham [13]).
Let (X,	) be a partially ordered set and F : X ×
X → X. Then the map F is said to have mixed
monotone property if F(x, y) is monotone nondecreas-
ing in x and is monotone non-increasing in y; that is,
for any x, y ∈ X,

x1 	 x2 implies F(x1, y) 	 F(x2, y) for all y ∈ X

and

y1 	 y2 implies F(x, y2) 	 F(x, y1) for all x ∈ X.

Definition 8. (see Bhaskar and Lakshmikantham [13]).
An element (x, y) ∈ X × X is called a coupled fixed point
of a mapping F : X × X → X if

F(x, y) = x and F(y, x) = y.

Bhaskar and Lakshmikantham [13] proved the follow-
ing coupled fixed point theorem. For other coupled fixed
point results, see [34-46].

Theorem 9. (see Bhaskar and Lakshmikantham [13]).
Let (X,	) be a partially ordered set and suppose there
is a metric d on X such that (X, d) is a complete met-
ric space. Let F : X × X → X be a mapping having
the mixed monotone property on X. Assume that there
exists a k ∈[ 0, 1) with

d(F(x, y), F(u, v)) 	 k
2
[ d(x,u) + d(y, v)] (1.2)

for all x, y,u, v ∈ X with x 	 u and v 	 y. Suppose either F
is continuous or X has the following properties:

1. If a non-decreasing sequence xn → x, then xn 	 x
for all n.

2. If a non-increasing sequence yn → y, then y 	 yn for
all n.

If there exist x0, y0 ∈ X such that x0 	 F(x0, y0) and
F(y0, x0) 	 y0, then there exist x, y ∈ X such that
x = F(x, y) and y = F(y, x), that is, F has a coupled
fixed point.

In this paper, we first obtain a coupled fixed point
result for F : X × X → X having the mixed
monotone property satisfying a contractive condition
which involves generalized altering distance functions
in five variables in complete ordered metric spaces.
An example is also been given to the validity of our
results. In particular, in this example, we will show
that the result of Bhaskar and Lakshmikantham [13]
cannot be applied. Finally, we establish a coupled
fixed point result involving a contraction of integral
type.

Main results
Before stating our main theorem, the following lemma is
needed:

Lemma 10. Let (X, d) be a metric space and let {yn} be
a sequence in X such that

lim
n→∞ d(yn+1, yn) = 0.
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If {yn} is not a Cauchy sequence, then there exist ε >

0 and two sequences {mk} and {nk} of positive inte-
gers such that the following four sequences tend to ε

when k → ∞:

d(ymk , ynk ), d(ymk , ynk+1), d(ymk−1, ynk ),
d(ymk−1, ynk+1).

(2.1)

Our main theorem is the following.

Theorem 11. Let (X,	) be a partially ordered set and
suppose that there exists a metric d on X such that (X, d) is
a complete metric space. Let F : X×X −→ X be amapping
having the mixed monotone property on X such that

�1(d(F(x, y), F(u, v))) ≤ ψ1(d(x,u), d(y, v), d(x, F(x, y)),

d(u, F(u, v)),
1
2
[ d(x, F(u, v)) + d(u, F(x, y))] )

− ψ2((d(x,u), d(y, v), d(x, F(x, y)), d(u, F(u, v)),
1
2
[ d(x, F(u, v)) + d(u, F(x, y))] ), (2.2)

for x, y,u, v ∈ X with x 
 u and y 	 v, where ψ1 and ψ2
are generalized altering distance functions and �1(x) =
ψ1(x, x, x, x, x). Assume either

1. F is continuous, or
2. X has the following properties:

(a) if a non-decreasing sequence xn → x, then
xn 	 x for all n,

(b) if a non-increasing sequence yn → y, then
y 	 yn for all n.

If there exist x0, y0 ∈ X such that x0 	 F(x0, y0) and
y0 
 F(y0, x0), then F has a coupled fixed point, that
is, there exists (x, y) ∈ X such that F(x, y) = x and
F(y, x) = y.

Proof. Let x0, y0 ∈ X be arbitrarily chosen and define
x1 := F(x0, y0) and y1 := F(y0, x0). Next, we con-
sider x2 := F(x1, y1) and y2 := F(y1, x1). Continuing in
this way, we construct two sequences {xn} and {yn} in X
such that

xn+1 = F(xn, yn) and yn+1 = F(yn, xn) ∀ n ≥ 0. (2.3)

Using the fact that F has a mixed monotone property, we
have as in [13]

xn 	 xn+1 and yn+1 	 yn ∀ n ≥ 0. (2.4)

Since xn 
 xn−1 and yn 	 yn−1, then from (2.2)

�1(d(xn+1, xn)) = �1(d(F(xn, yn), F(xn−1, yn−1)))

≤ψ1(d(xn, xn−1), d(yn, yn−1), d(xn, F(xn, yn)), d(xn−1,
F(xn−1, yn−1)),

1
2
[ d(xn, F(xn−1, yn−1)) + d(xn−1, F(xn, yn))] )

−ψ2(d(xn, xn−1), d(yn, yn−1), d(xn, F(xn, yn)),
d(xn−1, F(xn−1, yn−1)),

1
2
[ d(xn, F(xn−1, yn−1)) + d(xn−1, F(xn, yn))] )

=ψ1(d(xn, xn−1), d(yn, yn−1), d(xn, xn+1), d(xn−1, xn),
1
2
d(xn−1, xn+1))

−ψ2(d(xn, xn−1), d(yn, yn−1), d(xn, xn+1), d(xn−1, xn),
1
2
d(xn−1, xn+1))

≤ψ1(d(xn, xn−1), d(yn, yn−1), d(xn, xn+1), d(xn−1, xn),
1
2
d(xn−1, xn+1)).

(2.5)

Since ψ1 is monotone increasing with respect to the first
variable, we have for all n ≥ 1

d(xn+1, xn) ≤ d(xn, xn−1). (2.6)

Since xn 
 xn−1 and yn 	 yn−1, then from (2.2)

�1(d(yn, yn+1)) = �1(d(F(yn−1, xn−1), F(yn, xn)))
= �1(d(F(yn, xn), F(yn−1, xn−1)))

≤ψ1(d(yn, yn−1), d(xn, xn−1), d(yn, F(yn, xn)), d(yn−1,
F(yn−1, xn−1)),

1
2
[ d(yn, F(yn−1, xn−1)) + d(yn−1, F(yn, xn))] )

−ψ2(d(yn, yn−1), d(xn, xn−1), d(yn, F(yn, xn)), d(yn−1,
F(yn−1, xn−1)),

1
2
[ d(yn, F(yn−1, xn−1)) + d(yn−1, F(yn, xn))] )

=ψ1(d(yn, yn−1), d(xn, xn−1), d(yn, yn+1), d(yn−1, yn),
1
2
d(yn−1, yn+1))

−ψ2(d(yn, yn−1), d(xn, xn−1), d(yn, yn+1), d(yn−1, yn),
1
2
d(yn−1, yn+1))

≤ψ1(d(yn, yn−1), d(xn, xn−1), d(yn, yn+1), d(yn−1, yn),
1
2
d(yn−1, yn+1)).

(2.7)
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Since ψ1 is monotone increasing with respect to the first
variable, we have for all n ≥ 1

d(yn+1, yn) ≤ d(yn, yn−1). (2.8)

In view of (2.6) and (2.8), the sequences {d(xn+1, xn)} and
{d(yn+1, yn)} are nonincreasing, so there exist r ≥ 0 and
γ ≥ 0 such that

lim
n→∞ d(xn+1, xn) = r and lim

n→∞ d(yn+1, yn) = γ .

Again, since ψ1 is monotone increasing with respect
to the fifth variable, from (2.5), we have by triangular
inequality

d(xn+1, xn) ≤ 1
2
d(xn−1, xn+1) ≤ 1

2
d(xn−1, xn)

+1
2
d(xn, xn+1);

so in the limit, we have

lim
n→∞ d(xn−1, xn+1) = 2r.

Similarly, from (2.7)

lim
n→∞ d(yn−1, yn+1) = 2γ .

Passing on the limit n → ∞ in (2.5) and (2.7) respectively
and using the continuities of ψ1,ψ2, we get

�1(r) ≤ ψ1(r, γ , r, r, r) − ψ2(r, γ , r, r, r),

and

�1(γ ) ≤ ψ1(γ , r, γ , γ , γ ) − ψ2(γ , r, γ , γ , γ ).

Assume that γ �= r. Without loss of generality, suppose
that γ < r, so

�1(r) ≤ ψ1(r, γ , r, r, r) − ψ2(r, γ , r, r, r) ≤ �1(r)
− ψ2(r, γ , r, r, r),

which holds unless ψ2(r, γ , r, r, r) = 0, that is, r = γ

(which is equal to 0 using the same idea), a contradiction.
We deduce that

lim
n→∞ d(xn+1, xn) = lim

n→∞ d(yn+1, yn) = 0. (2.9)

Now we shall show that {xn} and {yn} are Cauchy
sequences in (X, d).
Suppose that {xn} and {yn} are not Cauchy sequences.

Then, Lemma 10 implies that there exist ε > 0 and two
sequences {mk} and {nk} of positive integers (with for all
positive integer k,m(k) > n(k)) such that the sequences

d(xmk , xnk ), d(xmk , xnk+1), d(xmk−1, xnk ),
d(xmk−1, xnk+1),

(2.10)

and
d(ymk , ynk ), d(ymk , ynk+1), d(ymk−1, ynk ),

d(ymk−1, ynk+1)
(2.11)

tend to ε (from above) when k → ∞. It follows that

lim sup
k→∞

d(xnk−1, xmk+1) ≤ ε

and
lim sup
k→∞

d(ynk−1, ymk+1) ≤ ε.
(2.12)

Since m(k) ≥ n(k) − 1, so from (2.4), xm(k) 
 xn(k)−1
and ym(k) 	 yn(k)−1, we have by (2.2)

�1(d(xm(k)+1, xn(k))) (2.13)
= �1(d(F(xm(k), ym(k)), F(xn(k)−1, yn(k)−1)))

≤ ψ1(d(xm(k), xn(k)−1), d(ym(k), yn(k)−1), d(xm(k),
F(xm(k), ym(k))), d(xn(k)−1, F(xn(k)−1, yn(k)−1)),

1
2
[ d(xm(k), F(xn(k)−1, yn(k)−1)) + d(xn(k)−1,

F(xm(k), ym(k)))] )
− ψ2(d(xm(k), xn(k)−1), d(ym(k), yn(k)−1), d(xm(k),

F(xm(k), ym(k))), d(xn(k)−1, F(xn(k)−1, yn(k)−1)),
1
2
[ d(xm(k), F(xn(k)−1, yn(k)−1)) + d(xn(k)−1,

F(xm(k), ym(k)))] ).

In addition, we have

�1(d(yn(k), ym(k)+1)) (2.14)
= �1(d(F(yn(k)−1, xn(k)−1), F(ym(k), xm(k))))

≤ ψ1(d(yn(k)−1, ym(k)), d(xn(k)−1, xm(k)), d(yn(k)−1,
F(yn(k)−1, xn(k)−1)), d(ym(k), F(ym(k), xm(k))),

1
2
[ d(yn(k)−1, F(ym(k), xm(k))) + d(ym(k),

F(yn(k)−1, xn(k)−1))] )
− ψ2(d(yn(k)−1, ym(k)), d(xn(k)−1, xm(k)), d(yn(k)−1,

F(yn(k)−1, xn(k)−1)), d(ym(k), F(ym(k), xm(k))),
1
2
[ d(yn(k)−1, F(ym(k), xm(k))) + d(ym(k),

F(yn(k)−1, xn(k)−1))] ).

Taking the lim sup as k → ∞, using (2.10 to 2.12) and the
continuity of ψ1 and ψ2 in (2.13), we get

�1(ε) ≤ ψ1(ε, ε, 0, 0, ε) − ψ2(ε, ε, 0, 0,
1
2
lim inf
k→∞

[ d(xn(k)−1, F(xm(k), xm(k))) + d(xm(k),
F(xn(k)−1, yn(k)−1))] )

≤ �(ε) − ψ2(ε, ε, 0, 0,
1
2
lim inf
k→∞

[ d(xn(k)−1,

F(xm(k), ym(k))) + d(xm(k),
F(xn(k)−1, yn(k)−1))] ),

which implies that ψ2(ε, ε, 0, 0, 12 lim infk→∞[ d(yn(k)−1,
F(ym(k), xm(k))) + d(ym(k), F(yn(k)−1, xn(k)−1))] ) = 0, is a
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contradiction since ε > 0.We deduce that {xn} is a Cauchy
sequence.
Similarly, taking the lim sup as k → +∞ and using the

continuity of ϕ and ψ in (2.14), we get

ψ2(ε, ε, 0, 0,
1
2
lim inf
k→∞

[ d(yn(k)−1, F(ym(k), xm(k)))

+d(ym(k), F(yn(k)−1, xn(k)−1))] ) = 0,

which implies that ε = 0, is a contradiction since ε > 0.
We deduce that {yn} is a Cauchy sequence. Since (X, d) is
a complete metric space, so there exist points x and y in X
such that

lim
n→∞ d(xn, x) = 0 and lim

n→∞ d(yn, y) = 0. (2.15)

Now, we prove that x = F(x, y), which becomes

d(F(x, y), x) ≤ d(F(x, y), xn+1) + d(xn+1, x)
≤ d(F(x, y), xn+1) + d(xn+1, x).

It follows by (2.15) that

d(F(x, y), x) ≤ lim sup
n→∞

d(F(x, y), xn+1).

Then, since �1 is nondecreasing and continuous, we get
that

�1(d(F(x, y), x)) ≤ lim sup
n→∞

�1(d(F(x, y), xn+1))

= �1(lim sup
n→∞

d(F(x, y), xn+1)).

(2.16)

Now, from (2.2)

�1(d(F(x, y), xn+1)) (2.17)
= �1(d(F(x, y), F(xn, yn)))
≤ ψ1(d(x, xn), d(y, yn), d(x, F(x, y)), d(xn, F(xn, yn)),
1
2
[ d(x, F(xn, yn)) + d(xn, F(x, y))] )

− ψ2(d(x, xn), d(y, yn), d(x, F(x, y)), d(xn, F(xn, yn)),
1
2
[ d(x, F(xn, yn)) + d(xn, F(x, y))] ).

Passing to the upper limit as n → ∞ in (2.17), we obtain
using the continuity of ψ1,ψ2 that is

lim sup
n→∞

�1(d(F(x, y), xn+1))

≤ ψ1(0, 0, d(x, F(x, y)), 0,
1
2
d(x, F(x, y)))

− ψ2(0, 0, d(x, F(x, y)), 0,
1
2
d(x, F(x, y))).

Therefore, from (2.16) we have

�1(d(F(x, y), x)) ≤ �1(d(F(x, y), x))

− ψ2(0, 0, d(x, F(x, y)), 0,
1
2
d(x, F(x, y))),

which implies that d(x, F(x, y)) = 0. Thus, we deduce that

F(x, y) = x. (2.18)

Similarly, we may show that F(y, x) = y. Thus (x, y) is a
coupled fixed point of F. Suppose that assumption 2 holds.
Since {xn} is a nondecreasing sequence that converges to
x in (X, d); by the assumption on X, we get that xn 	 x
for all n ∈ N. Similarly, {yn} is a nonincreasing sequence
convergent to y in (X, d); by the assumption on X, we get
that yn 
 y for all n ∈ N. By (2.2), we obtain

�1(d(F(x, y), xn+1)) (2.19)
= �1(d(F(x, y), F(xn, yn)))
≤ ψ1(d(x, xn), d(y, yn), d(x, F(x, y)), d(xn, F(xn, yn)),

1
2
[ d(x, F(xn, yn)) + d(xn, F(x, y))] )

− ψ2(d(x, xn), d(y, yn), d(x, F(x, y)), d(xn, F(xn, yn)),
1
2
[ d(x, F(xn, yn)) + d(xn, F(x, y))] )

= ψ1(d(x, xn), d(y, yn), d(x, F(x, y)), d(xn, xn+1),
1
2
[ d(x, xn+1) + d(xn, F(x, y))] )

− ψ2(d(x, xn), d(y, yn), d(x, F(x, y)), d(xn, xn+1),
1
2
[ d(x, xn+1) + d(xn, F(x, y))] ).

Passing to the limit as n → ∞ in (2.19) and using the
continuity of ψ1,ψ2, we obtain

�1(d(F(x, y), x)) ≤ ψ1(0, 0, d(x, F(x, y)), 0,
1
2
d(x, F(x, y)))

− ψ2(0, 0, d(x, F(x, y)), 0,
1
2
d(x, F(x, y)))

≤ �1(d(F(x, y), x))−ψ2(0, 0, d(x, F(x, y)),

0,
1
2
d(x, F(x, y))),

which implies that

d(x, F(x, y) = 0 and so F(x, y) = x. (2.20)

Similarly, we may show that F(y, x) = y. Thus, (x, y) is a
coupled fixed point of F.

A number of coupled fixed point results may be
obtained by assuming different forms for the functions
ψ1 and ψ2. In particular, fixed point results under vari-
ous contractive conditions may be derived from the above
theorems.
Here, for example, we derive the following corollaries

from our Theorem 11.

Corollary 2.1. Let (X,	) be a partially ordered set and
suppose that there exists a metric d on X such that (X, d)

is a complete metric space. Let F : X × X → X be a given
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mapping having the mixed monotone property. Assume
there exists k ∈ [ 0, 1) such that

d(F(x, y), F(u, v)) ≤ k
5
[ d(x,u) + d(y, v) + d(x, F(x, y))

+ d(u, F(u, v)) + 1
2
[ d(x, F(u, v))

+ d(u, F(x, y))] ]
(2.21)

for x, y,u, v ∈ X with x 
 u and y 	 v. Assume either F is
continuous, or X has the following properties:

(i) If a nondecreasing sequence xn → x, then xn 	 x for
all n.

(ii) If a nonincreasing sequence yn → y, then y 	 yn for
all n.

If there exist x0, y0 ∈ X such that x0 	 F(x0, y0) and y0 

F(y0, x0). Then, F has a coupled fixed point, that is, there
exists (x, y) ∈ X such that F(x, y) = x and F(y, x) = y.

Proof. Let ψ1(t1, t2, t3, t4, t5) = 1
5 [ t1 + t2 + t3 + t4 + t5]

and ψ2(t1, t2, t3, t4, t5) = 1−k
5 [ t1 + t2 + t3 + t4 + t5] , where

k ∈[ 0, 1). Then�1(t) = t. Now, the corollary follows from
Theorem 11.

Corollary 2.2. Let (X,	) be a partially ordered set and
suppose that there exists a metric d on X such that (X, d)

is a complete metric space. Let F : X × X → X be a given
mapping having the mixed monotone property such that
there exists k ∈[ 0, 1),
d(F(x, y),F(u, v)) ≤ kmax{d(x,u), d(y, v), d(x, F(x, y)),

d(u, F(u, v)),
1
2
[ d(x, F(u, v)) + d(u, F(x, y))] )}

for x, y,u, v ∈ X with x 
 u and y 	 v. Assume either F is
continuous, or X has the following properties:

(i) If a nondecreasing sequence xn → x, then xn 	 x for
all n.

(ii) If a nonincreasing sequence yn → y, then y 	 yn for
all n.

If there exist x0, y0 ∈ X such that x0 	 F(x0, y0) and y0 

F(y0, x0). Then, F has a coupled fixed point, that is, there
exists (x, y) ∈ X such that F(x, y) = x and F(y, x) = y.

Proof. It suffices to take

ψ1(t1, t2, t3, t4, t5) = max{t1, t2, t3, t4, t5} andψ2

(t1, t2, t3, t4, t4) = (1 − k)ψ1(t1, t2, t3, t4, t5),

where k ∈ (0, 1). Then �1(t) = t.

Now, a consequence of Corollary 2.2 by taking F(x, y) =
fx where f : X → X, is the following:

Corollary 2.3. Let (X,	) be a partially ordered set and
suppose that there exists a metric d on X such that (X, d) is
a complete metric space. Let f : X → X be a nondecreasing
given mapping such that

d(fx, fu) ≤ kmax{d(x, y), d(x, fx), d(y, fy),
1
2
[ d(x, fy) + d(y, fx)] )}

for x, y ∈ X with x 
 y and k ∈[ 0, 1). Assume either f
is continuous, or X has the following property if a nonde-
creasing sequence xn → x, then xn 	 x for all n.
If there exists x0 ∈ X such that x0 	 fx0, then f has a fixed
point.

Remark 12. Corollary 2.3 is the ordered version of
Ćirić’s Theorem [14].

Now, we illustrate our results by an example.

Example 2.4. Let X =[ 0,+∞) be endowed with its
Euclidian metric d(x, y) = |x − y| and its usual ordering
order ≤. Take F : X × X → X defined by

F(x, y) =
{ x−3y

5 if x ≥ 3y
0 if not.

X satisfies the properties (i) and (ii) in Corollary 2.1.
Take k = 5

6 . We claim that (2.21) holds for each x ≥
u and y ≤ v. We divide the proof into the following
four cases:

• If x ≥ 3y and u ≥ 3v, here we have F(x, y) = x−3y
5

and F(u, v) = u−3v
5 ,

d(F(x, y), F(u, v))=| x − 3y
5

− u − 3v
5

|

= x − u
5

+ 3(v − y)
5

= x − u
6

+ v − y
6

+ x − u
30

+ 12(v − y)
30

+ v − y
30

≤ x − u
6

+ v − y
6

+ x
30

+ 4u
30

+ v
30

sincev≤ u
3

≤ 1
6
[ (x − u)+(v − y)+(

4x + 3y
5

)+ 4u
5

+ 3v
5
]

= k
5

[
d(x,u)+d(y, v)+d(x, F(x, y))+d(u, F(u, v))

]

≤ k
5

[
d(x,u)+d(y, v)+d(x, F(x, y))

+d(u, F(u, v))+ 1
2
[ d(x, F(u, v))+d(u, F(x, y))]

]
.
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• If x ≥ 3y and u < 3v, here we have F(x, y) = x−3y
5

and F(u, v) = 0,

d(F(x, y), F(u, v)) = x − 3y
5

≤ x
5

= x − u
6

+ u
6

+ x
30

≤ x − u
6

+ u
6

+ 4x + 3y
30

= k
5

[
d(x,u) + d(u, F(u, v)) + d(x, F(x, y))

]

≤ k
5

[
d(x,u) + d(y, v) + d(x, F(x, y)) + d(u, F(u, v))

+ 1
2
[ d(x, F(u, v)) + d(u, F(x, y))]

]
.

• If x < 3y and u ≥ 3v, here we have F(u, v) = u−3v
5

and F(x, y) = 0,

d(F(x, y), F(u, v)) =u − 3v
5

≤u
5

= u
6

+ u
30

≤ x
6

+ 4u + 3v
30

= k
5

[
d(x, F(x, y)) + d(u, F(u, v))]

]

≤ k
5

[
d(x,u) + d(y, v) + d(x, F(x, y)) + d(u, F(u, v))

+ 1
2
[ d(x, F(u, v)) + d(u, F(x, y))]

]
.

• If x < 3y and u < 3v, here we have
F(u, v) = F(x, y) = 0, so (2.21) holds.

Moreover, it is easy that the other hypotheses of Corol-
lary 2.1 are verified, so F has a coupled fixed point which
is (0, 0).
On the other hand, Theorem 9 of Bhaskar and Lak-

shmikantham could not be applied in this case. Indeed,
assume there exists k ∈[ 0, 1) such that (1.2) holds for
x ≥ u and y ≤ v, that is,

d(F(x, y), F(u, v)) ≤ k
2
[ d(x,u) + d(y, v)] .

If we take x = u = 7, y = 1 and v = 2, that is, 3v ≤ u = x,
x ≥ 3y and y ≤ v, so we get that

3
5

≤ k
2
;

hence, k ≥ 6
5 > 1, it is a contradiction.

Now, as an application, it is easy to state a corol-
lary of Theorem 11 involving a contraction of integral
type.

Corollary 2.5. Let F satisfy the conditions of
Theorem 11, except that condition (2.2) is replaced by
the following: there exists a positive Lebesgue integrable
function φ on R+ such that

∫ ε

0 φ(t)dt > 0 for each ε > 0
and that Then, F has a coupled fixed point.

∫ �1(d(F(x,y),F(u,v)))

0
φ(t)dt

≤
∫ ψ1(d(x,u),d(y,v),d(x,F(x,y)),d(u,F(u,v)),12 [d(x,F(u,v))+d(u,F(x,y))])

0
φ(t)dt

−
∫ ψ2(d(x,u),d(y,v),d(x,F(x,y)),d(u,F(u,v)),12 [d(x,F(u,v))+d(u,F(x,y))])

0
φ(t)dt.

(2.22)
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