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Abstract

In this paper, sufficient conditions for the existence and uniqueness of solution are studied for a class of initial value
problem of fractional order, involving the Caputo-type derivative of a hypergeometric fractional operator applying
fixed point theory. Examples are also provided to illustrate the results.
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Introduction

Fractional calculus is nearly as old as the classical cal-
culus [1]. The fractional differential equations are used
for the better modeling of the physical processes in
various fields of science and engineering disciplines
such as fluid mechanics, viscoelasticity, mathematical
biology, bioengineering, control theory, signal process-
ing, circuit analysis, seismology, etc. The interest of
the study of fractional-order models among researchers
and scientists is due to the fact that fractional-order
models are more accurate than integer-order models,
i.e. fractional-order models can provide more degrees
of freedom than the integer-order system. For more
details on the theory of fractional calculus, refer to the
monographs [2-7].

In many applications, the results governed by the frac-
tional differential equations cannot be solved explicitly. In
such situations, we often resort to geometric or numer-
ical analysis of the fractional differential equations for
information about the solution instead of solving them.
However, before such analysis, it is necessary to know
whether solutions actually exist along with their domain.
Furthermore, it is well known that specifying an ini-
tial value is enough to uniquely determine a solution.
Therefore, the question of the existence of solutions for
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fractional differential equations is in its infancy as very
few results are available in the literature. In the last sev-
eral decades, many researchers have studied different
types of nonlinear fractional differential equations; we
mention [8-21] and survey paper [22] and the references
therein.

The classical fractional calculus is based on several
definitions for the operators of integration and differen-
tiations of arbitrary order [23]. Among the various def-
initions of fractional derivatives, the Riemann-Liouville
and Caputo’s fractional derivatives are widely used in
the literature. However, the Riemann-Liouville fractional
derivative leads to a conflict of interest between the well-
established mathematical theory, such as the initial value
problem of fractional order and non-zero problem related
to the derivative of a constant. The main advantage on
Caputo’s fractional derivative is that it allows considera-
tion of easily interpretable initial conditions [4].

While studying the scale-invariant solutions of a time
fractional diffusion-wave equation, Gorenflo et al. [24]
introduced the Caputo-type modification of the Erdéyi-
Kober fractional derivative which was further studied by
Luchko and Trujillo [25]. Recently, Rao et al. [26] intro-
duced and studied the Caputo-type modification of the
Saigo fractional operators [27-29].

Motivated by the work [14,30], we investigate the
existence of solution of nonlinear fractional initial value
problems of the form
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Dy uw =1 (buw, D" u®), te©,
(1)
u® ©0) = ¢, (2)

wherea € m—1,m),c € m—1,n), myn € N,a > o;
B,v,8 are real numbersand ¢, > 0; k =0,1,2,--- ,m— 1.

The equations like the simple harmonic fractional oscil-
lator [31,32] and the Bagley-Torvik equation [33] are the
particular case of the initial value problems (1) and (2).

This paper comprises of three sections. In the
‘Preliminaries’ section, we provide some basic definitions
and properties of the fractional operators. We also state
Banach’s contraction mapping principle, Schauder’s fixed
point theorem and the nonlinear alternative of Leray and
Schauder. The results related to our main findings have
been discussed in the ‘Related results’ section. In the
‘Main results’ section, we have established some sufficient
conditions for the existence and uniqueness for the initial
value problems (1) and (2).

Preliminaries

For the convenience of the reader, we present here some
notations and lemmas that will be used in the proof of our
main results.

Definition 2.1 ([27-29]). The left-sided Saigo fractional
integral operator of order « > O involving the Gauss
hypergeometric function for a real valued continuous
function f (¢) defined on R} = (0, 00) is

—Ol ﬂ

I' (@)

x oF1 (Ol +8,—via;1 — %)f(l’)dt,
3)

( .L.)Ot 1

Ig_;,_ﬂ’yf (t) =

where 8 and y are real numbers.

The semi group properties of the operator (3) will play
an important role in obtaining our findings.

I8 I3 0 = Zo T f o) @

Ia Y Ioz?y p—o— (Sf () :Igjrra,ﬂ+6,y7r775f (t) (5)

L 0= Lo

Erdélyi-Kober and Riemann-Liouville fractional integral
operators ngry and Z§, , respectively, are obtained by using
the following relation:
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TEOF (1) = E7F (®) and I8 F (6) =T8S 0.

Definition 2.2 ([27]). The left-sided generalized frac-
tional operator of order « is defined as

MDLf 0 = DI T, )

wheren — 1 <o <n, n €N, B and y are real numbers.

Lemma 2.3 ([34]). If R(y) > 0, N(o) > 0, R(y + 0 —
o — B) > 0, then
1
/ & N1 = )79 F) (@, By %) dx
0

_ rey)re)fiy+o—a-—p)
F'y4+o—-—a)L(y+o0—-p8)"

(8)

Using the above formula (8), the following lemma can be
easily established:

Lemma 2.4. Let @ > 0, B and y be real. Then, for n >
max{0,— (y — )} — 1L
Ia,sy(tﬂ) Fp+HC(p+y—B+1)
T(u—B+DT(@+p+y+1

and for i > max{0,— (¢ +B+y)} -1,

Lpby (tu):F(M'i‘l)F(M'i‘Ol +B8+y+ l)t,mg'
o+ FT(w+B+DT (u+y+1)

(10)

Rao et al. [26] defined the Caputo-type modification
of the Saigo fractional differential operator of (3) in the
following way:

Definition 2.5. The Caputo-type modification of the
Saigo fractional operator of order « is defined as

CDGLTf () = Tg T T ), (11)
wheren — 1 <o <n, n €N, B and y are real numbers.
When 8 = —a, the Caputo-type modification of the

Saigo fractional operator reduces to the classical Caputo’s
fractional operator of order o:

Dy “Tf @) = DESf (®)

1 t
— t— n—a—1p(n) d ,
7F(n—a)_/(;( 7) S (0dr
t>0,n=[a]+1. (12)
We shall make use of the following space functions
introduced by Dimovski [35].

Definition 2.6. The space of function C}’, . € R, m €
N contains all the function f (¢), ¢ > 0 such that f (x) =
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t°fi (t) with p > A and f € C"[0,00). Clearly, C" C
C., m € Nwith C) € C;.

Lemma 2.7 ([26]). Let B and y be reals, and let » >
max {0, 8, — (@ + B + y)} — 1. Then, the Caputo-type frac-
tional derivative CDgf V' is a left-inverse operator to
the fractional integral Igf’y for the functions on the
space C}

Cpgf»y zgf’yf O =f@, for f©)eCl,.

(13)

Lemma 2.8 ([26]). Letn — 1 <a <n, n€ N, Band y
are reals, and let A > max{0,— (¢« + B+ y)} — 1. Then,
Jorf (t) € C{,, then the following relation for composition
holds true

-1
TP CDEPY (8 = f () —mel} (14)

where

1 .
ni = lim —D'f (¢).
x—0 i!

Lemma 2.9. Let «, B, ¥, 0 and § be real such that m —
l<o<a<mmeN o> pBando > 8. Then, for

f@e CHm,
Otﬂ )/f (t) = CD(a m+k),(B+m—k),(y +m— k)f(m—k) ®),
(15)
and
DI (6 = DG 7P CDT ) (16)

wherek € {1, ---, m—1}.

Proof. Letf (t) e CY, . Sincea —m+k € (k—1,k) for
k € {1, ---, m — 1}, by using Definition 2.5, we get

DS (1) = Ty I T (o)
_ gk—(a—m+k),—(B+m—k)—k,(a—m+k)+(y +m—k)—n
=Zor

« (f(mfk) (t)) ®

_ CDg;erk,ﬁer7k,y+m7kf(m7k) ).

Again, from (4) to (6) and (11), we have

“DeLf (o) =
_IU—(XB Ba+y— ngj_a —5—m,o+y— mf(m) (l’)

I(m—0)+(<r—oz),(—5—m)+(6—ﬂ),ol+y—mf(m) (t)

ZIO’:I» (0—0),— (p8)y-ma+y— mpm (C,Dgf’yf(t)>

C —o,8—=8,y+0 C )8,
= CDy TP CDI Y ().
O
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To prove sufficient conditions for the uniqueness solu-
tion of the initial value problems (1) and (2), we will use
Banach contraction mapping principle:

Theorem 2.10 ([36]). Let (X,d) be a complete met-
ric space, and let F : X — X be a contraction with
Lipschitzian constant L. Then, F has a unique fixed point
u € X. Furthermore, for any x € X, we have

lirroloF”(x) =u (17)
with
d(F"(x),u) < _nLd(x, F(x)). (18)

We also state Schauder’s fixed point theorem and the
Leray-Schauder-type nonlinear alternative which will be
used to prove the existence result of (1) and (2).

Theorem 2.11 ([36]). Let E be a closed, convex subset
of normed linear space X. Then, every compact continuous
map T : E — E has at least one fixed point.

By U and dU, we denote the closure of the set U and the
boundary of U/, respectively.

Theorem 2.12 ([37]). Let X be a normed linear space,
¢ C X be a convex set and U be open in € with 0 € U. Let
T : U — € be continuous and compact mapping. Then,
either

i The mapping T has a fixed point in U, or
ii There existsv € dU and A € (0,1) withv = A Tv.

Related results
In this section, we mention some results, which are used
in the later part of our discussion.

Lemma 3.1 ([38,39]). Letc > b > Oandt < 1,t # 0.
Then,

o J a< —1,
2F1(a, bic;t) < {min{H,h} ac(-1,0), (19)
where
b b B
] :(1—)+(1—t) a
c c
(-%)
H=|1—-— ,
c
I = <b> (1—p b4 (1 - i’) 1-n"°.

Ifa <c—1,thenmin{H,J;} =H
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The hypergeometric term in Saigo operator’s integrand
is strictly positive [38,39]

oFi (a+ B,—y;05t) >0, te(01], (20)

where @ > 8.
Let X = C[0,1] be a Banach space of all continuous
function endowed with the sup norm

vl = sup [lv(@®Il. (21)

tel0,1]
Let B be the non-empty closed subspace of X defined as

={veX: |V, <M M=>0}. (22)

First, we prove that the solution of initial value prob-
lems (1) and (2) is equivalent to the solution of an integral
equation.

Lemma 3.2. Let o, 8, v, 0 and § be reals such that m —
l<o<a<mmeNy>0a>p80 >34 and
letfbe a continuous function defined in [ 0,1]. Then, u €

Cl . 10,1, A > max{§ — (@ +B+y), —(0+5+y),0} -1
is a solution of the initial value problem (1) and (2) if and

m—1 k

only if
o0~ -8
u(t)—Z + 5 /( — 57!
P (0)

s
X 2F1 <a +38,—y;0;1 — 7> v (s) ds,

(23)

where v € C) 4, [0, 1] is a solution of

ta+8 a—p 1

v(t) = /(t $)*7T
x2F1<ot+/3—c7—8,—0—)/;01—0;1—;)
x f (s, u(s),v(s))ds. (24)

Proof. Consider u € C, [0, 1]. By (16), the initial value
problem (1) and (2) can be expressed as

DG TP CDET ) = f (Lu @), DG ).
Replacing CDgf "V u(t) by the function v(¢), it reduces to

OGPV (@) = f (b (8),v (1)

Applying Lemma 2.8 and using the initial condition (2),
we obtain

ta+8 a—p
v(t) = /(t 97!
s
X oF1 (a—i—ﬂ—a—é,—a—y;a—a;l—E)

x f(s,u(s),v(s)) ds.

Secondly, applying Lemma 2.8 and the initial condition (2)
onv(t) = CDgf’yu (t), we obtain (23).
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Conversely, let v € Cy1,,[0,1] be the solution of (24).
Since f is continuous function, then by Lemmas 2.7 and
2.8, it reduces to

C,Dozfﬂ,ﬁffs,)/ﬂ’v ® :f (tLu(t),v()) forte(0,1].

Again, since u € C}, [0,1], using Lemmas 2.7 and 2.8
and the initial condition (2) on (23), we get

v(t) = CD‘”3 Yu).
Hence, we arrive with the desired result (1). O
Lemma 3.3. Let o, 8, v, o and § be reals such that y >
Oandn—1<o<n<m—1l<a<mmnelN, y >0,

a > B, 0 > 8, and let f be a continuous function on [0, 1].
Then, u € C¥__[0,1], A > max{s,— (¢ + B + n),0} — 1

At
is a solution ofty;ze initial value problem (1) and (2) if and
only if
n—1 k
_ 1
u(t) = Z Tt / -9 veds (25
wherev € C [0,1] is a solution of
m—n—1 —a—p
t t
v(t) = Z /,Cn+k+ / (t—s5)* 1
k=0
><2F1<oz—|—,3, —na— n,l—z)
x f (s, u(s), x (s)) ds (26)
and
tU+8 t I
x(@® = m/o -9
s
X oF; (—a —én—y—o;n—o;1— Z) v (s) ds.
(27)

Proof. Let u € Cj’_ [0,1] be the solution of initial
value problems (1) and (2), then applying Lemma 2.9 and
substituting v (¢) = D"u (¢), we have

CDETMPEMI, () = (bu (1), x (),

where y (£) is defined in (27).
Applying Lemma 2.8 and the initial condition (2), we
can write

m—n—1

4 £ i a—n—1
viy= Y okt T (t 5)

k=0
szl(oH-,B, Yy —ma —n 1—;)
X f (s, u(s), x(s)) ds.

Again for v (£) = D"u (¢), we obtain
n—1

u(t)—Zk, k+r(n)f (6 )" 1v (5) ds.
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Conversely, let v € CY_[0,1] be the solution of (26).

A+m
Then, we have
u™ (t) =v(t)
m—n—1 a—p
t 12
=2 @t e /(t e
k=0 ’

x 2F1 (a+ﬁ,—y —ma—ml— ;)
x f (s, u(s), x () ds

m—n— 1tk
By 3,
-y o SRS, A f(t u(®),°DY? Vu(t)) .
k=0
Since f is continuous and m —n —1 <o —n < m—n,
then we have

m—n—1

CDg_:”:ﬂ'f‘”,V"""u(n) (t) = Z ”H‘k CDO‘ n,B+n, V""Vltk

+f (t, u(?), CDg;f”’u(t)) .
In view of Lemma 2.9, we finally get
DAYy () =f (t, u(®,°D5 u (t)) .

Obviously, using (25), it can be easily shown that v~ =
u" € Cy4,m[0,1]. This proves that u(¢) is the solution of
the initial value problems (1) and (2). O

Main results

In this section, the main objective is to find the sufficient
conditions for the existence and uniqueness of solution of
the initial value problem (1) and (2). Here, two cases are
investigated: m —1 <0 <o <mandn—1<o0 <n <
m—1<a<m

Whenm—-1<o0 <a<m
Throughout this section, we suppose that 8, y and § are
real numbers such thaty > 0, > 8,0 >4,y > 6 —1
and 8 > § — 1.

To facilitate our discussion, let the following assump-
tions be satisfied:

(H1) g:[0,1] x R x R — Ris a continuous function
and there exist three non-negative functions
L1 (t), Ly (¢t) and L3 (£) in C [0, 1] such that

(i) g(0,0,0)=0andg(£,0,0) =Ly () #0
uniformly continuous on compact
subinterval (0, 1].

(i) |gtxy —g@&xp| <
Ly @) llx =%l +Ls ©) [y = 7]

(H2) g%y = ts_ﬂf & %,y).
(H3) 0 <p < 00,0 < g < 00, r < 1such that

M=%>O.
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F(B=5+HI'(y+o+1)
H4 G := T(a+B+y—35+1)

For the notational convenience, we denote the following:

1 /1 —0—1,p-8
pi=sup — | Q—x)*"1xf
tefo1) I' (@ — o) Jo

XoFi(@+B—0—8,—0 —y;a—o0;1—x)L (tx) dx,

k 1

Ccrt / a-o—1_p-5+k
q = sup E — = | a-» x
rel01] 1o I'tk+ DI (@ —0) Jo

XoFi (@ +B—0—6,—0 —y;a—o0;1—x)Ly(tx) dx,

m—1

and

7= sup /(1 x) @01 B 0
te[our(a—(f)

X oFi(a+B—0—6,—0—y;a—o0;1—x)
{t—ﬁx—‘st )T (y —8+1)
ra—-8ry+o+1

+ L3 (tx)} dx

Let v € B. Consider the mapping Y by

0+6 —a—p
Yv () P /(t D

><2F1<zx+/f5— a—&,—a—y;a—a;l—%)

X f(s,u(s),v(s))ds,

ts A f (1 x)a o—1
F(a—cr)
XoFi(la+p—0—-6,—0—y;a— o0;1—x)
x f (tx, u (tx), v (tx)) dx

1 1
— f (1_x)0t—o'—1xﬁ—5
F'a— 0)Jy
xXoFi(a+pB—0—-6—0—y;a—

x g (tx, u (tx) ,v (tx)) dx,

o;1—x)
(28)

where u(t) is from (23).

Let 2 > max{d — (¢ + B8 + y),—(c + § +
y),0} — 1. Then, in view of Lemma 3.2 and by
assumption (H1), the initial value problem (1) and (2)
are equivalent to that of the operator Y which has
a fixed point in B. We shall now state and prove
the uniqueness solution of the initial value problem
(1) and (2).

Theorem 4.1. Let the assumptions (H1), (H2) and (H3)
hold. Then, the initial value problem (1) and (2) has a
unique solution on [0, 1].

Proof. Here, we shall use the Banach contraction princi-
ple to prove that Y has a fixed point.
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Let v € B, then
m—1 k

7(75
|u|=2 F()/a—s)“
k=

X oF]1 (a +68,—y;0;1 — f) v(s) ds‘

"’Iltk 706 .
Z F(a)/“ *)

X oF] (a—i—B —y;0; 1—7) v (s)| ds.

IA

Since, ¢y > 0;k = 1,2,--- ,m — 1, and using the formula

(8), we have
m—1 k
Ty —86+1) s
2.
”””<Zkv Fa-orgtosn !

Consider the operator Y defined in (28), then

IVl = sup ——— / (1 — o 1h s
* teOl]F(a_U)
XoFi(a+B—0—6,0 —y;a—o0;1—x%)

X |g (&x, u (tx), v (¢x)) |dx

1 1
< sup 7/ (1 —x)@ 0 1yhp=8
tefo, I (@ — o) Jo

XoFi(a+B—0—6,0—y;«a
x {|g (tx, u (tx) , v (tx))
—g (t,0,0)| + |g (%,0,0)|} dx

1 1
< sup 7/ (1 — x)@ 0 1xf=0
tefo ' (@ —0) Jo

XoFi(a+B—0—6,0—y;«x
x {L1 (tx) + Ly (%) llull + L3 (&%) [IvII} dx
<ptqg+rM
<M.

—o0;1—%)

—o0;1—x%)

(29)

This proves that YB C B.
Next, we prove that T is a contraction map. Let v, v, €
B. Then, for ¢t €[ 0, 1], we have

7(75
'”1‘”2'—‘“ )/ (t—s)71

X oF] (a +68,—y;0;1 — 7> (v1 —vz)ds‘

—03 .
_F(o)_/( s)

szl(a—l—(S —y;0; 1—2) lvi — va ds.

Using (8), we have

] < F(y—-68+1)
= i T ro+ D)’

£ lvi — vl

(30)

ll21
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Hence,

Tv1 (&) — Yv2 ()]

1 1
/ (1 _x)olfo'*lxﬁfﬁ
Fe—o0)Jy
X oF (a+B—0—6,—0 —

x |g (&, uy (8x) ,v1 (£x))
—g (tx, uy (tx) , vy (%)) | dx

1 /1 1 a—o—1,B—6
Fa—o) fy 179 %

X oFila+pf—0—-68—0—y;a—o0;1—x)
X ALy (tx)llur —ua |+ L3 (tx) [[vi —v2 |} dx

1 1
< / (1 _x)afo'flxﬂfé
" T'(e—o0) Jo
X oFila+pf—0—-68—0—y;«a

tx)°T(y =8 +1)
ra—-8)ry +o+1)

y;a—o;1 —x)

—0;1—x)

X {L2 (tx)

+ L3 (tx) } lvi — vall dx

<rlvi —vall,.

Thus,

TV (@) = Yv2 (O]l < 7llvi = vall.

According to assumption (H3), r < 1 implies that the
operator Y is a contraction in B. As a consequence of
Theorem 2.10, the operator YT has a unique fixed point.
Thus, this fixed point is a solution of the initial value
problem (1) and (2). O

Next, we state and prove the existence of the solu-
tions for the initial value problem (1) and (2) by using
Schauder’s fixed point theorem 2.11.

Theorem 4.2. Let the assumptions (H1) to (H4) hold.
Then, the initial value problems (1) and (2) has at least one
solution in the space B.

Proof. Consider the operator T defined in (28) and E =
{veB:|vl| <k}, where

v, <p+qg+rM:=«.

In view of the proof of Theorem 4.1, the operator T maps
E into itself. To prove that the operator T is compact and
continuous, we shall divide the proof into several steps.

Step 1: Y is continuous.
Let {v,} be a sequence in E such thatv,, — vas
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n — 00. Then, from Lemma 3.2 and (30) for
t €[0, 1], we obtain

Fy—-686+1) -
oty — ull < lvin —vil.
F(1—8)F(y+a+1)
Then,
vy (&) — Yv(®l

1

<L / A —x)* 0P

" T'(e—o0) Jo
xoFi(a+pf—0—-6,—0—y;aa—0;1—x%)

X |\g tx, un (£x), vy (%))
—g (tx, u (tx) , v (tx)) | dx

1
S 1 f (1 _ x)a—d—lxﬁ—ﬁ
F'e—o0) Jy

xoFi(a+p—0—-6—0—y;a—0;1—x%)
)Ty —8+1)
ra-6)ry+o+1)

X {Lz (tx)

+ L3 (tx) } vy, — v dx

<rlv, — V”* .
This implies that
TV () = Tv Ol =7 llve — vl

Since v, — vasn — 00, hence

Tv, (@) —Yv ()|, = 0asn — oo.

The operator Y is bounded in E into itself. The
proof is similar to the proof of Theorem 4.1.
The operator Y is equicontinuous on E.

Letv € Eand t1, t; €[0,1] such that 1 < £.
Then,

Ty (£2) = Yv (D)l

1
< / (1 — x)2~ 0 1yf—3
T I'le—o0) Jo
xoFi(@+B—0—6,—0 —y;a—0;1—x)

x| |lg (o, u (t2%) , v (£2%))
— g(t2%,0,0) | +]|g(£2%,0,0)— g (11%,0,0) |
+ |lg(a1x,0,0)— g(t1x, u (01%), v(t1))|} dx

1 1
f a _x)afoflxﬂfﬁ
N'ae—o0)Jy
xoFi(a+B—0—68,—0 —y;aa—0;1—x%)

x {lIL1 (t2%) — L1 (1) || + (L2 (1)

+L3 (t2x)) llull

+ (L3 (t1x) + L3 (t2x)) |IvI|} dx.
But by (H1), L1 (¢) is uniformly continuous in
[0,1]. So, for the given ¢ > 0, we find p > 0 such
that || £, — #1]] < p, then
IL1 (t2) — L1 (t1)]| < & = £. Hence,

T (t2) —

Step 2:

Step 3:

IA

Tv ()l < p+2q+ 2rk,

which is independent of v.

Page 7 of 12

Thus, the operator Y is relatively compact. As a conse-
quence of the Arzela-Ascoli theorem, the operator Y is
compact and continuous. By Theorem 2.11, we conclude
that the operator Y has at least one solution of the initial
value problem (1) and (2). This completes the proof. [

Theorem 4.3. Let the assumptions (H1) to (H4) hold.
Then, the initial value problem (1) and (2) have a solution.

Proof Let U = {v € B: |vl, < R} withR = £¥2 > 0.
Consider the operator Y defined in (28). Then, by (H1)
and the Arzela-Ascoli theorem, it can be easily shown that
the operator Y : U — U is compact and continuous.
Next, we show that U is a priori bounds. If possible,

assume that there is a solution v € dU such that

y=ATv with » € (0,1). (31)

By the assumption that v is a solution for A € (0,1), one
can obtain

Ivil, = sup
te[0,1]

A fl (1= x)* =7 1yf=5
I'(e—0)Joy
X oFi(@a+B—0—68,0 —y;aa—o0;1—x)
x g (tx,u(tx),v(tx))| dx
1
<[Z}B"1F<a—a)fo Ol
xoFi(a+p—0—6,0 —
x g (tx,u(tx),v(tx))| dx
=ptagtrivi.

via —o;1 —x)|

Therefore v ¢ 0U. By Theorem 2.12, Y has a fixed point
in U, which is a solution of initial value problems (1) and
(2). This completes the proof. O

Suppose that according to the Theorem 4.3, v is the
fixed point. So by Lemma 3.2, for ¢ €[ 0, 1] one can obtain

—65 1
L — a
1"()/(

) vo () ds.

ml]<

uo (t) = Z
k=

X oF] (U—I—b‘ —y;o;1 —

(32)

Example 4.4. Consider the fractional differential

equation

(1)) + [CDEE> 5uco)| )

1207 (1+1u(®)|+CDE > 2wt
(33)

Dy u(t) =

+ 14¢°, t€[0,1],

with
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u(0) =2, #'(0) = 5. (34)
Set
tO‘B(M—{—V) 63
t,u,v) = 14>,
by = e At
Lett €[0,1] and u, v, 4, v €[ 0, 00), then
. 103 u+v u+v
tr ] - t’ ’ = - — -
|g( ) — & uv)| l14+u+v 14+u+v
£03 lu— it + v — 7|
< - -
T 1207 Q4+ u+vA+u+v)
0.3
<——{|lu—1iu -}
< 120\/E{IM ul + v —vl}
Thus,
lg (b w,v) — g (W) < Lo (&) llu — all + Ly &) llv — 1,
where
03 0.3
Ly (t) = d L3(t) = ——.
2= 15077 2 L= 55

Also, g(t,0,0) := L1 (t) = 14¢%3. Hence, the initial value
problem (33) and (34) satisfy (H1).

One can easily verify that p >~ 9.9561, ¢ >~ 0.0356 and
r >~ 0.0065 < 1.

Take M > 10.0571. Hence, by Theorem 4.1 and
Theorem 4.2 the initial value problem (33) and (34) has at
least one solution defined on [0, 1].

Whenn—-1<o<n<m-1<a<m
Throughout this section, we suppose that 8, y and § are
real numbers such thaty > 0,0 > 8,0 > 8,y +38 > —1
andn+ B8 > —1.

We take the following assumptions to be satisfied:

(H5) g(t,u,v) == t 7" Pf(t,u,v).

(H6) 0 < p* < 00,0 < g < oo, 1 < 1
such thatM:plfrZ > 0.
(H7) 8 ;= Dot DlGty D) )y o N,

I(a+p+y+n+1)

We denote

p* = sup |®(®)]+ sup f (1 —x)* Ly th
te[0,1] t€[0,1] T(a@—n) —Vl)

x oF) (@ + B, —y —ma — m; 1 — x) L1 (xt)dx,
n—1 k

1
q* — Z 0 |Ck|/ 1- x)otfnfl xn+k+ﬁ
0

teo1]F(06—n)

x oF) (@ + B, —y —msa — ;1 — x) Ly(xt)dx

and
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1 1
= sup 7/ 1- x)afnflxrhtﬁ
tefon) I' (@ —n) Jo

XoFi(a+ B, —y —ma—ml—x)

, ( (xt)" T(o +68+y + 1)(xt)"t
T(n+1) FT(n+6+1)T(y+1)

Lo(xt)+

L3 (xt)) dx

Let v € B. Define the mapping T by

m—n—1

taﬂ a—n—1
> Tt FaTm )/ (t —x)

k=0
X
><2F1<a+/3,—y—n;oz—n;l—7)

t
x f(xu (x) X (%)) dx

)/(1 x)an1n+ﬁ

X 2F1(a+,8,—y—n,a —m1l—x)
x g (tx, u (tx) , x (tx)) dx, (35)

Tv (¢) =

=0(0) +

where u(¢) and x (¢) are from (25) and (27), respectively,
and (1) := Y e, .

Theorem 4.5. Let the assumptions (H1), (H5) and (H6)
hold. Then, the initial value problem (1) and (2) has a
unique solution on [0, 1].

Proof. By Lemma 3.3, the initial value problem (1) and
(2) are transformed to the integral equation (26). Consider
the operator T defined in (35). Here, we shall make use
of the Banach contraction principle to prove that T has a
fixed point. First, we shall prove TB C B. Let v € B, then

nlk

1 .
|u<r>||<2k, o | =9 v lds

nlk

vl £
<Z*|"|+r(n+1)' (36)

Since 0 + 8 > —1, then we have

/ (1 S)Vl o—1

X 2 F1 (—o—S,n —y—osn—o0;1=5)||[v(s)| ds
Ll+s+y+Dvl an]
Fn+8+1)T(y +1)

Ix®I < _F(

(37)
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Hence, in view of (H1), (36) and (37), we have

TVl

< sup |®(@)|+ sup f (1 — x)? Ly th
te[0,1] te[0,1] T («—n) (Ol —n)

X oF1(a+B,—y —nmoa— n;l—x)”g(tx, u (tx),x (tx)) H dx
1 1
< sup @)+ sup ——— / (1 — x)? Ly th
te0,1] tefo1) T (@ —n) Jo
X oFi (@ + B, —y —ma —m1—x)

X {||g(tx, , Hg(tx, u (tx),x (tx)) —g (¢x,0,0) H } dx

1 1
< sup |®@)|+ sup 7/ (1 — x)@ " Lyth
te[0,1] tefo) T (@ —n) Jo

XoFi(a+B,—y —ma—ml—x)

k
x {Ll(xt)—l-z( ekl Lot

k=0

+< GO+
Tt 2%
=p +q +r vl
<M. (38)

T (n+8+) T (y+1)

Next, to prove that T is a contraction map, let vy, v, € B.
Then, for ¢t € [0, 1], we obtain

lvi — vall ¢
lur () — w2 (O < _ﬁ

FCo+8+y+1)|vi—val "
Fn+8+1)IC(y +1) )

x1(®) — x2OI <

and

1 ! a—n—1_n+p
ITn (@ — Tra @) sm/o (1— 0"y

x oF1 (a + B,
x g (tx, 1 (2x), x1 (%))
— g txuy (tx), x2 (tx) || dx

1
< 1 / (1 _ x)a—n—lxn-‘rﬂ
“I'(e —n) 0

xoFi(a+B,—y —ma—ml—ux)
X{La(tx) lu1 —uzll+L3(tx) lIx1— x2 I} dx

1
<¥/ (1 _x)a—n—lxn+ﬂ
- (Ol — I’l) 0

xoFi(a+ B, —y —ma—m1l—x)

(xt)"
(ot
n+é8
I'c+6+y+1)xt) La( t))

—y —mo —nl—x)

Frn+8§+1HT(y+1)
X [lvy —val dx

<r*lvi —valls,

n+4
C(o+8+y+1)xt) Lg(xt)> x|Ivll }dx
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where x1 and y3 are defined in (27). Thus,
ITvi(t) = Tvi@)ll, < 7" llvi = 2l

By assumption (H6), r* < 1; therefore, the operator T is a
contraction in B. Hence, by Theorem 2.10 the operator T
has a unique fixed point, which corresponds to the unique
solution of the initial value problem (1) and (2). O

Next, theorems are based on the existence of the solu-
tion for the initial value problem (1) and (2).

Theorem 4.6. Let us assume that the (H1), (HS), (H6)
and (H7) holds. Then, the initial value problem (1) and (2)
has at least one solution in the space B.

Proof. Consider the operator defined in (35) and F =
{veB:|v|, <K}, where

ITvl, < p* +4" +r"R =K.

In view of the proof of Theorem 4.5, it can be easily shown
that the operator T maps F into itself. To prove that the
operator T is compact and continuous, we shall divide the
proof in the following steps:

Step 1: T is continuous.

Let {v,} be a sequence in F such that v, — v as

n — oo. Clearly, for ¢t €[ 0, 1], by using

Lemma 2.3, we find

luen(e) — iy < L=
“I'n+1)
T +8+y + 1D vy —vlle"™
Fr+8+HIT(y +1) )

1xn (&) — x(OIl <

Then, by the assumption (H1), we have
Tv®ll <

an1n+/3
“ra )/(1 %

xoFi (@ + B, —y —ma —m1—x)
X |\g (€, un (£), xn (22))
— g (tx,u(tx), x (tx)) H dx

1
< 1 / (1 _ x)a—n—lxn-HS
“Ta—-nJo
x oF1 (@ + B,

X <ﬂL2(xt)
F(n+1)
[ +38+y+ D"
Fn+8+1DT(y +1)

X ||V, — v dx

v, (£) —

-y —ma—nl—x)

Ls(xt)>

< rllve — 4P

This implies that

ITvy @) — Tv (Ol <7 v — Vs
Thus, [|[v, — V|, — 0

= [|Tv,(t) — Tv(®)], — Oasn — oo.
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Step 2: The operator T is bounded in F into itself. The
proof is similar to the proof of Theorem 4.5.
Step 3: The operator T is equicontinuous on F.
Letv € Fand t1, t, €[0,1] such that #1 < ;. Then,

ITv (&2) — Tv ()l

1
< 1 / (1 _ x)ot—n—lxn-H‘}
" T@—nJo

xoF1 (@ +B,—y —ma—ml—x)

x {|lg (o, u (£22), x (82%)) — g (£2%,0,0) |

+ |lg (t2%,0,0) — g (£1,0,0) |

+ |g (t1%,0,0) — g (1%, u (t1%) , x (t1)) ||} dx

1
< #/‘ (1 _ x)()t*}’l*lxnﬁ’ﬁ
“T'(x—n) Jo

XoF1 (0+B,—y —moa—ml—x)
x {lIL1 (t2%) — L1 (ax) | + (L2 (01%)
+Ly (£2%)) llul]

+ (L3 (t1x) + L3 (822)) 1 x |I} dx.

By the assumption (H1), L1 (¢) is uniformly
continuous in[0,1]. So, for the given ¢ > 0, we
find p > O such that || & — £1|| < p, then

L1 (f2) — L1 (t1)|| < € = &. Hence,

ITv (22) — Tv (@)l < p + 24" +2r°K,

which is independent of v.

Thus, the operator T is relatively compact. Hence, by con-
sequence of the Arzela-Ascoli theorem, the operator T is
compact and continuous. Using Theorem 2.11, we con-
clude that the operator T has at least one solution for the
initial value problem (1) and (2). O

Theorem 4.7. Let the assumptions (H1), (H5), (H6) and
(H7) hold. Then, the initial value problem (1) and (2) has
a solution.

Proof. Consider the operator T defined in (35) and
H={veB:|vl, <P}

Then, by (H1) and the Arzela-Ascoli theorem, it can be
easily shown that the operator T : H{ — H is compact and
continuous.

Next, we show that H is a priori bound. If possible,
suppose that there is a solution v € 9H such that

v=ATv with A € (0,1). (39)
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Then for A € (0, 1), we obtain

A 1
Il < sup 21®(®)] + sup 7/
te(0,1] tefo) I (@ —n) Jo

X (1 _ x)a—n—lx}’l-‘rﬂ
xoFi (@+B,—y —ma—ml—x)
|g (&2, (8%, x (%)) || dx
A 1
< sup A|P(#)]+ sup 7/
te0,1] tefo) I' (@ —n) Jo
x (L —x)2 " lamth

xoFi (@ +B,—y —ma —n;1—x)

k
xt)"
+ (r((nil)LZ(xt)
I +8+y+ D))"
Fm+8+1)T(y+1)
=A(p"+q + 1 vIly)
<P.

n—1 k
t
x {Ll(xt) + Z (x‘) ek | Lo (xt)
k=0

Lz(xt)> vl } dx

Therefore v ¢ dH. Hence, by Theorem 2.12, T has a fixed
point in H, which is a solution of initial value problem (1)
and (2). O

Example 4.8. Consider the fractional differential

equation

D252y () —t* DO U () — u(t) =t°°, ¢ €[0,1],
(40)

and

w(0) = 2.5, ¥/ (0) =2, u”(0) =6, u” (0) = 7.05.
(41)

The above equation (40) can be written as

CD3S525,, (1) = (55 4 y(r) + (5 CDLIOS25y (1),
(42)

Here,3 <a <4andl1 <o < 2.
Set

gt u,v) = 2+ t7*2u(t) 4+ v(t).
Clearly, Ly () = t, Ly(t) = t~*® and L3(¢) = 1 satisfied
the condition (H1).

Also, for each u, i1, v,v € R, we have

lg & u,v) —g @t a,v)| < Ly @) llu— all + Lz @) llv — Il
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Again
20 ' o5 2
et =sup ————— | x°(1—x)"2F1(6,—4.5,15,x)dx
ton) TATA5) Jo
2°r'(5.5 1
+ sup ©5) 251 —x)7
tefo,1] L'(3.5)y(3.5)I'(1.5) Jo

X oF1(6,—4.5,1.5,x)dx
< 2.0989 x 10~° + 0.0058
= 0.0058 (approx.)

<l1.

Similarly, we can find p* < 13.0510 and g* < 0.0133.
Take M > 22523 x 10%. As a consequence of

Theorem 4.5 and Theorem 4.6, the initial value problem

(40) and (41) has at least one unique solution defined in

[0,1].

Conclusions

The existence and uniqueness of solution for the nonlin-
ear fractional differential equations with initial conditions
comprising the Caputo-type modification of Saigo’s frac-
tional derivatives have been discussed in (C[0, 1], R). For
our discussion, we have used the fixed point theorems and
nonlinear alternative of Leray and Schauder. The existence
and uniqueness theorem may be explored for other classes
of fractional differential equations involving the Caputo-
type modification of Saigo’s fractional derivative. From
the above discussion, it is expected that this may pro-
vide a new direction to the study of fractional differential
equation, which may give higher degrees of freedom than
the fractional differential equation available in literature.
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