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Conformal reduction of boundary problems
for harmonic functions in a plane domain with
strong singularities on the boundary
Sergey Grudsky1 and Nikolai Tarkhanov2*

Abstract

We consider the Dirichlet, Neumann and Zaremba problems for harmonic functions in a bounded plane domain with
nonsmooth boundary.

Purpose: We wish to construct explicit formulas for solutions of these problems when the boundary curve belongs
to one of the following three classes: sectorial curves, logarithmic spirals and spirals of power type.

Methods: To study the problem, we apply the familiar Vekua-Muskhelishvili method which consists in the use of
conformal mapping of the unit disk onto the domain to pull back the problem to a boundary problem for harmonic
functions in the disk. This in turn later reduces to a Toeplitz operator equation on the unit circle with symbol-bearing
discontinuities of the second kind.

Results: We develop a constructive invertibility theory for Toeplitz operators and thus derive solvability conditions as
well as explicit formulas for solutions.

Conclusions: Our results raise Fredholm theory for boundary value problems in domains with singularities which are
not necessarily rectifiable.
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Introduction
Elliptic partial differential equations are known to appear
in many applied areas of mathematical physics, to name a
few, mechanics of solid media, diffraction theory, hydro-
dynamics, gravity theory and quantum field theory.
In this paper, we focus on boundary value problems for

the Laplace equation in plane domains bounded by non-
smooth curves C. We are primarily interested in domains
in which boundaries have a finite number of singular
points of the oscillating type. By this, we mean that the
curve may be parametrised in a neighbourhood of a sin-
gular point z0 by z(r) = z0 + r exp(ıϕ(r)) for r ∈ (0, r0],
where r is the distance between z and z0 and where ϕ(r)
is a real-valued function which tends to infinity as r → 0
or is bounded while its derivative is unbounded at r = 0.
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Furthermore, ϕ(r) and ϕ′(r) are allowed to tend to infinity
rather quickly, and our study encompasses domains with
a non-rectifiable boundary as well.
There is a huge literature devoted to boundary value

problems for elliptic equations in domains with non-
smooth boundary (cf. [1-3] and the references given
there). In most papers, one treats piecewise smooth
curves with corner points or cusps (cf. [4-9]). One paper
[10] is of particular importance for it gives a characteri-
sation of Fredholm boundary value problems in domains
with weakly oscillating cuspidal edges on the boundary.
There have been essentially fewer works dealing with

more complicated curves C. They mostly focus on qualita-
tive properties, such as existence, uniqueness and stability
of solutions, with respect to small perturbations (see for
instance [11]). The present paper deals not only with
qualitative investigations of boundary value problems in
domains whose boundaries strongly oscillate at singular
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points, but also with constructive solutions of such prob-
lems. Hence, it sheds some new light on the operator
calculus which lies behind the problems.
Our results gain in interest if we realize that the gen-

eral theory of elliptic boundary value problems in domains
with singular points on the boundary has made no essen-
tial progress since Kondratiev wrote his seminal paper
[12]. The Fredholm property is proven to be equivalent to
the invertibility of certain operator-valued symbols, where
the problem is as immense as the original one. In order
to get rid of operator-valued symbols, one has to carefully
analyse the classical problems of potential theory.

Background on Toeplitz operators
Statement of the problem
We restrict ourselves to the Dirichlet and Neumann prob-
lems for the following Laplace equation:

�u := (∂/∂x)2u + (∂/∂y)2u = 0, (1)

in a simply connected domain D with boundary C in the
plane of variables (x, y) ∈ R

2. The boundary data are as
follows:

u = u0 (2)

and

(∂/∂ν)u = u1, (3)

on C, respectively, where (∂/∂ν)u means the derivative of
u in the unit outward the normal vector to C.
We also treat the so-called Zaremba problem (see [13])

where the solution to (1) is required to satisfy the mixed
conditions on C, which contain both (2) and (3). More pre-
cisely, let S be a non-empty arc on C, and then the mixed
condition in question reads as follows:

u = u0 on S ,
(∂/∂ν)u = u1 on C \ S , (4)

where u0 and u1 are given functions onS and C\S , respec-
tively. Although being model for us, problem (4) proves to
be of great importance in mathematical physics.
Instead of the normal derivative on C \ S , one can

consider an oblique derivative, which can be tangent to
the boundary of S . This gives rise to the Sturm-Liouville
problems with boundary conditions having discontinu-
ities of the first or second kind. Moreover, the boundary
curve C itself is allowed to bear singularities at the points
of ∂S . One question that is still unanswered is whether the
eigen- and root functions of such problems are complete
in the space L2 in the domain (cf. [14,15] and references
therein). The Sturm-Liouville problems in domains with
piecewise smooth boundary are also of great interest in
multidimensional case.

General description of the method
Our approach to the study of elliptic problems in domains
with non-smooth boundary goes back to at least as far
as the study of Khuskivadze and Paatashvili [16,17]. It
consists in reducing the problem in D to a singular inte-
gral equation on the unit circle by means of a conformal
mapping of the unit disk onto D. The coefficients of the
singular integral equation obtained in this way fail in gen-
eral to be continuous for they are intimately connected
with the derivative of boundary values of the conformal
mapping. This method was successfully used for solving
problems in domains with piecewise smooth boundary,
where the singular points are corner points or cusps (see
[4-7,18]). In this case, the coefficients of the mentioned
singular integral equation have discontinuities of the first
kind. Since the theory of such equations is well elabo-
rated, one has succeeded in constructing a sufficiently
complete theory of boundary value problems for a number
of elliptic equations in domains with piecewise smooth
boundary. Note that by now, the theory of singular integral
equations (or, in other terms, the theory of Toeplitz oper-
ators) with oscillating coefficients is well elaborated, too.
In particular, in a previous study [19-21], a constructive
theory of normal solvability (left and right invertibility) is
elaborated in the case of coefficients with rather strong
discontinuities (see also the monograph [22]).
The present paper deals with main boundary value

problems for the Laplace equation for three classes of
boundary curves C, namely sectorial curves, logarithmic
and power spirals. A sectorial curve is a plane curve C,
such that the angle at which the tangent of C intersects
the real axis is a bounded function in a punctured neigh-
bourhood of any vorticity point of C (see Definition 3 for
more details). As distinct from corner or cuspidal points,
the angle need not possess finite one-sided limits at a
singular point and may, in general, undergo discontinu-
ities of the second kind. For example, the arc z(t) = t +
ıt2 sin(1/t), where |t| < ε is a part of the sectorial curve
with singular point z(0) = 0. The main result for sec-
torial curves is Theorem 8 which reduces the Dirichlet
problem with data at a sectorial curve to a Toeplitz oper-
ator with sectorial symbol. The theory of such operators
is well understood. A logarithmic spiral is a curve of the
form z(r) = r exp(ıδ ln r), where r ∈ (0, r0) and δ are
fixed real number. Note that in [23], Fredholm theory was
developed for potential-type operators on slowly oscillat-
ing curves, a typical example being a logarithmic spiral.
In the present paper, we not only elaborate the theory
of Fredholm boundary value problems with data on log-
arithmic spirals, but also construct explicit formulas for
solution. Finally, by a power spiral, we mean a curve of
the form z(r) = r exp(ıcr−1/δ), where δ > 0. Notice
that for δ < 1, the curve is not rectifiable. However, our
method allows one not only to develop a Fredholm theory
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for the corresponding boundary value problems, but also
to obtain formulas for solutions in a closed form.

Reduction of the Dirichlet problem
The Dirichlet problem is the most frequently encountered
elliptic boundary value problem. This is not only because
the Dirichlet problem is of great interest in applications
in electrostatics, gravity theory, incompressible fluid the-
ory, etc., but also since it is a good model where one tests
approaches to other, more complicated, problems.
Let D be a simply connected, bounded domain in the

plane of real variables (x, y). The boundary ofD is a closed
Jordan curve which we denote by C. Consider the Dirichlet
problems (1) and (2) in D with data u0 on C. As usual,
we introduce a complex structure in R

2 by z = x + ıy
and pick a conformal mapping z = c(ζ ) of the unit disk
D = {ζ ∈ C : |ζ | < 1} onto the domain D, cf.
Riemann mapping theorem. Throught the paper, we make
a standing assumption on the mappings z = c(ζ ) under
consideration, namely

c′(0) > 0. (5)

Problems (1) and (2) can then be reformulated as
follows:

1
|c′(ζ )|2 �U = 0 for |ζ | < 1,

U = U0 for |ζ | = 1,
(6)

where U(ζ ) := u(c(ζ )) and U0(ζ ) := u0(c(ζ )).
For 1 ≤ p < ∞, we denote by Hp(D) the Hardy space

on the unit disk (for the properties of Hardy spaces and
conformal mappings, we refer the reader to the classical
book [24]). By conformal mapping z = c(ζ ), the space is
transported to the so-called Hardy-Smirnov space Ep(D)

of functions on D. A holomorphic function f on D is said
to belong to Ep(D) if

sup
r∈(0,1)

∫
Cr

|f (z)|p |dz| < ∞,

where Cr is the push-forward of the circle |ζ | = r by z =
c(ζ ). It is easy to see that f ∈ Ep(D) if and only if

p
√
c′(ζ ) f (c(ζ )) ∈ Hp(D). (7)

It is then a familiar property of the functions of Hardy
class Hp(D) that the function p√c′(ζ ) f (c(ζ )) has finite
non-tangential limit values almost everywhere on the unit
circle T = {ζ ∈ C : |ζ | = 1}.
If C is a rectifiable curve, then the function z = c(ζ ) is

continuous on the closed unit diskD, absolutely continu-
ous on the unit circle T and (c(eıt))′ = ıeıtc′(eıt) almost
everywhere on T. It follows from (7) that f (z) has finite
non-tangential limit values almost everywhere on C, and

lim
r→1−

∫
Cr

|f (z)|p |dz| =
∫
C

|f (z)|p |dz|. (8)

If C fails to be rectifiable and there is a function f ∈
Ep(D) with nonzero non-tangential limit values almost
everywhere on C, then relation (7) yields that the deriva-
tive c′(ζ ) also possesses finite non-tangential limit values
almost everywhere on T. Moreover, for f ∈ Ep(D), the
limit on the left-hand side of (8) exists; hence, we are able
to interpret integrals over the boundary curve C like that
on the right-hand side.
We will also study boundary value problems in Hardy-

Smirnov spaces with weights Ep(D,w).
Set

w(ζ ) =
n∏

k=1

(
1 − ζ

ζk

)−μk
(9)

for ζ ∈ D, where {ζ1, . . . , ζn} are pairwise different points
on the unit circle. Here,μ1, . . . ,μn are real numbers in the
interval (−1/q, 1/p), p and q being conjugate exponents,
i.e. 1/p + 1/q = 1. The weight functions of form (9) are
called power weights. The advantage of using such weight
functions lies certainly in the fact that they are holomor-
phic in D. A holomorphic function f in D is said to lie in
Ep(D,w) if

sup
r∈(0,1)

∫
Cr

|f (z)|p |w(c−1(z))|p |dz| < ∞.

It is well known that for each harmonic function u(x, y)
inD, there is an analytic function f (z) inD whose real part
is u. We therefore look for a solution u for problems (1)
and (2), which have the form u = �f with f ∈ Ep(D,w).
The boundary condition u = u0 is understood in the sense
of non-tangential limit values of u almost everywhere
on C.
Definition 1. Given any Dirichlet data u0 on C of class
Lp(C,w) in the sense that

∫
T

|u0(c(ζ ))|p |w(ζ )|p |c′(ζ )| |dζ | < ∞,

we shall say that problems (1) and (2) possess a solution in
�Ep(D,w) if there is a harmonic function u inD, such that
u = �f for some f ∈ Ep(D,w) and u = u0 on C.
If w ≡ 1 (i.e. all μk vanish), then we recover the Hardy-

Smirnov spaces Ep(D) and �Ep(D), respectively.
We proceed to reduce the Dirichlet problem. By the pre-

viously mentioned data, we can look for f of the following
form:

f (c(ζ )) = h+(ζ )

w(ζ ) p√c′(ζ )

for ζ ∈ D, where h+ is an analytic function of Hardy class
Hp(D).
By Theorem 4 in[24], the conformal mapping z = c(ζ )

is bijective and continuous on the closed unit disk. Hence,
the function U(ζ ) = u(c(ζ )) has finite non-tangential
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limit values almost everywhere on T, and in this way,
U(ζ ) = U0(ζ ) is understood on the unit circle T. This
enables us to rewrite problem (6) in the following form:

�
(

h+(ζ )

w(ζ ) p√c′(ζ )

)
= U0(ζ )

for ζ ∈ T, where h+ is an analytic function of Hardy class
Hp(D). The latter problem can in turn be reformulated as
follows:

1
2

(
h+(ζ )

w(ζ ) p√c′(ζ )
+ h−(ζ )

w(ζ ) p√c′(ζ )

)
= U0(ζ )

for ζ ∈ T, where

h−(ζ ) = h+(ζ )

= h+
(

ζ

|ζ |2
)

= h+
(
1
ζ̄

)
can be specified within analytic functions of Hardy class
Hp in the complement of the closed unit disk.
More precisely,

h+
(
1
ζ̄

)

belongs to the Hardy class Hp in the complement of D̄ up
to an additive complex constant if the functions of Hardy
class Hp in C \ D̄ are assumed to vanish at infinity.
Recall the definition of Hardy spaces Hp± on the unit

circle. Let h ∈ Lp(T), where 1 ≤ p ≤ ∞. We parametrise
the points of T by ζ = exp(ıt) with t ∈[ 0, 2π ]. Let

h(ζ ) ∼
∞∑

j=−∞
cj(h) ζ j

be the Fourier series of h, the coefficients being

cj(h) := 1
2πı

∫
T

h(ζ )
dζ

ζ j+1 .

Then, h ∈ Hp+, if cj(h) = 0 for all integers j < 0, and
h ∈ Hp−, if cj(h) = 0 for all integers j ≥ 0.
The functions ofHp+ are non-tangential limit values on

T of functions of Hardy classHp(D). The functions ofHp−
are non-tangential limit values on T of functions of Hardy
class Hp in C \ D̄, which vanish at the point at infinity.
Moreover, for 1 < p < ∞, the space Lp(T) splits into the
topological direct sum Hp+ ⊕ Hp−, as is well known.
Finally, we transform the Dirichlet problem to the

following:

a(ζ ) h+(ζ ) + h−(ζ ) = g(ζ ) (10)

for ζ ∈ T, where

a(ζ ) = w(ζ )

w(ζ )

p

√
c′(ζ )

c′(ζ )
= w(ζ )

w(ζ )
exp
(

−ı
2
p
arg c′(ζ )

)

and g(ζ ) = 2U0(ζ )w(ζ ) p√c′(ζ ).
It is well known from the theory of conformal mappings

that

arg c′(ζ ) = α(c(ζ )) − arg ζ − π

2
for ζ ∈ T, where α(c(ζ )) is the angle at which the tangent
of C at the point z = c(ζ ) intersects the real axis. Note that
g ∈ Lp(T).
Now, let

(STg)(ζ ) := 1
πı

∫
T

g(ζ ′)
ζ ′ − ζ

dζ ′, ζ ∈ T,

stand for the singular Cauchy integral. If 1 < p < ∞, then
ST is a bounded operator in Lp(T), and the operators

P±
T
:= 1

2
(I ± ST)

prove to be continuous projections in Lp(T) called analytic
projections. They are intimately related with the classical
decomposition of Lp(T) into the direct sum of traces on T

of Hardy classHp functions in D and C \D, respectively.
More precisely, we get

P±
T
Lp(T) = Hp±,

whence P±
T
Hp± = Hp± and P±

T
Hp∓ = 0.

On applying P+
T
to both sides of equality (10) and tak-

ing into account that (P+
T
h−)(ζ ) = h−(∞) and h−(∞) =

h+(0), we get

(T(a)h+)(ζ ) + h+(0) = g+(ζ ) (11)

for ζ ∈ T, where T(a) := P+
T
aP+

T
is a Toeplitz operator

with symbol a on Lp(T) and g+(ζ ) = (P+
T
g) (ζ ) for ζ ∈ T.

We thus arrived at the following result.
Theorem 1.

(1) If u = �f with f ∈ Ep(D,w) is a solution of the
Dirichlet problem in D, then
h+(ζ ) = w(ζ ) p√c′(ζ ) f (c(ζ )) is a solution of
Equation 11.

(2) If h+ ∈ Hp+ is a solution of (11) and the kernel of
T(a) is zero, then the function
u(c(ζ )) = � (h+(ζ )/w(ζ ) p√c′(ζ )) is a solution of the
Dirichlet problem in D.
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Proof. (1) has already been proven; it remains to show
(2). Let h+ ∈ Hp+ satisfy (11). This equality transforms to
the following:

a(ζ )h+(ζ ) + h−(ζ ) = g(ζ ) (12)

where h−(ζ ) = −(P−
T

(ah+))(ζ ) + (P−
T
g)(ζ ) + h+(0).

Since

a(ζ ) = 1
a(ζ )

,

a(ζ ) g(ζ ) = g(ζ ),

as is easy to check, we deduce from (12) that a(ζ ) h−(ζ )+
h+(ζ ) = g(ζ ).
Applying P+

T
to both sides of this equality yields the

following:

(
T(a) h−

)
(ζ ) + h+(0) = g+(ζ ).

Comparing this with (11), we get T(a)(h−−h+)(ζ ) = 0
whence h−(ζ ) = h+(ζ ) for all ζ ∈ T, for the kernel of
T(a) is zero.
Equality (12) can then be rewritten as follows:

1
2

(
h+(ζ )

w(ζ )
√
c′(ζ )

+ h+(ζ )

w(ζ )
√
c′(ζ )

)
= U0(ζ )

for ζ ∈ T. Since the function U0(ζ ) = u0(c(ζ )) is
real-valued, the last equality just amounts to saying that
�F(ζ ) = U0(ζ ) for ζ ∈ T, where

F(ζ ) = h+(ζ )

w(ζ )
√
c′(ζ )

.

The function �F(ζ ) is harmonic in D, and it has non-
tangential limit values almost everywhere on T, which
coincide with U0(ζ ). Moreover, f (z) = F(c−1(z)) is of
weighted Hardy-Smirnov class Ep(D,w), and u(x, y) =
� f (z) is a solution of the Dirichlet problem in D, as
desired.

Corollary 1. If the operator T(a) is invertible on the space
Hp+ and(

T(a)−11
)
(ζ ) = w(ζ )

p
√
c′(ζ )/c′(0), (13)

for ζ ∈ T, then the Dirichlet problem in D has a unique
solution of the following form:

u(z) = �
(

1
w(ζ ) p√c′(ζ )

(
(T(a)−1g+)(ζ ) − 1

2
(T(a)−1g+)(0)

× (T(a)−11)(ζ )

))

with z = c(ζ ), where g+ = P+
T

(
2u0(c(ζ ))w(ζ ) p√c′(ζ )

)
.

Proof. Applying the operator T(a)−1 to (11) yields the
following:

h+(ζ ) +
(
T(a)−1h+(0)

)
(ζ ) = (T(a)−1g+) (ζ )

for all ζ ∈ T. Since both sides of the equality extend to
holomorphic functions in the disk, we can set ζ = 0. By
(13), we get

(
T(a)−11

)
(0) = 1; hence,

2� h+(0) = (T(a)−1g+) (0).
We thus conclude that the general solution of (11) has

the following form:

h+(ζ ) = (T(a)−1g+) (ζ ) − 1
2
(
T(a)−1g+) (0)

× (T(a)−11)(ζ ) + ı c
(
T(a)−11

)
(ζ ),

where c is an arbitrary real constant. From (13), it follows
that

(
T(a)−11

)
(ζ )

w(ζ ) p√c′(ζ )
= 1√

c′(0)

is a real number. Therefore, u(z) = �
(

h+(ζ )

w(ζ ) p√c′(ζ )

)
is

actually independent of c, establishing the corollary.

Remark 1. Condition (13) is actually fulfilled in all cases
to be treated in this work (see Remark 3 below).
If Equation 11 has many solutions, then we must specify

among them those solutions which give rise to solutions of
the Dirichlet problem in weighted Hardy-Smirnov spaces.

Factorisation of symbols
The results of this section with detailed explanations,
proofs and corresponding references can be found else-
where [25-27].
Let L∞(T) be the space of all essentially bounded func-

tions on the unit circle T, H∞± the Hardy spaces on T

which consist of the restrictions to T of bounded analytic
functions in D and C \D, respectively, and C(T) the space
of all continuous functions on T.
A bounded linear operator A on a Hilbert space H is

said to be normally solvable if its range imA is closed. A
normally solvable operator is called Fredholm if its kernel
and cokernel are finite dimensional. In this case, the index
of A is introduced as follows:

indA := α(A) − β(A),

where α(A) = dimkerA and β(A) = dim cokerA.
The symbol a(ζ ) of a Toeplitz operator T(a) is said to

admit a p -factorisation, with 1 < p < ∞, if it can be
represented in the following form:

a(ζ ) = a+(ζ )ζ κa−(ζ ), (14)
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where κ is an integer number,

a+ ∈ Hq+, a− ∈ Hp− ⊕ {c},
1/a+ ∈ Hp+, 1/a− ∈ Hq− ⊕ {c}, (15)

p and q are conjugate exponents (i.e. 1/p + 1/q = 1), and
(1/a+)ST(1/a−) is a bounded operator on Lp(T).
The functions a+ and a− in (14) are determined

uniquely up to a constant factor. On putting the additional
condition a−(∞) = 1, one determines the factorisation
uniquely.
Remark 2. As proven in [27], the factorisation of the
symbol a with property (15) only is also unique up to a
multiplicative constant.
Theorem 2. An operator T(a) is Fredholm in the
space Hp+ if and only if the symbol a(ζ ) admits a p -
factorisation. If T(a) is Fredholm, then indT(a) = −κ .
Theorem 3. Let a ∈ L∞(T) and a(ζ ) �= 0 almost every-
where on T; then at least one of the numbers α(T(a)) and
β(T(a)) is equal to zero.
Combining Theorems 2 and 3, we get a criterion of

invertibility for Toeplitz operators.
Corollary 2. An operator T(a) is invertible on Hp+ if and
only if the symbol a(ζ ) admits a p -factorisation with κ =
0. In this case,

(T(a))−1 = (1/a+)P+
T

(1/a−).

Proof. If κ = 0, then α(T(a)) = β(T(a)); thus, both
α(T(a)) and β(T(a)) vanish. Hence, it follows that T(a) is
invertible on Hp+.
We now establish the formula for the inverse operator

(T(a))−1. Let f ∈ Hp+, and then(
(1/a+)P+

T
(1/a−)

)
T(a)f = ((1/a+)P+

T
(1/a−)

)
P+
T

(af )
= ((1/a+)P+

T
(1/a−)

)
af

= (1/a+)P+
T
a+f

= (1/a+)a+f
= f ,

and similarly

T(a)
(
(1/a+)P+

T
(1/a−)

)
f = P+

T
a
(
(1/a+)P+

T
(1/a−)

)
f

= P+
T
a−P+

T
(1/a−)f

= P+
T
a−(1/a−)f

= f .

Here, we have used the familiar equalities P+
T
h−P+

T
=

P+
T
h− and P+

T
h+P+

T
= h+P+

T
which are valid for all h− ∈

Hq− ⊕ {c} and h+ ∈ Hq+.

Given a non-vanishing function a ∈ C(T), we denote
by inda(T)(0) the winding number of the curve a(T) about
the origin or the index of the origin with respect to a(T).
Theorem 4. Suppose a ∈ C(T), then the operator T(a) is
Fredholm in the space Hp+ if and only if a(ζ ) �= 0 for all

ζ ∈ T. Under this condition, the index of T(a) is given by
the following:

indT(a) = −inda(T)(0).

We now introduce the concept of sectoriality which is of
crucial importance in this paper.
Definition 2. A function a ∈ L∞(T) is called p -sectorial
if ess inf |a(ζ )| > 0 and if there is a real number ϕ0 such
that

sup
ζ∈T

| arg (exp(ıϕ0)a(ζ )) | <
π

max{p, q} (16)

for all ζ ∈ T.
A function a ∈ L∞(T) is said to be locally p -sectorial

if ess inf |a(ζ )| > 0, and for any ζ0 ∈ T, there is an open
arc containing ζ0, such that (16) is satisfied for all ζ in the
arc with some ϕ0 ∈ R depending on ζ0. Each p -sectorial
curve is obviously locally p -sectorial.
Theorem 5.

(1) If a(ζ ) is a p -sectorial symbol, then the operator
T(a) is invertible in the space Hp+.

(2) If a(ζ ) is a locally p -sectorial symbol, then T(a) is a
Fredholm operator in Hp+.

Suppose h ∈ GH∞+, that is, h ∈ H∞+ and 1/h ∈
H∞+, then the operator T(h) is invertible inHp+. Indeed,
it is easy to check that (T(h))−1 = T(1/h). Analogously,
if h ∈ GH∞−, then the operator T(h) is invertible in Hp+
and (T(h))−1 = T(1/h).
Theorem 6.

(1) Let a(ζ ) = h(ζ )a0(ζ ), where h ∈ GH∞± and
a0 ∈ L∞(T), and then the operator T(a) is Fredholm
in the space Hp+ if and only if the operator T(a0) is
Fredholm, in which case indT(a) = indT(a0).

(2) Let a(ζ ) = c(ζ )a0(ζ ), where c ∈ C(T) and
a0 ∈ L∞(T), and then T(a) is Fredholm in Hp+ if
and only if c(ζ ) vanishes at no point of T and T(a0)
is Fredholm, in which case
indT(a) = indT(a0) − indc(T)(0).

Proof. This is a straightforward consequence of
Theorems 2 and 4 and Corollary 2.

In conclusion, we give a brief summary on Toeplitz
operators with symbols having discontinuities of the first
kind (the reader is referred to Chapter 5 of [26]). Let PC
stand for the space of all piecewise continuous functions
on T which have at most finitely many jumps. Suppose
a(ζ ) ∈ PC and ζ1, . . . , ζn are the points of discontinuity of
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a. Given any f ∈ C and ζ0 ∈ T, we introduce a function
af,ζ0 ∈ PC by the following:

af,ζ0(ζ ) := exp
(

ıf arg
(

− ζ

ζ0

))
,

for ζ ∈ T, where arg z ∈ (−π ,π ]. It is easily seen that af,ζ0
has atmost one point of discontinuity at ζ = ζ0, with jump

af,ζ0(eı0−ζ0) = exp (ıfπ) ,
af,ζ0(eı0+ζ0) = exp (−ıfπ) .

If a(eı0±ζk) �= 0 for all k = 1, . . . , n, then there are
complex numbers fk with the property that

a(eı0−ζk)

a(eı0+ζk)
= exp (2ıfkπ) ,

so

a(ζ ) = c(ζ )

n∏
k=1

afk ,ζk (ζ ), (17)

where c ∈ C(T).
Theorem 7. Let a(ζ ) ∈ PC, and then the operator T(a) is
Fredholm in Hp+ if and only if the following are met:

(1) a(eı0±ζ ) �= 0 for all ζ ∈ T,
(2) There are integer numbers κk such that

κk − 1
q < �fk < κk + 1

p .

Under conditions (1) and (2), the index of the operator
T(a) in Hp+ is actually given by the following:

indT(a) = −
(
indc(T)(0) +

n∑
k=1

κk

)
, (18)

which is due to (17).
Remark 3. If the operator T(a) with symbol of (10) is
invertible and a(ζ ) admit a p -factorisation a = a+a−
with

a+(ζ ) = 1
w(ζ ) p√

c′(ζ )
,

a−(ζ ) = w(ζ )
p
√
c′(ζ ),

then condition (13) holds true.
Indeed, by Corollary 2, we get the following:

(
T(a)−11

)
(ζ ) = w(ζ )

p
√
c′(ζ )

(
P+
T

1

w p
√
c′

)
(ζ )

= w(ζ )
p
√
c′(ζ )

1
p
√
c′(0)

= w(ζ )
p

√
c′(ζ )

c′(0)
,

as desired.

Conformal reduction of Dirichlet problems
Sectorial curves
In this section, we consider a simply connected domain
D � R

2 whose boundary C is smooth away from a finite
number of points. By this, it is meant that C is a Jordan
curve of the following form:

C =
n⋃

k=1
Ck ,

where Ck =[ zk−1, zk] is an arc with initial point zk−1 and
endpoint zk which are located after each other in the pos-
itive direction on C, and zn = z0. Moreover, (zk−1, zk) is
smooth for all k.
Definition 3. The curve C is called p -sectorial if, for each
k = 1, . . . , n, there is a neighbourhood (z−k , z

+
k ) of zk on C

and a real number ϕk, such that

sup
z∈(z−k ,z+k )\{zk}

|α(z) − ϕk| <

⎧⎨
⎩

π

2
, if p ≥ 2,

π

2
(p − 1), if 1 < p < 2,

(19)

where α(z) is the angle at which the tangent of C at the
point z intersects the real axis.
If zk is a conical point of C, then the angle at which the

tangent of C at z intersects the real axis has jump jk < π

when z passes through zk . It follows that (19) is fulfilled at
zk with a suitable ϕk , if p ≥ 2, and is fulfilled if, moreover,
jk < (p − 1)π , if 1 < p < 2. If zk is a cuspidal point of C,
then the angle has jump jk = π when z passes through zk .
Hence, condition (19) is violated, i.e. cuspidal points are
prohibited for sectorial curves.
Example 1. Let C be a curve parametrised in a neighbour-
hood of the singular point z(0) = 0 by z(t) = t+ ıy(t) with
|t| ≤ ε, where y(t) is a continuous function on the inter-
val [−ε, ε] whose derivative is continuous away from zero
in (−ε, ε) and bounded in this interval. The angle at which
the tangent of C at the point z(t) then intersects the real
axis is arg z′(t) = arg(1+ ıy′(t)). Thus, for p ≥ 2, the curve
z = z(t) is a part of a sectorial curve. If 1 < p < 2, then
z = z(t) is a part of a sectorial curve provided that

sup
t∈(−ε,ε)

|z′(t)| < tan
π

2
(p − 1).

In particular, for p ≥ 2, the curves z(t) = t +
ı|t|1+ sin |t| with  > 0 and z(t) = t + ıt sin ln |t|,
the parameter t varying over [−ε, ε], are parts of sectorial
curves.
Example 2. Consider the curve z(t) = t+ ıt sin t−1, where
|t| ≤ ε. Here, we readily get

arg z′(t) = arg
(
1 + ı

(
sin

1
t

− 1
t
cos

1
t

))
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whence

sup
t∈(−δ,δ)

|z′(t)| = π

2

for all δ > 0. Hence, the discontinuity at point z(0) = 0 is
not of the sectorial type (the curve oscillates rapidly at 0).

Dirichlet data on sectorial curves
Theorem 8. Suppose C is p -sectorial for 1 < p < ∞ and
w(ζ ) ≡ 1, then the Toeplitz operator T(a) corresponding
to the Dirichlet problem is invertible.

Proof. Recall that the symbol of the Toeplitz operator in
question is as follows:

a(ζ ) = exp
(

−ı
2
p
arg c′(ζ )

)
,

where arg c′(ζ ) = α(c(ζ )) − arg ζ − π
2 for ζ ∈ T.

The idea of the proof is to represent the symbol in
the form a(ζ ) = c(ζ )a0(ζ ), where a0 is p -sectorial and
c ∈ C(T) is such that indc(T)(0) = 0. To this end, we first
choose a continuous branch of the function arg c′(ζ ) on
T \ {ζ1, . . . , ζn}, where zk = c(ζk) for k = 1, . . . , n. Con-
sider an arc (ζ1, ζ+

1 ) on T and take the branch of arg c′(ζ )

such that (19) holds for k = 1. Hence, it follows that the
argument of a(ζ ) satisfies the following:

sup
ζ∈(ζ1,ζ+

1 )

∣∣∣∣−2
p
arg c′(ζ ) − ψ1

∣∣∣∣ <
{

π
p , if p ≥ 2,
π
q , if 1 < p < 2,

(20)

where
ψk = −2

p
ϕk + 2

p
arg ζk + π

p
for k = 1, . . . , n.
We then extend arg c′(ζ ) to a continuous function on the

arc (ζ1, ζ2). Note that the right-hand side of (20) can be
written as follows:

π

max{p, q}
for all 1 < p < ∞.
It is easy to see that there is an integer number j2 with

the property that

sup
ζ∈(ζ−

2 ,ζ2)

∣∣∣∣−2
p
arg c′(ζ ) − (ψ2 + 2π j2)

∣∣∣∣ < π

max{p, q} ,

(21)

where ψ2 is defined previously.
Choose the continuous branch of arg c′(ζ ) on (ζ2, ζ+

2 ),
such that (21) is still valid with (ζ−

2 , ζ2) replaced by
(ζ2, ζ+

2 ).
We now extend arg c′(ζ ) to a continuous function on

the arc (ζ2, ζ3), and so on. On proceeding in this fashion,

we get a continuous branch of arg c′(ζ ) on all of (ζn, ζ1)
satisfying the following:

sup
ζ∈(ζ−

1 ,ζ1)

∣∣∣∣−2
p
arg c′(ζ ) − (ψ1 + 2π j1)

∣∣∣∣ < π

max{p, q}
(22)

with some integer j1.
The task is now to show that j1 = 0, so the inequal-

ity (20) actually holds with (ζ1, ζ+
1 ) replaced by (ζ−

1 , ζ+
1 ) \

{ζ1}. For this purpose, we link any two points z−k and z+k
together by a smooth curveAk , such that

1. C̃ = ((z+1 , z−2 ) ∪ . . . ∪ (z+n , z−1 )
) ∪ (A1 ∪ . . . ∪ An) is

a smooth closed curve which bounds a simply
connected domain D̃.

2. The angle α̃(z) at which the tangent of C̃ at the point
z intersects the real axis satisfies (19).

Consider a conformal mapping z = c̃(ζ ) of D onto D̃.
By the very construction, α̃(z) = α(z) holds for all z ∈
(z+1 , z

−
2 ) ∪ . . . ∪ (z+n , z−1 ). Suppose (22) is valid with j1 �= 0,

then, in particular,∣∣∣∣−2
p
arg c̃′(ζ̃−

1 ) − (ψ1 + 2π j1)
∣∣∣∣ < π

max{p, q}

where z−1 = c̃(ζ̃−
1 ). From this, we deduce that the function

arg c̃′(ζ ) has a nonzero increment (equal to 2π j1) when the
point ζ makes one turn along the unit circle T starting
from the point ζ̃+

1 with z+1 = c̃(ζ̃+
1 ). Hence, it follows, by

the argument principle, that the function c̃′ has zeros inD,
which contradicts the conformality of c̃. Thus, j1 = 0 in
(22).
We have thus chosen a continuous branch of the func-

tion arg c′(ζ ) on the set T \ {ζ1, . . . , ζn}, satisfying

sup
ζ∈(ζ−

k ,ζ+
k )\{ζk}

∣∣∣∣−2
p
arg c′(ζ ) − (ψk + 2π jk)

∣∣∣∣ < π

max{p, q}
(23)

for all k = 1, . . . , n, where jk is integer and j1 = 0. This
allows one to construct the desired factorisation of a(ζ ).
We first define c(ζ ) away from the arcs

(
ζ−
k , ζ+

k
)
which

encompass singular points ζk of c′(ζ ). Namely, we set

c(ζ ) := exp
(

−ı
2
p
arg c′(ζ )

)

for ζ ∈ T \
n⋃

k=1
(ζ−

k , ζ+
k ).

To define c(ζ ) in any arc (ζ−
k , ζ+

k ) with k = 1, . . . , n,
we pick an εk > 0 small enough so that arg ζ−

k + εk <
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arg ζk < arg ζ+
k − εk . The symbol c(ζ ) is then defined by

the following:

c(ζ ) :=exp
(
−ı

2
p

(arg ζ−
k +εk−arg ζ ) arg c′(ζ−

k )+(arg ζ −arg ζ−
k )ϕ̃k

εk

)
,

if ζ ∈ (ζ−
k , eıεkζ−

k ],

c(ζ ) := exp
(

−ı
2
p

ϕ̃k

)
,

if ζ ∈ (eıεkζ−
k , e−ıεkζ+

k ), and

c(ζ ) :=exp
(
−ı

2
p

(arg ζ+
k −arg ζ )ϕ̃k+(arg ζ −arg ζ+

k +εk) arg c′(ζ+
k )

εk

)
,

if ζ ∈[ e−ıεkζ+
k , ζ+

k ). Here, ϕ̃k = − p
2 (ψk + 2π jk).

Obviously, c(ζ ) is a non-vanishing continuous function
of ζ ∈ T.
From (23) it follows that indc(T)(0) = 0. Put

a0(ζ ) := a(ζ )

c(ζ )

for ζ ∈ T, and then

arg a0(ζ ) = 0

for all ζ ∈ T \
n⋃

k=1
(ζ−

k , ζ+
k ). Moreover, if the numbers

ε1, . . . , εn are small enough, then

sup
ζ∈(ζ−

k ,ζ+
k )

| arg a0(ζ )| ≤ π

max{p, q}
for all k = 1, . . . , n. Hence, a0(ζ ) is a p -sectorial symbol,
which yields the desired factorisation.
By Theorem 5(1), we conclude that the Toeplitz oper-

ator T(a0) is invertible in the space Hp+. Moreover,
Theorem 6(2) shows that T(a) is Fredholm of index zero.
Finally, Theorem 3 implies that the operator T(a) is actu-
ally invertible, as desired.

Corollary 1 gives the solution of the Dirichlet problem
in D via the inverse operator T(a)−1. If a(ζ ) admits a p -
factorisation, then Corollary 2 yields an explicit formula
for T(a)−1. In case the boundary ofD is a sectorial curve,
it is possible to construct a p -factorisation of a(ζ )with the
help of conformal mapping z = c(ζ ).
Theorem 9. Let C be a p -sectorial curve; then the
Dirichlet problem has a unique solution u = �f with
f ∈ Ep(D), and this solution is of the following form:

u(z) = �
∫
T

1
2πı

ζ + c−1(z)
ζ − c−1(z)

u0(c(ζ ))
dζ

ζ

for z ∈ D.

Proof. According to Theorems 8 and 2, a p -factorisation
of the symbol of Toeplitz operator corresponding to the
Dirichlet problem in a domain with p -sectorial boundary,

if there is any, looks like a(ζ ) = a+(ζ )a−(ζ ). We begin
with the following representation:

a(ζ ) =
(
c′(ζ )

c′(ζ )

)1/p

for ζ ∈ T, cf. (10).
In the case of p -sectorial curves, the angle α(z) is

bounded, so the curve C is rectifiable. By a well-known
result (see for instance [24]), the derivative c′(ζ ) belongs
to H1+, whence p√c′(ζ ) ∈ Hp+ and p√c′(ζ ) ∈ Hp− ⊕ {c}.
Comparing this with a(ζ ) = a+(ζ )a−(ζ ) we get the
following:

p
√
c′(ζ )a+(ζ ) = p

√
c′(ζ )(1/a−(ζ )).

By (15), the left-hand side of this equality belongs to
H1+; the right-hand side, to H1− ⊕ {c}. Hence, it follows
that

p√c′(ζ )a+(ζ ) = c,
p√c′(ζ )(1/a−(ζ )) = c

where c is a complex constant. The factorisation a(ζ ) =
a+(ζ )a−(ζ ) with

a+(ζ ) = c
(
1/ p√c′(ζ )

)
,

a−(ζ )) = 1
c

p√c′(ζ )

satisfies (15), and (T(a))−1 = p√c′(ζ )P+
T

(1/ p√c′(ζ )), which
is due to Corollary 2. This establishes the theorem when
combined with the formula of Corollary 1. We fill in
details.
We first observe that, according to Remark 3, condi-

tion (13) is fulfilled. Hence, we may use the formula of
Corollary 1. Set

N(ζ ) := (T(a)−1g+) (ζ )−1
2
(
T(a)−1g+) (0)(T(a)−11)(ζ )

for ζ ∈ T. An easy computation shows that

N(ζ ) = p
√
c′(ζ )P+

T
(2u0(c(ζ ))) (ζ )

− p
√
c′(0)P+

T
(u0(c(ζ ))) (0) p

√
c′(ζ )(1/ p

√
c′(0))

= p
√
c′(ζ )P+

T
(2u0(c(ζ ))) (ζ )

− P+
T

(u0(c(ζ ))) (0) p
√
c′(ζ )

holds for almost all ζ ∈ T. On writing the projection P+
T

as the Cauchy integral, we get the following:

N(ζ ) =
p√c′(ζ )

2πı

∫
T

(
2u0(c(ζ ′))

ζ ′ − ζ
− u0(c(ζ ′))

ζ ′

)
dζ ′

= p
√
c′(ζ )

∫
T

1
2πı

ζ ′ + ζ

ζ ′ − ζ
u0(c(ζ ′)) dζ ′

ζ ′
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for all ζ ∈ D. Since

u(z) = � N(c−1(z))
p
√
c′(c−1(z))

,

the proof is complete.

Dirichlet data on logarithmic spirals
Let �a be a horizontal half-strip of the form �a = {z ∈
C : �z > 0, �z ∈ (0, a)}, with a being a positive number.
Consider the mapping

z = �ϕ(z) := exp
(−eıϕz

)
of the half-strip into the complex plane Cz, where ϕ ∈(−π

2 , 0
) ∪ (0, π

2
)
.

A direct computation shows that the mapping z = �ϕ(z)

is conformal if and only if a < 2π cosϕ.
For υ ∈[ 0, a], setRυ = {z ∈ C : �z ≥ 0, �z = υ}, then

the curve Sυ,ϕ := �ϕ(Rυ) is a spiral. Indeed, if r = |z| and
ϑ = arg z, then any point z ∈ Sυ,ϕ is characterised by the
following:

{
r = exp(−�z cosϕ + υ sinϕ),

ϑ = −�z sinϕ − υ cosϕ.
Hence, it follows that Sυ,ϕ can be described by the

following equation:

r =
(
exp

υ

sinϕ

)
exp (ϑ cotϕ) , (24)

where ϑ runs over (−υ cosϕ,+∞), if ϕ ∈ (−π/2, 0), and
over (−∞,−υ cosϕ), if ϕ ∈ (0,π/2).
Denote by Da,ϕ the image of �a by �ϕ . This is a domain

in the z -plane whose boundary is the following composite
curve:

Ca,ϕ := S0,ϕ ∪ Sa,ϕ ∪ ba,ϕ ,

where S0,ϕ and Sa,ϕ are given by (24) and the arc ba,ϕ by
z = exp (−eıϕıυ) with υ ∈[ 0, a]. Thus, z = �ϕ(z) is a
conformal mapping of �a ontoDa,ϕ which transforms the
boundary of �a onto Ca,ϕ .
It is easily seen that Ca,ϕ is a rectifiable curve. Indeed,

the arc length of Sυ,ϕ can be evaluated by the following
formula:

L =
∫ ϑ2

ϑ1

√
(r(ϑ))2 + (r′(ϑ))2 dϑ .

We assume for definiteness that ϕ ∈ (−π/2, 0), and then

L(Sϕ,a) =
∫ ∞

−a cosϕ

r(ϑ)

√
1 + (cotϕ)2 dϑ

= exp a
sinϕ

| sinϕ|
∫ ∞

−a cosϕ

exp (ϑ cotϕ) dϑ

= exp a
sinϕ

cosϕ
exp (−a cosϕ cotϕ)

is finite, as desired.
Our next objective is to find a conformal mapping of

D onto Da,ϕ . To this end, we compose three well-known
conformal mappings:

1. η = 1
ı

ζ+1
ζ−1 maps the unit disk D conformally onto

the upper half-plane H := {η ∈ C : �η > 0}.
2. θ = η +√η2 − 1maps H conformally onto the

complement in H of the closed unit disk H \ D, the
branch of

√
η2 − 1 being chosen according to the

condition �√η2 − 1 ≥ 0.
3. z = a

π
ln θ mapsH \D conformally onto the strip �a.

In this way, we arrive at the conformal mapping z =
ca,ϕ(ζ ) of D ontoDa,ϕ given by the following:

ca,ϕ(ζ ) = exp
(
−eıϕ

a
π

ln
(
η +
√

η2 − 1
))

. (25)

With η = η(ζ ), we get the following:

c′a,ϕ(ζ ) = −eıϕ
a
π

1 + η√
η2−1

η +√η2 − 1
η′(ζ ) ca,ϕ(ζ )

= eıϕ
a
π

2
ı

1√
η2 − 1

1
(ζ − 1)2

ca,ϕ(ζ )

for all ζ ∈ D. Note that η(ı) = −1, η(−ı) = 1 and

arg
1

(ζ − 1)2
= π − arg ζ

for all ζ ∈ T different from 1, where the equality is
understood modulo entire multiples of 2π .
Since η(ζ ) runs over (−∞,−1], if ζ ∈ (1, ı], over

[−1, 1], if ζ ∈[ ı,−ı], and over [ 1,∞], if ζ ∈[−ı, 1), it
follows that

arg c′a,ϕ(ζ ) =
⎧⎨
⎩
ϕ − π

2 − arg ζ − a cosϕ − a
π
sinϕ ln |η +√η2−1|, if ζ ∈ (1, ı),

ϕ − arg ζ − a
π
cosϕ arccos η, if ζ ∈[ ı,−ı] ,

ϕ + π
2 − arg ζ − a

π
sinϕ ln(η +√η2−1), if ζ ∈ (−ı, 1).

(26)
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The second equality is due to the fact that |η(ζ ) +√
(η(ζ ))2 − 1| = 1 holds for all ζ ∈[ ı,−ı].
Having disposed of this preliminary step, we introduce

the Toeplitz operator T(aa,ϕ) with the following symbol:

aa,ϕ(ζ ) = exp
(

−ı
2
p
arg c′a,ϕ(ζ )

)
,

cf. (10). This operator is responsible for the solvability of
the Dirichlet problem in the space �Ep(Da,ϕ).
Theorem 10. The operator T(aa,ϕ) in Hp+ with 1 < p <

∞ is Fredholm if and only if

p �= a
π

cosϕ.

If p > a
π
cosϕ, then T(aa,ϕ) is invertible in the space Hp+.

If p < a
π
cosϕ, then indT(aa,ϕ) = 1.

Proof. The following function is introduced:

ha,ϕ(ζ ) := exp
(

−ı
2
p

(
ϕ − a

π
sinϕ ln(η +

√
η2 − 1)

))
,

which obviously belongs to GH∞+. Indeed,

|ha,ϕ(ζ )| =
{
exp
(
− 2

p a sinϕ
)
, if ζ ∈ (1, ı),

1, if ζ ∈ (−ı, 1),

and ha,ϕ(ζ ) is continuous at each point of the arc
[ ı,−ı]⊂ T. Let us consider the following quotient:

a0(ζ ) = aa,ϕ(ζ )

ha,ϕ(ζ )

for ζ ∈ T.
An easy computation shows that

arg a0(ζ ) =

⎧⎪⎨
⎪⎩

2
p
(

π
2 + arg ζ + a cosϕ

)
, if ζ ∈ (1, ı),

2
p
(
arg ζ + a

π
cosϕ arccos η

)
, if ζ ∈[ ı,−ı] ,

2
p
(−π

2 + arg ζ
)
, if ζ ∈ (−ı, 1).

Hence, a0(ζ ) is a PC function with discontinuity points
{1, ı,−ı}. One verifies readily that

arg a0(eı0− 1) = 2
p
3
2
π ,

arg a0(eı0+ 1) = 2
p

(π

2
+ a cosϕ

)
,

arg a0(eı0− ı) = 2
p

(π + a cosϕ),

arg a0(eı0+ ı) = 2
p

(π

2
+ a cosϕ

)
,

arg a0(eı0+(−ı)) = 2
p
3
2
π ,

arg a0(eı0+(−ı)) = 2
p
π .

We thus conclude that a0(ζ ) possesses a representation
(17) with ζ1 = 1, ζ2 = ı, ζ3 = −ı and

f1 = 1
p

(
1 − a

π
cosϕ

)
, f2 = f3 = 1

2
1
p
.

Observe that

−1
q

< f2 = f3 <
1
p

for all p ∈ (1,∞). Therefore, we may apply Theorem 7
with κ2 = κ3 = 0. Since we always have

f1 <
1
p
,

the following cases may occur:

1. If

−1
q

< f1 <
1
p
,

then κ1 = 0. By Theorem 7, the operator T(a0) is
Fredholm, so the operator T(aa,ϕ) is Fredholm, too,
which is due to Theorem 6(1). The inequality
−1/q < f1 can be rewritten in the following form:

1 − p < 1 − a
π

cosϕ,

which just amounts to p > a
π
cosϕ.

2. If

−1 − 1
q

< f1 < −1 + 1
p

= −1
q
,

then κ1 = −1. Since a < 2π cosϕ, the left inequality
is automatically fulfilled, so the entire inequality
reduces to the following:

f1 < −1 + 1
p
,

i.e. p < a
π
cosϕ.

3. Obviously,

p = a
π

cosϕ

if and only if f1 = −1/q. In this case, there is no
entire number κ1 with the property that

κ1 − 1
q

< f1 < κ1 + 1
p
.

By Theorem 7, T(a0) is not Fredholm. From a0 = aa,ϕ
ha,ϕ ,

it follows that T(aa,ϕ) is not Fredholm.
We now suppose that T(a0) is Fredholm. For the symbol

a0, we get then a representation (17) with ζ1 = 1, ζ2 = ı

and ζ3 = −ı and fk specified previously. More precisely,

a0(ζ ) = c(ζ )

3∏
k=1

afk ,ζk (ζ ),
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where c ∈ C(T). Moreover, the winding number of the
cycle c(T) with respect to the origin vanishes. Hence,
Theorem 7 applies to the operator T(a0); in particular, the
index of T(a0) is evaluated by formula (18). To complete
the proof, it suffices to use Theorem 6.

Theorem 10 allows one to construct explicit formulas
for solutions of the Dirichlet problem in domains bounded
by logarithmic spirals.
Theorem 11. Let z = ca,ϕ(ζ ) be the conformal mapping
of D ontoDa,ϕ given by (25).

(1) If p > a
π
cosϕ, then the Dirichlet problems (1) and

(2) have a unique solution in �Ep(Da,ϕ) given by the
following:

u(z) = �
∫
T

1
2πı

ζ + c−1
a,ϕ(z)

ζ − c
−1
a,ϕ(z)

u0(ca,ϕ(ζ ))
dζ

ζ

for z ∈ Da,ϕ .
(2) If p < a

π
cosϕ, then the Dirichlet problems (1) and

(2) have infinitely many solutions in �Ep(Da,ϕ) given
by the following:

u(z) = �
(
c + c̄ c−1

a,ϕ(z)
1 − c

−1
a,ϕ(z)

− c−1
a,ϕ(z)

1 − c
−1
a,ϕ(z)

×
∫
T

1
πı

ζ − 1
ζ − c

−1
a,ϕ(z)

u0(ca,ϕ(ζ ))
dζ

ζ

)

for z ∈ Da,ϕ , where c is an arbitrary complex
constant.

Proof. Let p > a
π
cosϕ. By Theorem 10, the opera-

tor T(aa,ϕ) is invertible in the space Hp+. Furthermore,
Theorem 2 ensures the existence of p -factorisation of the
following form:

aa,ϕ(ζ ) = a+(ζ )a−(ζ ),

where a±(ζ ) bear properties (15). On the other hand, we
have the following:

aa,ϕ(ζ ) =
p
√
c′a,ϕ(ζ )

p
√
c′a,ϕ(ζ )

, (27)

cf. (10).
Rewrite c′a,ϕ(ζ ) in the following form:

c′a,ϕ(ζ ) = eıϕ
a
π

√
2√

ζ 2 + 1
1

1 − ζ
ca,ϕ(ζ )

for ζ ∈ T. Close to either of the points 1, ı and −ı, one
derives easily the following asymptotic relations:

|c′a,ϕ(ζ )| ∼ C |ζ − 1|−1+ a
π
cosϕ as ζ → eı0±,

|c′a,ϕ(ζ )| ∼ C |ζ − ı|− 1
2 as ζ → eı0±ı,

|c′a,ϕ(ζ )| ∼ C |ζ + ı|− 1
2 as ζ → eı0±(−ı).

(28)

On taking into account the estimates a < 2π cosϕ and
p > (a/π) cosϕ, one sees that the factorisation of aa,ϕ
given by (27) satisfies (15). By Remark 2, equality (27) is
actually a p -factorisation of aa,ϕ with κ = 0.
Analysis similar to that in the proof of Theorem 9

completes now the proof of part (1).
Suppose p < a

π
cosϕ. By Theorem 10, the p -

factorisation of the symbol aa,ϕ is of the following form:

aa,ϕ(ζ ) = a+(ζ ) ζ−1 a−(ζ ),

where a±(ζ ) satisfy (15). Therefore, (27) fails to be a p -
factorisation of this symbol. We correct it in the following
manner. Set

ã+(ζ ) = 1 − ζ

p
√
c′a,ϕ(ζ )

,

ã−(ζ ) =
p
√
c′a,ϕ(ζ )

1 − 1
ζ

,

then

aa,ϕ(ζ ) = −ã+(ζ ) ζ−1 ã−(ζ )

is a p -factorisation of aa,ϕ . To show this, it suffices to
establish (15) in a neighbourhood of the point ζ = 1.
From (28), it follows that

| (ã+(ζ )
)±1 | ∼ |ζ − 1|±ε as ζ → 1,

| (ã−(ζ )
)±1 | ∼ |ζ − 1|∓ε as ζ → 1,

where ε = 1
p
(
1 − a

π
cosϕ

) + 1. Since a < 2π cosϕ, we
get the following:

qε >
q
p

(1 − 2) + q = q
(
1 − 1

p

)
= 1,

whence ã+ ∈ Hq+. On the other hand, from p < a
π
cosϕ

we deduce that

−pε = −
(
1 − a

π
cosϕ

)
− p > −(1− p)− p = −1,

whence (ã+)−1 ∈ Hp+. Similarly, we obtain the following:

ã− ∈ Hp− ⊕ {c},
(ã−)−1 ∈ Hq− ⊕ {c}.

Consider Equation 11:

T(aa,ϕ)(h+)(ζ ) + h+(0) = g+(ζ ),

for ζ ∈ T, cf. (11). Find all solutions of this equation
and choose among them those solutions which give rise
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to solutions of our Dirichlet problem. In the case under
study, the operator T(aa,ϕ) has a right inverse of the
following form:

(T(aa,ϕ))−1
r = −ζ

1
ã+ P+

T

1
ã− ;

see Theorem 2.1 in [22] and elsewhere. Moreover, the
general solution of (11) proves to be as follows:

h+(ζ ) = − (T(aa,ϕ))−1
r
(
h+(0) − g+) (ζ ) + c

1
ã+(ζ )

= h+(0)
ζ

ã+(ζ )
P+
T

(
1
ã−

)
(ζ )

− ζ

ã+(ζ )
P+
T

(
g+

ã−

)
(ζ ) + c

ã+(ζ )

= h+(0)
ζ

ã+(ζ )

1
p
√
c′a,ϕ(0)

− ζ

ã+(ζ )
P+
T

(
g+

ã−

)
(ζ ) + c

ã+(ζ )
,

(29)

where c is an arbitrary complex constant. Put ζ = 0
in (29). Since the right inverse (T(aa,ϕ))−1

r maps Hp+ to
functions which vanish at the origin, we immediately get
the following:

h+(0) = c p
√
c′a,ϕ(0).

Thus, (29) yields the following:

h+(ζ ) = c̄ ζ + c
ã+(ζ )

− ζ

ã+(ζ )
P+
T

(
g+

ã−

)
(ζ )

=
(
c + c̄ ζ

1 − ζ
− ζ

1 − ζ
P+
T

(
g+

ã−

)
(ζ )

)
p
√
c′a,ϕ(ζ ).

Since

P+
T

(
g+

ã−

)
(ζ ) = P+

T

( g
ã−
)

(ζ ) = P+
T

(
ζ − 1

ζ
2U0

)
(ζ )

is the limit value for almost all ζ ∈ T of the Cauchy
integral∫

T

1
2πı

1
ζ ′ − ζ

ζ ′ − 1
ζ ′ 2u0(c(ζ ′)) dζ ′,

it follows that

u(c(ζ )) = � h+(ζ )

p
√
c′a,ϕ(ζ )

= �
(
c + c̄ ζ

1 − ζ
− ζ

1 − ζ

∫
T

1
πı

ζ ′ − 1
ζ ′ − ζ

u0(c(ζ ′)) dζ ′

ζ ′

)
(30)

for all ζ ∈ D.

Now, let ζ ∈ T. A trivial verification shows that

� c + c̄ ζ

1 − ζ
= 0

for any complex constant c, provided that ζ �= 1. More-
over, since the function U0 is real-valued, we obtain the
following:

�
(

ζ

ζ − 1
P+
T

(
ζ − 1

ζ
2U0

)
(ζ )

)
= U0(ζ ).

Hence, it follows that (30) is a general solution of
Dirichlet problems (1) and (2), as desired.

The inverse mapping of ca,ϕ : D → Da,ϕ is given
explicitly by the following:

c−1
a,ϕ(z) = cosh(c ln z) − ı

cosh(c ln z) + ı
,

where c = ( a
π
eıϕ
)−1 .

The condition a < 2π cosϕ implies a
π
cosϕ < 2 cos2 ϕ

whence p > a
π
cosϕ for all p ≥ 2 cos2 ϕ. In particular, the

condition p > a
π
cosϕ is satisfied if p ≥ 2 or if |ϕ| ≥ π

4 .
Remark 4. If p = (a/π) cosϕ, then the operator T(aa,ϕ) is
not Fredholm. One can show that it has zero null space and
dense range in this case. What is still lacking is an explicit
description of the range.

Dirichlet data on spirals of power type
In this section, we consider the Dirichlet problem in
Hardy-Smirnov spaces with weights Ep(D,w).
Let a > 0 and γ > 0. Consider the domain Da,γ in

the plane of complex variable θ that is bounded by the
following curves:

S0,γ = {θ ∈ C : �θ ≥ 1, �θ = 0},
Sa,γ = {θ ∈ C : θ = (�θ + ıa)γ , �θ ≥ 1},
ba,γ = {θ ∈ C : θ = (1 + ı�θ)γ , �θ ∈ (0, a)}.

The boundary of Da,γ is thus the composite curve Ca,γ =
S0,γ ∪ Sa,γ ∪ ba,γ , with each arc being smooth.
Given any δ > 0, we define the following:

z = hδ(θ) := exp(ıθ)

θδ
,

for θ ∈ Da,γ . This function maps Da,γ onto a domain
Da,γ ,δ .
Consider the curve hδ(S0,γ ) in the z -plane. Introduce

the polar coordinates r = |z| and ϑ = arg z, and then the
parametric representation of the curve just amounts to the
following:{

r = (�θ)−δ ,
ϑ = �θ ,

so the equation of hδ(S0,γ ) reduces to r = ϑ−δ with ϑ ≥ 1.
In this way, we obtain what will be referred to as the power
spiral.
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Note that the curve hδ(S0,γ ) is rectifiable if and only if
δ > 1. Indeed, the integral

L(hδ(S0,γ )) =
∫ ∞

1

√
(r(ϑ))2 + (r′(ϑ))2 dϑ

=
∫ ∞

1
ϑ−δ

√
1 + δ2

ϑ2 dϑ

is finite if and only if δ > 1.
Theorem 12. Assume γ ∈ (0, 1/2] and δ > 0. If a > 0
is small enough, then hδ : Da,γ → Da,γ ,δ is a conformal
mapping.

Proof. It is sufficient to show that the curve hδ(Ca,γ ))

has no self-intersections. The arcs hδ(S0,γ ), hδ(Sa,γ ) and
hδ(ba,γ ) have no self-intersections, which is easy to check.
Our next goal is to show that the arcs hδ(S0,γ ) and
hδ(Sa,γ ) do not meet each other.
Suppose

z1 ∈ hδ(S0,γ ),
z2 ∈ hδ(Sa,γ ),

then z1 = hδ(z1) and z2 = hδ(z
γ
2 ) for some z1 ∈[ 1,∞)

und z2 ∈[ 1,∞) + ıa. If z1 = z2, then a trivial verification
shows that

exp(ız1)
zδ1

= exp
(−|z2|γ sin(γ arg z2)

)
exp(ı|z2|γ cos(γ arg z2))

|z2|γ δ exp(ıγ δ arg z2)
,

where |z2| = √(�z2)2 + a2 and arg z2 = arctan a
�z2

. The
last equality is equivalent to the couple of real equalities:

1
zδ1

= exp
(−|z2|γ sin(γ arg z2)

)
|z2|γ δ

,

z1 = |z2|γ cos(γ arg z2) − γ δ arg z2 + 2π j,

with j being an integer number. In this way, we arrive at an
equation relative to the real part of z2, namely

|z2|γ cos(γ arg z2) − γ δ arg z2 + 2π j

= |z2|γ exp
(
1
δ

|z2|γ sin(γ arg z2)
)
.

(31)

If a → 0, then

|z2|γ = (�z2)
γ

(
1 + O

(
a2

(�z2)2

))
,

arg z2 = a
�z2

+ O
(

a3

(�z2)3

)
,

sin(γ arg z2) = γ
a

�z2
+ O
(

a3

(�z2)3

)
,

cos(γ arg z2) = 1 + O
(

a2

(�z2)2

)
.

On substituting these asymptotic formulas into (31), we
get the following:

(�z2)
γ

(
1 + O

(
a2

(�z2)2

))
− γ δ

a
�z2

+ O
(

a3

(�z2)3

)
+ 2π j

= (�z2)
γ

(
1 + O

(
a2

(�z2)2

))
exp
(
1
δ

(�z2)
γ

(
1 + O

(
a2

(�z2)2

))

×
(
γ

a
�z2

+ O
(

a3

(�z2)3

)))
or

(�z2)
γ

(
1 + O

(
a2

(�z2)2

))
− γ δ

a
�z2

+ O
(

a3

(�z2)3

)
+ 2π j

= (�z2)
γ

(
1 + O

(
a2

(�z2)2

))

×
(
1 + γ

δ

a
(�z2)1−γ

+ O
(

a2

(�z2)2−2γ

))
.

This equation is in turn equivalent to the following:

− γ δ
a

�z2
+ O
(

a2

(�z2)2−γ

)
+ 2π j

=γ

δ

a
(�z2)1−2γ + O

(
a2

(�z2)2−3γ

)
,

i.e.
γ

δ

a
(�z2)1−2γ + δγ

a
�z2

= 2π j + O
(

a2

(�z2)2−3γ

)
.

If a is small enough, then

0 <
γ

δ
a
(

(�z2)2γ + δ2

�z2
+ O
(

a2

(�z2)2−3γ

)
< 2π

for any �z2 ∈[ 1,∞). Hence, it follows that (31) has no
solutions for any j, so the equation z1 = z2 is not possible,
as desired.

We now construct a conformal mapping of the unit disk
onto Da,γ ,δ . To this end, we compose four well-known
conformal mappings:

1. η = 1
ı

ζ+1
ζ−1 maps the unit disk D conformally onto

the upper half-plane H := {η ∈ C : �η > 0}.
2. z = a

π
ln
(
η +√η2 − 1

)
maps H conformally onto

the strip �a.
3. z �→ z + 1 translates the strip �a horizontally.
4. θ = zγ maps �a + 1 conformally onto the domain

Da,γ .

In this way, we obtain the conformal mapping z =
ca,γ ,δ(ζ ) of D ontoDa,γ ,δ given by the following:

ca,γ ,δ(ζ ) =
exp ı

(
a
π
ln
(
η +√η2 − 1

)
+ 1
)γ

(
a
π
ln
(
η +√η2 − 1

)
+ 1
)γ δ

(32)
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with η = η(ζ ). Recall that the continuous branches of
the multi-valued functions under consideration are cho-
sen in such a manner that ln θ = ln |θ | + ı arg θ with
arg θ ∈[ 0, 2π), �√η2 − 1 ≥ 0, and more generally, zγ =
|z|γ exp(ıγ arg z) with arg z ∈[ 0, 2π).
Introduce the function z(ζ ) = a

π
ln
(
η +√η2 − 1

)
+ 1

of ζ ∈ D. A direct computation yields the following:

c′a,γ ,δ(ζ ) = exp ı(z(ζ ))γ
ıγ (z(ζ ))γ − γ δ

(z(ζ ))γ δ+1 z′(ζ ),

where z′(ζ ) = a
π

1√
1+ζ 2

√
2

1−ζ
. We rewrite this as follows:

c′a,γ ,δ(ζ ) = √
2ıγ

a
π

(1 + ıδ (z(ζ ))−γ )

× (z(ζ ))γ−γ δ−1√
1 + ζ 2 (1 − ζ )

exp ı(z(ζ ))γ .
(33)

For the analysis of the Dirichlet problem in Da,γ ,δ , we
employ the Hardy-Smirnov spaces with weight w(ζ ) =
(1 − ζ )−μ, where −1/q < μ < 1/p.
Theorem 13. Let γ ∈ (0, 1/2], δ > 0 and let ca,γ ,δ(ζ ) be
the conformal mapping of D onto Da,γ ,δ given by (32). The
Toeplitz operator T(aa,γ ,δ) is then Fredholm if and only if
μ �= 0. Moreover,

(1) If − 1
q < μ < 0, then the operator T(aa,γ ,δ) is

invertible.
(2) If 0 < μ < 1

p , then the index of T(aa,γ ,δ) is equal to
−1.

Proof. Consider the Toeplitz operator T(aa,γ ,δ) with the
following symbol:

aa,γ ,δ(ζ ) = exp
(

−ı
2
p
arg c′a,γ ,δ(ζ )

)
w(ζ )

w(ζ )

= exp
(

−ı
2
p
arg c′a,γ ,δ(ζ )

)
(1 − 1/ζ )−μ

(1 − ζ )−μ

= exp
(

−ı
2
p
arg c′a,γ ,δ(ζ )

)
(−ζ )μ

cf. (10). Set

ha,γ ,δ(ζ ) = exp
(

−ı
2
p
(z(ζ ))γ

)

for ζ ∈ T. It is easily seen that (ha,γ ,δ(ζ ))±1 ∈ H∞+, so we
introduce the following function:

a0(ζ ) := aa,γ ,δ(ζ )

ha,γ ,δ(ζ )

of ζ ∈ T.
Note that

lim
ζ→eı0±1

arg (z(ζ ))γ = 0

for all real γ . Hence, it follows that a0(ζ ) ∈ PC with
discontinuities at the points 1 and ±ı.
On taking into account that

arg
1

1 − ζ
= π

2
− 1

2
arg ζ

with arg ζ ∈ (0, 2π), we readily deduce that

limζ→eı0−1 arg a0(ζ )− limζ→eı0+1 arg a0(ζ ) = 2π
(
1
p +μ

)
,

limζ→eı0−ı arg a0(ζ )− limζ→eı0+ı arg a0(ζ ) = π
p ,

limζ→eı0−(−ı) arg a0(ζ )− limζ→eı0+(−ı) arg a0(ζ )= π
p .

Hence, representation (17) holds for the symbol a0(ζ )

with ζ1 = 1, ζ2 = ı, ζ3 = −ı, and

f1 = 1
p

+ μ, f2 = f3 = 1
2
1
p
,

and a continuous function c(ζ ), such that the winding
number of the curve c(T) about the origin vanishes.
Thus, according to Theorem 7, the operator T(aa,γ ,δ) is
Fredholm if and only if μ �= 0.
Suppose that −1/q < μ < 0, then all the quantities f1,

f2 and f3 belong to the following interval:(
−1
q
,
1
p

)
.

In this case, Theorem 7 applies with κ1 = κ2 = κ3 =
0. Combining Theorems 7 and 3 yields the invertibility of
T(a0) in the space Hp+. By Theorem 6(1), the operator
T(aa,γ ,δ) is invertible in Hp+, too, for aa,γ ,δ = ha,γ ,δa0.
According to Theorem 2, the symbol aa,γ ,δ admits a p -
factorisation with κ = 0. Hence, the operator T(aa,γ ,δ) is
invertible.
Now, let μ ∈

(
0, 1p
)
, then

−1
q

+ 1 < f1 <
1
p

+ 1, −1
q

< f2 = f3 <
1
p

for all p ∈ (1,∞). In this case, Theorem 7 applies
with κ1 = 1 and κ2 = κ3 = 0, according to
which the operator T(a0) in Hp+ is Fredholm and its
index just amounts to −1. By Theorem 2, the symbol
aa,γ ,δ admits a p -factorisation with κ = 1 whence ind
T(aa,γ ,δ) = −1.

The advantage of our method lies in the fact that we
construct explicitly the p -factorisations in question.
Theorem 14. Let γ ∈ (0, 1/2], δ > 0 and let z = ca,γ ,δ(ζ )

be the conformal mapping of D ontoDa,γ ,δ given by (32).

(1) If− 1
q < μ < 0, then the Dirichlet problems (1) and

(2) have a unique solution in �Ep(Da,γ ,δ ,w) given by
the following:

u(z) = �
∫
T

1
2πı

ζ + c
−1
a,γ ,δ(z)

ζ − c
−1
a,γ ,δ(z)

u0(ca,γ ,δ(ζ ))
dζ

ζ

for z ∈ Da,γ ,δ .
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(2) If 0 < μ < 1
p , then the Dirichlet problems (1) and (2)

have a unique solution in �Ep(Da,γ ,δ ,w) given by the
following:

u(z) = �
∫
T

1
πı

c
−1
a,γ ,δ(z) − 1

ζ − 1
1

ζ − c
−1
a,γ ,δ(z)

u0(ca,γ ,δ(ζ )) dζ

for z ∈ Da,γ ,δ .

Proof. Suppose

−1
q

< μ < 0.

By Theorem 13, the symbol aa,γ ,δ(ζ ) admits a p -
factorisation with κ = 0. Reasoning similar to that in the
proof of Theorem 11 shows that this factorisation has the
form aa,γ ,δ = a+a− with

a+(ζ ) = 1
w(ζ )

1
p
√
c′a,γ ,δ(ζ )

,

a−(ζ ) = w(ζ )
p
√
c′a,γ ,δ(ζ ).

Corollary 2 now implies
(
T(aa,γ ,δ)−1g+) (ζ ) = 1

a+(ζ )

(
P+
T

1
a− g+

)
(ζ )

= 1
a+(ζ )

(
P+
T

1
a− g
)

(ζ ).

Our next task is to prove that condition (13) is fulfilled.
To this end, we observe that

(
T(aa,γ ,δ)−11

)
(ζ ) = w(ζ ) p

√
c′a,γ ,δ(ζ )

⎛
⎜⎝P+

T

1
w

1
p
√
c′a,γ ,δ

⎞
⎟⎠ (ζ )

= w(ζ ) p

√√√√ c′a,γ ,δ(ζ )

c′a,γ ,δ(0)
,

as desired.
Thus, we can use the representation of Corollary 1. In

this way we immediately obtain the following:

u(z)= �
⎛
⎜⎝(P+

T
2U0

)
(ζ ) − p

√
c′a,γ ,δ(0)

(
P+
T
U0

)
(0)

×
⎛
⎜⎝P+

T

1
w

1
p
√
c′a,γ ,δ

⎞
⎟⎠ (ζ )

⎞
⎟⎠

= �
((

P+
T
2U0

)
(ζ ) −

(
P+
T
U0

)
(0)
)

= �
∫
T

1
2πı

ζ ′ + ζ

ζ ′ − ζ
U0(ζ

′) dζ ′

ζ ′

with z = ca,γ ,δ(ζ ). This establishes the formula of part (1).

We now assume that 0 < μ < 1
p . Put

ã+(ζ ) = 1
1 − ζ

1
w(ζ )

1
p
√
c′a,γ ,δ(ζ )

,

ã−(ζ ) =
(
1 − 1

ζ

)
w(ζ )

p
√
c′a,γ ,δ(ζ ),

then

aa,γ ,δ(ζ ) = −ã+(ζ ) ζ ã−(ζ ) (34)

is a p -factorisation of aa,γ ,δ . Show that condition (15)
holds. For this purpose, it suffices to consider the
behaviour of the factors in a neighbourhood of the point
ζ = 1.
From (33), it follows that

| (ã+(ζ )
)±1 | ∼ |ζ − 1|±(1/p+μ−1)

(
ln |ζ − 1|−1)∓(γ−γ δ−1)/p asζ → 1,

| (ã−(ζ )
)±1 | ∼ |ζ − 1|∓(1/p+μ−1)

(
ln |ζ − 1|−1)±(γ−γ δ−1)/p asζ → 1.

Since μ belongs to the interval
(
0, 1p
)
, we have the

following:

q
(
1
p

+ μ − 1
)

> −1,

−p
(
1
p

+ μ − 1
)

> −1,

whence ã+ ∈ Hq+ and (ã+)−1 ∈ Hp+. Analogously, we
get the following:

ã− ∈ Hp− ⊕ {c},
(ã−)−1 ∈ Hq− ⊕ {c}.

Consider the folllowing equation:

(T(aa,γ ,δ)h+)(ζ ) + h+(0) = g+(ζ ) (35)

for ζ ∈ T, cf. (11). In the case under study, the oper-
ator T(aa,γ ,δ) has no inverse operator defined on all of
Hp+ (but a left inverse). We introduce the auxiliary oper-
ator T(ã+ã−). This operator is invertible, so applying
its inverse to both sides of the equation, we rewrite it
equivalently as follows:

1
ã+ P+

T

1
ã− P+

T

(−ã+ζ ã−h+)+ (T(ã+ã−))−1h+(0)

= (T(ã+ã−))−1g+,

that is

− ζh+(ζ ) + h+(0)
(
T(ã+ã−)−11

)
(ζ )

= 1
ã+(ζ )

P+
T

(
1
ã− g
)

(ζ )
(36)

for ζ ∈ T.
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Assume that (36) possesses a solution. On putting ζ = 0
and taking into account that

(T(ã+ã−)−11)(0) = 1,

we get the following:

h+(0) = 1
ã+(0)

P+
T

(
1
ã− g
)

(0)

= p
√
c′a,γ ,δ(0)P

+
T

((
1 − 1

ζ

)−1
2U0

)
(0)

= p
√
c′a,γ ,δ(0)

∫
T

ζ

ζ − 1
2U0(ζ )

1
2πı

dζ

ζ

= p
√
c′a,γ ,δ(0)

∫
T

1
πı

U0(ζ )

ζ − 1
dζ . (37)

As previously mentioned, (ã−)−1 lies in Hq− ⊕ {c}, so
P+
T

(ã−)−1(ζ ) is independent of ζ ∈ D. An easy computa-
tion shows that

P+
T

(ã−)−1(ζ ) = 1
p
√
c′a,γ ,δ(0)

for all ζ ∈ D whence

h+(ζ ) = 1
ζ

⎛
⎜⎝ h+(0)
ã+(ζ )

1
p
√
c′a,γ ,δ(0)

− 1
ã+(ζ )

P+
T

(
1
ã− g
)

(ζ )

⎞
⎟⎠ ,

which is due to (36). Combining this equality with (37)
gives the following:

h+(ζ ) = 1
ζ

1
ã+(ζ )

(∫
T

1
πı

1
ζ ′ − 1

U0(ζ
′) dζ ′

−
∫
T

1
2πı

1
ζ ′ − ζ

ζ ′

ζ ′ − 1
2U0(ζ

′) dζ ′
)

= − 1
ã+(ζ )

∫
T

1
πı

1
ζ ′ − ζ

U0(ζ ′)
ζ ′ − 1

dζ ′

(38)

for ζ ∈ D.
On the other hand, putting ζ = 0 in (38), we obtain the

following:

h+(0) = − p
√
c′a,γ ,δ(0)

∫
T

1
πı

1
ζ ′

U0(ζ ′)
ζ ′ − 1

dζ ′.

Since U0(ζ ) is real-valued, it follows that

h+(0) = p
√
c′a,γ ,δ(0)

∫
T

1
πı

ζ ′ U0(ζ ′)
(ζ ′)−1 − 1

d
1
ζ ′

= p
√
c′a,γ ,δ(0)

∫
T

1
πı

U0(ζ ′)
ζ ′ − 1

dζ ′

which coincides with (37).
We have thus proven that each solution of (35) has nec-

essarily form (38), i.e. the solution is unique.Moreover, the
function h+(ζ ) given by (38) satisfies Equation 35.

To complete the proof, it suffices to apply part (2) of
Theorem 1. Equation 34 shows that the symbol aa,γ ,δ
admits a p -factorisation with κ = 1. By Theorem 2, the
index of the Toeplitz operator T(aa,γ ,δ) is equal to −1.
Hence, it follows by Theorem 3 that the kernel of T(aa,γ ,δ)
is zero. We thus conclude that Theorem 1 is applicable.
If ζ ∈ D, then

h+(ζ )

w(ζ ) p
√
c′a,γ ,δ(ζ )

=
∫
T

1
πı

ζ − 1
ζ ′ − 1

1
ζ ′ − ζ

U0(ζ
′) dζ ′,

showing part (2).

Remark 5. In the case ofμ = 0, the operator T(aa,γ ,δ) fails
to be Fredholm. This motivates the introduction of spaces
with weights.

Conformal reduction of Neumann problems
The Neumann problem
Let D be a simply connected, bounded domain in the
plane of real variables (x, y). Denote by C the boundary of
D which is a Jordan curve. Given a function u1 on C, we
consider the problem of finding a harmonic function u in
D whose outward normal derivative on C coincides with
u1. In this way, we obtain what has been formulated in (1)
and (3).
As usual, we give the plane a complex structure by z =

x+ ıy and pick a conformal mapping z = c(ζ ) ofD ontoD
satisfying (5). We continue to use power weight functions
w(ζ ) introduced in (9). A function u1 on C is said to belong
to Lp(C,w) if∫

T

|u1(c(ζ ))|p |w(ζ )|p |c′(ζ )| |dζ | < ∞.

Definition 4. Given any u1 ∈ Lp(C,w), the Neumann
problem is said to possess a solution of class �E1,p(D,w)

if there exists an analytic function f in D, such that f ′ ∈
Ep(D,w) and the harmonic function u = �f satisfies
(∂/∂ν)u = u1 on C.
If the curve C is rectifiable and f ′ ∈ Ep(D,w) then also

f ∈ Ep(D,w). However, f no longer needs to belong to
Ep(D,w) if C fails to be rectifiable.
Our next concern will be to reduce the Neumann prob-

lem to Toeplitz operator equations on the unit circle.
According to [4,16], if u = �f with f ′ ∈ Ep(D,w), then

∂u
∂ν

(z) = �
(
eıβ(z)f ′(z)

)
(39)

for almost all z ∈ C, where β(z) is the angle at which the
outward normal of C at the point z intersects the real axis.
Introduce the following function:

h+(ζ ) = w(ζ )
p
√
c′(ζ ) f ′(c(ζ ))

of ζ ∈ D, which is obviously analytic in the unit disk.
Moreover, h+ can be specified within the Hardy space
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Hp+ on the unit circle, as is easy to check. Put h−(ζ ) :=
h+(ζ ) for ζ ∈ T. Using (39), we rewrite the equation
(∂/∂ν)u = u1 equivalently as follows:

1
2

(
eıβ(c(ζ )) h+(ζ )

w(ζ ) p√c′(ζ )
+ e−ıβ(c(ζ )) h−(ζ )

w(ζ ) p√c′(ζ )

)
= U1(ζ )

(40)

for ζ ∈ T, where U1(ζ ) = u1(c(ζ )).
Note that

β(z) = α(z) − π

2
for z ∈ C, where α(z) is the angle at which the tangent of
C at the point z intersects the real axis. As mentioned,

arg c′(ζ ) = α(c(ζ )) − arg ζ − π

2
for ζ ∈ T. Hence, it follows that

eıβ(c(ζ ))

w(ζ ) p√c′(ζ )
= eıβ(c(ζ ))−ı 1p arg c′(ζ )

w(ζ ) p√|c′(ζ )|

= eı arg c
′(ζ )+ı arg ζ−ı 1p arg c′(ζ )

w(ζ ) p√|c′(ζ )|

= ζ eı
1
q arg c′(ζ )

w(ζ ) p√|c′(ζ )| ,

where 1
p + 1

q = 1, so (40) just amounts to the following:

b(ζ )
(
ζh+(ζ )

)+ 1
ζ
h−(ζ ) = g(ζ )

for ζ ∈ T, with

b(ζ ) = eı
2
q arg c′(ζ ) w(ζ )

w(ζ )
,

g(ζ ) = 2 eı
1
q arg c′(ζ ) w(ζ )

p
√|c′(ζ )|U1(ζ ). (41)

On applying the projection P+
T
to both sides of the last

equality, we derive the Toeplitz equation:

T(b)
(
ζh+) (ζ ) = g+(ζ ) (42)

on T, where g+ = P+
T
g. We have used the equality

P+
T

(
ζ−1h−) = 0, which is easily verified.

Suppose now that h+(ζ ) is a solution of Equation 42
considered in the space Hp+ and that the pair h+(ζ ) and
h−(ζ ) = h+(ζ ) satisfies equation 40, put

f ′(c(ζ )) = h+(ζ )

w(ζ ) p√c′(ζ )
,

then

u(z) = �
∫ z

z0

h+(c−1(z′))
w(c−1(z′)) p

√
c′(c−1(z′))

dz′

= �
∫ z

z0
h+(c−1(z′))

p
√

(c−1)′(z′))
w(c−1(z′))

dz′
(43)

for all z ∈ D, where z0 is an arbitrary fixed point of D and
the integral is over any path inD connecting z0 and z. It is
easily seen that solution u is determined uniquely up to a
real constant.
Theorem 15. Let u1 ∈ Lp(C,w).

(1) If u = �f is a solution of the Neumann problem in
�E1,p(D,w), then the function h+(ζ ) = w(ζ )
p√c′(ζ )f ′(c(ζ )) is a solution of Toeplitz equation (42).

(2) If h+ is a unique solution of Toeplitz equation (42) in
Hp+, then the function u given by (43) is a solution
of the Neumann problem in the space �E1,p(D,w).

Proof. This theorem can be proven in much the same
way as Theorem 1.

If the operator T(b) is invertible in the space Hp+, then
the Neumann problem possesses a solution in�E1,p(D,w)

if and only if (T(b)−1g+)(0) = 0. Indeed, applying T(b)−1

to both sides of (42) yields ζh+(ζ ) = (T(b)−1g+)(ζ ).
On substituting ζ = 0, we obtain (T(b)−1g+)(0) = 0.
Conversely, if the latter condition is fulfilled, then

h+(ζ ) = 1
ζ

(T(b)−1g+)(ζ )

is of Hardy classHp+, so (43) gives us the general solution
of the Neumann problem.
Corollary 3. Suppose the symbol b(ζ ) has a p -
factorisation of the form b = b+b− with

b+(ζ ) =
q√c′(ζ )

w(ζ )
,

b−(ζ ) = w(ζ )

q
√
c′(ζ )

,

then

(1) For the Neumann problem to possess a solution in
�E1,p(D,w), it is necessary and sufficient that

1
πı

∫
T

u1(c(ζ )) |c′(ζ )| dζ

ζ
= 0.

(2) If this condition holds, then any solution of the
Neumann problem in the space �E1,p(D,w) has the
following form:

u(z) = �
∫ z

z0
(ln c−1(z′))′

(∫
T

u1(c(ζ ))
1
πı

|c′(ζ )|
ζ − c−1(z′)

dζ

)
dz′

for z ∈ D, where z0 ∈ D is a fixed point and the
integration is over any path connecting z0 and z.
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Proof. Using the p -factorisation b = b+b−, we get the
following:

h+(ζ ) = 1
ζ

(
T(b)−1g+) (ζ )

= 1
ζ

1
b+(ζ )

P+
T

( g
b−
)

(ζ )

= 1
ζ

1
b+(ζ )

P+
T

(
2 |c′|U1

)
(ζ )

= 2
ζ

w(ζ )
q√c′(ζ )

P+
T

(|c′|U1
)
(ζ ),

showing part (1) of the corollary.
Furthermore, on writing the analytic projection P+

T
as

the Cauchy integral for ζ ∈ D, we deduce the following:

h+(ζ )

w(ζ ) p√c′(ζ )
= 1

ζ

1
c′(ζ )

∫
T

1
πı

1
ζ ′ − ζ

|c′(ζ ′)|U1(ζ
′) dζ ′,

which establishes part (2).

Neumann data on sectorial curves
As in section ‘Dirichlet data on sectorial curves’, we con-
sider a simply connected domain D � R

2 whose bound-
ary C is smooth everywhere except for a finite number of
points. More precisely, C is a Jordan curve of the following
form:

C =
n⋃

k=1
Ck ,

where Ck =[ zk−1, zk] is an arc with initial point zk−1 and
endpoint zk which are located after each other in posi-
tive direction on C, and zn = z0. Moreover, (zk−1, zk) is
smooth for all k.
We first notice that the Neumann problem behaves well

for sectorial boundary curves with the sectoriality index
different from that for the Dirichlet problem. To make
it more precise, we observe that the right-hand side of
estimate (19) for the variation of the inclination of the
tangent of C close to a singular point zk can be written
as min{p − 1, 1} π/2 for all 1 < p < ∞. This has been
referred to as p -sectoriality. The right-hand side of the
estimate of variation that we might allow in the case of
Neumann problem looks like min{1/(p − 1), 1}π/2 =
min{q−1, 1}π/2, which corresponds to the q -sectoriality.
Definition 5. The curve C is called q -sectorial if, for each
k = 1, . . . , n, there is a neighbourhood (z−k , z

+
k ) of zk on C

and a real number ϕk, such that

sup
z∈(z−k ,z

+
k )\{zk}

|α(z) − ϕk| <

{ π
2

1
p−1 , if p ≥ 2,

π
2 , if 1 < p < 2,

where α(z) is the angle at which the tangent of C at the
point z intersects the real axis.
If zk is a conical point of C, then the angle at which the

tangent of C at z intersects the real axis has jump jk < π

when z passes through zk . Hence, the estimate is fulfilled
at zk with a suitable ϕk , if 1 < p < 2, and is fulfilled if
moreover jk < 1/(p − 1) π , if p ≥ 2.
Theorem 16. Let the boundary of D be a q -sectorial
curve, and the Neumann problem has then a solution in
�E1,p(D) if and only if the condition of Corollary 3(1) is
satisfied. In this case, any solution of the problem has the
form of Corollary 3(2).

Proof. With the reasoning similar to that in the proof of
Theorem 8, it shows that b = cb0 where b0 is p -sectorial
and c ∈ C(T) is such that indc(T)(0) = 0. Combining The-
orems 5, 6 and 3, we conclude that the operator T(b) is
invertible and so the symbol b admits a p -factorisation of
the form b = b+b−.
On the other hand, (41) yields the following:

b(ζ ) =
q√c′(ζ )

q
√
c′(ζ )

, (44)

whence
q√c′(ζ )

b+(ζ )
= q
√
c′(ζ ) b−(ζ ).

Since c′ ∈ H1+ and 1/b+ ∈ Hp+, the left-hand side of
this equality belongs to H1+ (see for instance [24]). In the
same manner, one sees that the right-hand side belongs to
H1− ⊕ {c}. Therefore,

b+(ζ ) = c q
√
c′(ζ ),

b−(ζ ) = 1
c

1
q
√
c′(ζ )

,

where c is a complex constant. Thus, equality (44) is actu-
ally a p -factorisation, so Corollary 3 applies to complete
the proof.

Neumann data on logarithmic spirals
Let Da,ϕ be a simply connected domain bounded by two
logarithmic spirals and an auxiliary curve as described in
the ‘Dirichlet data on logarithmic spirals’ section. Accord-
ing to formula (41), the Toeplitz operator corresponding
to the Neumann problem in the space �E1,p(Da,ϕ) has the
following form:

ba,ϕ(ζ ) = exp
(

ı
2
q
arg c′a,ϕ(ζ )

)
with the argument of c′a,ϕ(ζ ) evaluated in (26).

Since ba,ϕ(ζ ) = (aa,ϕ(ζ ))
− p
q , the symbol aa,ϕ being

given before Theorem 10, we obtain the following:

ba,ϕ(ζ ) = (ha,ϕ(ζ ))
− p
q b0(ζ )

with
(ha,ϕ(ζ ))

− p
q := exp

(
ı
2
q

(
ϕ − a

π
sinϕ ln(η +

√
η2 − 1)

))
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belonging to GH∞+ and b0(ζ ) = (a0(ζ ))
− p
q belonging to

PC. Moreover, b0(ζ ) has representation (17) with ζ1 = 1,
ζ2 = ı and ζ3 = −ı,

f1 = −1
q

(
1 − a

π
cosϕ

)
, f2 = f3 = −1

2
1
q
,

and a continuous function c(ζ ) which is different from
zero on T and satisfies indc(T) (0) = 0.
We are now in a position to employ Theorem 15 and

Corollary 3 for studying the Neumann problem inDa,ϕ .
Theorem 17. As previously defined, the operator T(ba,ϕ)

is Fredholm in the space Hp+ if and only if
a
π

cosϕ �= q.

Proof. Since a < 2π cosϕ, it follows that

f1 <
1
q
(
2 cos2 ϕ − 1

) = 1
q
cos(2ϕ) ≤ 1

q
whence

−1
q

< f1 < 1 + 1
p
, −1

q
< f2 = f3 <

1
p
.

By Theorem 7, the operator T(ba,ϕ) is Fredholm if and
only if f1 �= 1/p, as desired.

Theorem 18. Assume that

q >
a
π

cosϕ, (45)

then

(1) The operator T(ba,ϕ) is invertible in Hp+, and the
symbol has a p -factorisation ba,ϕ = b+b− with

b+(ζ ) = q
√
c′a,ϕ(ζ ),

b−(ζ ) = 1
q
√
c′a,ϕ(ζ )

.

(2) For the Neumann problem to possess a solution in
�E1,p(Da,ϕ), it is necessary and sufficient that

1
πı

∫
T

u1(ca,ϕ(ζ )) |c′a,ϕ(ζ )| dζ

ζ
= 0.

(3) Under this condition, any solution of the Neumann
problem in �E1,p(Da,ϕ) has the following form:

u(z)=�
∫ z

z0
(ln c−1

a,ϕ(z′))′
(∫

T

u1(ca,ϕ(ζ ))
1
πı

|c′a,ϕ(ζ )|
ζ − c

−1
a,ϕ(z′)

dζ

)
dz′

for z ∈ Da,ϕ , where z0 ∈ Da,ϕ is an arbitrary fixed
point and the integration is over any curve in Da,ϕ
connecting z0 and z.

Proof. Inequality (45) just amounts to saying that f1 <

1/p. In this case, Theorem 7 applies immediately to con-
clude that the operator T(ba,ϕ) is invertible in the space

Hp+. The p -factorisation is now derived analogously to
that in the proof of Theorem 10. The remaining part of the
theorem follows readily from Corollary 3.

Theorem 19. If

q <
a
π

cosϕ, (46)

then T(ba,ϕ) is a Fredholm operator in Hp+ of index −1,
and the symbol has a p -factorisation ba,ϕ = −b+ζb− with

b+(ζ ) = 1
1 − ζ

q
√
c′a,ϕ(ζ ),

b−(ζ ) =
(
1 − 1

ζ

)
1

q
√
c′a,ϕ(ζ )

.

Proof. Note that the assumption is equivalent to the
following:

1
p

< f1 < 1 + 1
p
.

Hence, from Theorem 7, it follows that the operator
T(ba,ϕ) in Hp+ is Fredholm and its index equals −1. The
p -factorisation is established similarly to that in the proof
of Theorem 10.

We now turn to the Neumann problem provided that
(46) is satisfied. In our case, Equation 42 looks like the
following:

−T(b+ζb−)
(
ζh+) (ζ ) = g+(ζ ) (47)

for ζ ∈ T. The operator T(b+b−) is easily seen to be
invertible, and its inverse is given by the following:

(T(b+b−))−1 = 1
b+ P+

T

1
b− .

Applying the inverse to both sides of (47) leads us to the
following:

−ζ 2 h+(ζ ) = 1
b+(ζ )

P+
T

(
g+

b−

)
(ζ )

= 1
b+(ζ )

P+
T

( g
b−
)

(ζ )

= 1 − ζ

q
√
c′a,ϕ(ζ )

P+
T

(
ζ

ζ − 1
|c′a,ϕ | 2U1

)
.

Thus, h+ ∈ Hp+ if and only if the right-hand side of
the last equality has a second-order zero at the point
ζ = 0, and in this case, the solution is unique. Since
(1 − ζ )/ q

√
c′a,ϕ(ζ ) does not vanish at the origin, we get the

following:
Corollary 4. Let (46) be satisfied, then the condition(

∂

∂ζ

)j ∫
T

1
πı

1
ζ ′ − ζ

ζ ′

ζ ′ − 1
|c′a,ϕ(ζ ′)|U1(ζ

′)dζ ′
∣∣∣
ζ=0

= 0,
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for j = 0, 1, is necessary and sufficient in order that the
Neumann problem might have a solution in �E1,p(Da,ϕ).
Under this condition, all solutions in �E1,p(Da,ϕ) have the
following form:

u(z) = �
∫ z

z0
(ln c−1

a,ϕ(z′))′
c−1
a,ϕ(z′)−1
c
−1
a,ϕ(z′)

×
(∫

T

1
πı

1
ζ −c

−1
a,ϕ(z′)

ζ

ζ −1
|c′a,ϕ(ζ )|U1(ζ ) dζ

)
dz′

for z ∈ Da,ϕ , where z0 ∈ Da,ϕ is fixed and the outer integral
is over any path inDa,ϕ connecting z0 and z.

Proof. It remains to establish the formula for solutions.
The latter follows readily from the following:

h+(ζ ) = − 1
ζ 2

1 − ζ

q
√
c′a,ϕ(ζ )

×
∫
T

1
2πı

1
ζ ′ − ζ

(
ζ ′

ζ ′ − 1
|c′a,ϕ(ζ ′)| 2U1(ζ

′)
)
dζ ′

for all ζ ∈ D.

Neumann data on spirals of power type
Let Da,γ ,δ be a simply connected domain bounded by
two power-like spirals and an auxiliary curve as described
in the ‘Dirichlet data on spirals of power type’ section.
According to formula (41), the Toeplitz operator corre-
sponding to the Neumann problem in�E1,p(Da,γ ,δ ,w) has
the following form:

ba,γ ,δ(ζ ) = exp
(

ı
2
q
arg c′a,γ ,δ(ζ )

)
w(ζ )

w(ζ )

= exp
(

ı
2
q
arg c′a,γ ,δ(ζ )

)
(−ζ )μ,

where w(ζ ) = (1 − ζ )−μ.
Arguments similar to those in the proof of Theorem 13

show that the symbol ba,γ ,δ factorises as follows:

ba,γ ,δ(ζ ) = ha,γ ,δ(ζ ) b0(ζ )

with

ha,γ ,δ(ζ ) = exp
(

−ı
2
p
(z(ζ ))γ

)

belonging to GH∞+ and b0 ∈ PC having discontinu-
ities at the points 1 and ±ı. Moreover, b0(ζ ) admits a
representation (17) with ζ1 = 1, ζ2 = ı and ζ3 = −ı,

f1 = −1
q

+ μ, f2 = f3 = −1
2
1
q
.

and a continuous function c(ζ ) which does not vanish
on the circle T and satisfies indc(T) (0) = 0. Thus, we
may apply Theorem 15 and Corollary 3 to develop the
Neumann problem in Da,γ ,δ . The exposition is much the

same as that for data on logarithmic spirals at the end of
the ‘Neumann data on logarithmic spirals’ section.
Theorem 20. As defined previously, the operator T(ba,γ ,δ)
is Fredholm in the space Hp+ if and only if μ �= 0.

Proof. Since μ ∈
(
− 1

q ,
1
p

)
, we get the following:

−2
q

< f1 < 1 − 2
q
, −1

q
< f2 = f3 <

1
p
.

By Theorem 7, the operator T(ba,γ ,δ) is Fredholm if and
only if f1 �= −1/q, which is equivalent to μ �= 0.

Theorem 21. Let

μ ∈
(
0,

1
p

)
, (48)

then

(1) The operators T(ba,γ ,δ) is invertible in the space
Hp+, and its symbol has a p -factorisation
ba,γ ,δ = b+b− with

b+(ζ ) =
q
√
c′a,γ ,δ(ζ )

w(ζ )
,

b−(ζ ) = w(ζ )

q
√
c′a,γ ,δ(ζ )

.

(2) In order that the Neumann problem might have a
solution in �E1,p(Da,γ ,δ ,w), it is necessary and
sufficient that

1
πı

∫
T

u1(ca,γ ,δ(ζ )) |c′a,γ ,δ(ζ )| dζ

ζ
= 0.

(3) Under this condition, any solution of the Neumann
problem in �E1,p(Da,γ ,δ ,w) is of the following form:

u(z) = �
∫ z

z0
(ln c−1

a,γ ,δ(z
′))′

×
(∫

T

u1(ca,γ ,δ(ζ ))
1
πı

|c′a,γ ,δ(ζ )|
ζ − c

−1
a,γ ,δ(z′)

dζ

)
dz′

for z ∈ Da,γ ,δ , where z0 ∈ Da,γ ,δ is an arbitrary fixed
point and the integration is over any curve in Da,γ ,δ
connecting z0 and z.

Proof. If μ ∈
(
0, 1p
)
, then

−1
q

< f1 < −1
q

+ 1
p

<
1
p
.

In this case, Theorem 7 implies readily that the oper-
ator T(ba,γ ,δ) is invertible in the space Hp+. The p -
factorisation is now derived analogously to that in the
proof of Theorem 10. The remaining part of the theorem
follows immediately from Corollary 3.
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Theorem 22. If

μ ∈
(

−1
q
, 0
)
, (49)

then T(ba,γ ,δ) is a Fredholm operator in Hp+ of index 1,
and the symbol has a p -factorisation ba,ϕ = −b+ζ−1b−
with

b+(ζ ) = (1 − ζ )

q
√
c′a,γ ,δ(ζ )

w(ζ )
,

b−(ζ ) =
(
1 − 1

ζ

)−1 w(ζ )

q
√
c′a,ϕ(ζ )

.

Proof. If μ ∈
(
− 1

q , 0
)
, then

−1 − 1
q

< f1 < −1
q

= −1 + 1
p
.

Hence, from Theorem 7 it follows that the operator
T(ba,γ ,δ) in Hp+ is Fredholm and its index equals 1. By
Theorem 2, the symbol ba,γ ,δ admits a p -factorisation
ba,γ ,δ = −b+ζ−1b−. Arguing as in the proof of
Theorem 11, we deduce that the factors b± have the
desired form.

We now turn to the Neumann problem provided that
(49) is satisfied. In our case, Equation 42 looks like the
following:

−T(b+b−)
(
h+) (ζ ) = g+(ζ ) (50)

for ζ ∈ T. The operator T(b+b−) is invertible, so
Equation 50 has a unique solution in Hp+ given by the
following:

h+(ζ ) = − 1
b+(ζ )

P+
T

(
g+

b−

)
(ζ )

= − 1
b+(ζ )

P+
T

( g
b−
)

(ζ )

= − 1
1 − ζ

w(ζ )

q
√
c′a,γ ,δ(ζ )

P+
T

((
1 − 1

ζ

)
|c′a,γ ,δ| 2U1

)

for ζ ∈ T.
Corollary 5. Let (49) be satisfied, then for each u1 ∈
Lp(∂Da,γ ,δ ,w), the Neumann problem has a solution in
�E1,p(Da,γ ,δ ,w). The general solution of this problem has
the following form:

u(z) = �
∫ z

z0

(c−1
a,γ ,δ)

′(z′)
1 − c

−1
a,γ ,δ(z′)

×
(∫

T

1
πı

1
ζ −c

−1
a,ϕ(z′)

1 − ζ

ζ
|c′a,γ ,δ(ζ )|U1(ζ ) dζ

)
dz′

for z ∈ Da,γ ,δ , where z0 ∈ Da,γ ,δ is fixed and the outer
integral is over any path inDa,γ ,δ connecting z0 and z.

Proof. It suffices to use the formula u = �f , where f is
determined from the following equation:

f ′(ca,γ ,δ(ζ )) = h+(ζ )

w(ζ ) p
√
c′a,γ ,δ(ζ )

for ζ ∈ D.

Conformal reduction of Zaremba problems
The Zaremba problem
Let C be a Jordan curve in the plane and D the bounded
domain in R

2 whose boundary is C. We assume that C is
smooth almost everywhere and denote by τ = τ(z) the
unit tangent vector of C at a point z ∈ C. As defined pre-
viously, by ν = ν(z), it is meant that the unit outward
normal vector of C at z which exists for almost all points
z ∈ C.
Moreover, let S be a non-empty open arc on C. Given

any functions u0 and u1 on S and C \ S , respectively, we
consider the problem of finding a harmonic function u in
D such that

u = u0 on S ,
(∂/∂ν)u = u1 on C \ S ,

cf. (4). Zaremba wrote in [13] that it was Wirtinger who
pointed out to him the great practical importance of this
mixed boundary problem.
Our standing assumption is that u0 has a derivative

along the arc S almost everywhere on S , that is,

u′
0(z) :=

∂

∂τ
u0 (z) = cosα(z)

∂

∂x
u0 (z) + sinα(z)

∂

∂y
u0 (z)

for z ∈ S , where α(z) is the angle at which the tangent
of C at z intersects the real axis. Introduce the following
function:

u0,1(z) =
{

ı u′
0(z), if z ∈ S ,

u1(z), if z ∈ C \ S . (51)

Our next goal is to reduce the mixed boundary value
problem to a Toeplitz operator equation. To this end, we
notice that if u = �f , where f is an analytic function
in D, then the Dirichlet condition on S can be rewritten
equivalently up to a constant function as follows:

�
(
eıα(z)f ′(z)

)
= u′

0(z) (52)

for almost all z ∈ S . On the other hand, the Neumann
condition on C \ S just amounts to the following:

�
(
eıβ(z)f ′(z)

)
= u1(z) (53)

for almost all z ∈ C \ S , where β(z) is the angle at
which the outward normal of C at z intersects the real axis
(see (39)).
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Pick a conformal mapping z = c(ζ ) of the unit disk
D onto D, such that c′(0) > 0. Introduce the following
weight function:

w(ζ ) =
n∏

k=1

(
1 − ζ

ζk

)−μk

for ζ ∈ D, where μk ∈
(
− 1

q ,
1
p

)
, and define

h+(ζ ) = w(ζ ) p√c′(ζ ) f ′(c(ζ )),
h−(ζ ) = h+(ζ ).

On substituting these expressions into (52) and (53), we
get a system of two real equations for the unknown
complex-valued function h+ of Hardy class on T, namely

eıα(c(ζ )) h+(ζ )

w(ζ ) p√c′(ζ )
+ e−ıα(c(ζ )) h−(ζ )

w(ζ )
p
√
c′(ζ )

= 2u′
0(c(ζ )), ζ ∈ c−1(S),

eıβ(c(ζ )) h+(ζ )

w(ζ ) p√c′(ζ )
+ e−ıβ(c(ζ )) h−(ζ )

w(ζ )
p
√
c′(ζ )

= 2u1(c(ζ )), ζ ∈ c−1(C \ S).

(54)

In the section ‘The Neumann problem’, we have proven
that

eıβ(c(ζ ))

w(ζ ) p√c′(ζ )
= ζ eı

1
q arg c′(ζ )

w(ζ ) p√|c′(ζ )| ,

where 1
p + 1

q = 1. On taking into account that α(z) =
β(z) + π

2 for z ∈ C, we can rewrite (54) in the following
form:

ı b(ζ )
(
ζh+(ζ )

)− ı ζ−1 h−(ζ ) = g1(ζ ), ζ ∈ c−1(S),
b(ζ )

(
ζh+(ζ )

)+ ζ−1 h−(ζ ) = g2(ζ ), ζ ∈ c−1(C \ S)

where for ζ ∈ T, with

b(ζ ) = eı
2
q arg c′(ζ ) w(ζ )

w(ζ )

and

g1(ζ ) = 2 eı
1
q arg c′(ζ ) w(ζ )

p
√|c′(ζ )|u′

0(c(ζ )),

g2(ζ ) = 2 eı
1
q arg c′(ζ ) w(ζ )

p
√|c′(ζ )|u1(c(ζ )).

Multiplying the first equation by ı, we reduce system
(54) finally to the following single equation:

σS(ζ ) b(ζ )
(
ζh+(ζ )

)+ ζ−1 h−(ζ ) = g(ζ ) (55)

on T, where

σS(ζ ) =
{−1, if ζ ∈ c−1(S),

1, if ζ ∈ c−1(C \ S),

and g(ζ ) = 2 eı
1
q arg c′(ζ ) w(ζ ) p√|c′(ζ )|u0,1(c(ζ )) (see (51)

for the definition of u0,1).

Use the following representation of the function σS(ζ ).
Write A for the initial point of S and E for the end point.
Let

ζ1 = c−1(A) =: eıϕA ,
ζ2 = c−1(E) =: eıϕE ,

then

σS(ζ ) = σ+
S (ζ ) σ−

S (ζ ) (56)

for ζ ∈ T with

σ+
S (ζ ) = e−ı 12ϕA

(
1 − ζ

eıϕA

)− 1
2
(
1 − ζ

eıϕE

) 1
2
,

σ−
S (ζ ) = eı

1
2ϕE

(
1 − eıϕA

ζ

) 1
2
(
1 − eıϕE

ζ

)− 1
2
.

The functions σ+
S (ζ ) and σ−

S (ζ ) are analytic in the unit
disk D and in the complement of D, respectively, and the
branches of these functions are chosen in such a way that√

1 − ζ

eıϕA,E
∣∣∣
ζ=0

= 1,

√
1 − eıϕA,E

ζ

∣∣∣
ζ=∞ = 1.

Notice that (56) fails to be a p -factorisation of σS(ζ ), for
condition (15) is violated.
We now rewrite Equation 55 in the following form:

b(ζ )
(
ζσ+

S (ζ )h+(ζ )
)+ ζ−1 h−(ζ )

σ−
S (ζ )

= g(ζ )

σ−
S (ζ )

.

Set
h̃+(ζ ) = σ+

S (ζ )h+(ζ ),
h̃−(ζ ) = h−(ζ )

σ−
S (ζ )

.

Applying to both sides of this equality the analytic pro-
jection P+

T
leads us to the following Toeplitz equation:

T(b)
(
ζ h̃+) (ζ ) = P+

T

(
g

σ−
S

)
(ζ ) (57)

on T. It is quite natural to look for a solution of this
equation in the Hardy space Hp+, so we assume that

h̃+ = σ+
S w(ζ ) p√c′(ζ ) f ′(c(ζ )) ∈ Hp+,

g
σ−
S

= 2
(
σ−
S
)−1 eı

1
q arg c′(ζ ) w(ζ ) p√|c′(ζ )|u0,1(c(ζ )) ∈ Lp(T).

These preliminary considerations suggest a functional
theoretic setting to treat (1) and (4).
Definition 6. Given any Zaremba data (u0,u1) on C of
class Lp(C,w/σ−

S ) in the sense that∫
T

|u0,1(c(ζ ))|p
∣∣∣∣∣ w(ζ )

σ−
S (ζ )

∣∣∣∣∣
p

|c′(ζ )| |dζ | < ∞,

we shall say that the Zaremba problem possesses a solution
in �E1,p(D, σ+

S w) if there is a harmonic function u in D,
such that u = �f for some f ∈ E1,p(D, σ+

S w) and u satisfies
(4) on C.
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If h̃+ is a solution of (57), then

f ′(c(ζ )) = h̃+(ζ )

σ+
S (ζ )w(ζ ) p√c′(ζ )

and

u(z) = us(z) + c (58)

for all z ∈ D, where

us(z) = �
∫ z

z0
h̃+(c−1(z′))

p
√

(c−1)′(z′)
σ+
S (c−1(z′))w(c−1(z′))

dz′,

cf. (43), z0 = c−1(0), the integral is over any path in D
connecting the points z0 and z, and c an arbitrary real con-
stant. Each function u of family (58) satisfies the following
conditions:

(∂/∂τ)u = u′
0 on S ,

(∂/∂ν)u = u1 on C \ S ,
but not necessarily the first condition of (4). The latter
is satisfied by the one and only function of family (58).
For finding the corresponding constant c, we observe that
the function u0 is continuous almost everywhere on S .
Suppose us is continuous up to at least one continuity
point z1 ∈ S of u0, then u0(z1) = us(z1) + c, implying
c = u0(z1) − us(z1).
Theorem 23. Let u0,1 ∈ Lp(C,w/σ−

S ).

(1) If u = �f is a solution of the Zaremba problem in
�E1,p(D, σ+

S w), then the function
h̃+(ζ ) = σ+

S (ζ )w(ζ ) p√c′(ζ )f ′(c(ζ )) is a solution of
the Toeplitz equation (57) in Hp+.

(2) If h̃+ is a unique solution of the Toeplitz equation (57)
in Hp+, then the function u given by (58) is a solution
of the Zaremba problem in the space �E1,p(D, σ+

S w).

Proof. This theorem just summarises the reduction of
the Zaremba problem to a Toeplitz operator equation,
as stated previously. The proof is analogous to that of
Theorem 1.

If the operator T(b) is invertible in the space Hp+,
then for the Zaremba problem to possess a solution in
�E1,p(D, σ+

S w), it is necessary and sufficient that the con-
dition

T(b)−1
(
P+
T

g
σ−
S

)
(0) = 0 (59)

be fulfilled. Indeed, applying T(b)−1 to both sides of (57)
yields the following:

ζ h̃+(ζ ) = T(b)−1
(
P+
T

g
σ−
S

)
(ζ ).

On substituting ζ = 0, we obtain (59). Conversely, if the
latter condition is fulfilled, then

h̃+(ζ ) = 1
ζ
T(b)−1

(
P+
T

g
σ−
S

)
(ζ )

is of Hardy classHp+, so (58) gives us the general solution
of the Zaremba problem.
Corollary 6. Assume that the symbol b(ζ ) has a p -
factorisation of the form b = b+b− with

b+(ζ ) =
q√c′(ζ )

w(ζ )
,

b−(ζ ) = w(ζ )

q
√
c′(ζ )

,

then

(1) For the Zaremba problem to possess a solution in
�E1,p(D, σ+

S w), it is necessary and sufficient that

1
πı

∫
T

u0,1(c(ζ ))
|c′(ζ )|
σ−
S (ζ )

dζ

ζ
= 0.

(2) Under this condition, the problem has a unique
solution in �E1,p(D, σ+

S w) given by u = us + c with

us(z) = �
∫ z

z0

(ln c−1(z′))′

σ+
S (c−1(z′))

×
(∫

T

u0,1(c(ζ ))
|c′(ζ )|
σ−
S (ζ )

1
πı

1
ζ − c−1(z′)

dζ

)
dz′

for z ∈ D, where z0 = c−1(0), the outer integral is
over any curve connecting z0 and z, and
c = u0(z1) − us(z1).

Proof. Using the p -factorisation b = b+b−, we get the
following:

h̃+(ζ ) = 1
ζ
T(b)−1

(
P+
T

g
σ−
S

)
(ζ )

= 1
ζ

1
b+(ζ )

P+
T

(
1
b− P+

T

g
σ−
S

)
(ζ )

= 2
ζ

w(ζ )
q√c′(ζ )

P+
T

(
|c′|
σ−
S

U0,1

)
(ζ ),

where U0,1 := u0,1 ◦ c. Here, we have used the equality

P+
T

1
b− P+

T
= P+

T

1
b−

and the fact that p√|c′(ζ )| q√|c′(ζ )| = |c′(ζ )|. This proves
part (1) of the corollary.



Grudsky and TarkhanovMathematical Sciences 2013, 7:14 Page 25 of 28
http://www.iaumath.com/content/7/1/14

Furthermore, on writing the analytic projection P+
T

as
the Cauchy integral for ζ ∈ D, we deduce the following:

h̃+(ζ )

σ+
S (ζ )w(ζ ) p√c′(ζ )

= 1
ζ

1
σ+
S (ζ )c′(ζ )

×
∫
T

1
πı

1
ζ ′ − ζ

|c′(ζ ′)|
σ−
S (ζ ′)

U0,1(ζ
′) dζ ′,

which establishes part (2).

Zaremba data on sectorial curves
Corollary 6 readily applies to the Zaremba problem in
domains bounded by q -sectorial curves.
Theorem 24. Let C be a q -sectorial curve and (u0,u1)
Zaremba data on C of class Lp(C, 1/σ−

S ), then the Zaremba
problem has a solution in �E1,p(D, σ+

S ) if and only if

1
πı

∫
T

u0,1(c(ζ ))
|c′(ζ )|
σ−
S (ζ )

dζ

ζ
= 0.

If the solvability condition is fulfilled, then the Zaremba
problem has actually a unique solution in the space
�E1,p(D, σ+

S ). This solution is of the form u = us + c with

us(z) = �
∫ z

z0

(ln c−1(z′))′

σ+
S (c−1(z′))

×
(∫

T

u0,1(c(ζ ))
|c′(ζ )|
σ−
S (ζ )

1
πı

1
ζ − c−1(z′)

dζ

)
dz′

for z ∈ D, where z0 = c−1(0), the outer integral is over
any curve connecting z0 and z, and c = u0(z1) − us(z1), z1
being an arbitrary point on the smooth part of S .

Zaremba data on logarithmic spirals
Suppose Da,ϕ is a simply connected domain in the plane
bounded by two logarithmic spirals and an auxiliary
curve as described in the ‘Dirichlet data on logarithmic
spirals’ section. As defined previously, the symbol of the
Toeplitz operator corresponding to the Zaremba problem
in �E1,p(Da,ϕ , σ+

S ) is as follows:

ba,ϕ(ζ ) = exp
(

ı
2
q
arg c′a,ϕ(ζ )

)
,

the argument of c′a,ϕ(ζ ) being given by (26).
The arguments given at the beginning of the ‘Neumann

data on logarithmic spirals’ section still hold for ba,ϕ .
To study the Zaremba problem in the domain Da,ϕ ,
we employ Theorem 23 and Corollary 6. Our standing
assumption on the Zaremba data (u0,u1) on the logarith-
mic spiral is u0,1 ∈ Lp(Ca,ϕ , 1/σ−

S ).
Theorem 25. Suppose that

q >
a
π

cosϕ

then

(1) For the Zaremba problem to possess a solution in
�E1,p(Da,ϕ , σ+

S ), it is necessary and sufficient that

1
πı

∫
T

u0,1(ca,ϕ(ζ ))
|c′a,ϕ(ζ )|
σ−
S (ζ )

dζ

ζ
= 0.

(2) If this solvability condition is fulfilled, then the
Zaremba problem has actually a unique solution in
the space �E1,p(Da,ϕ , σ+

S ). The solution is of the
form u = us + c with

us(z) = �
∫ z

z0

(ln c−1
a,ϕ(z′))′

σ+
S (c−1

a,ϕ(z′))

×
(∫

T

u0,1(ca,ϕ(ζ ))
|c′a,ϕ(ζ )|
σ−
S (ζ )

1
πı

1
ζ − c

−1
a,ϕ(z′)

dζ

)
dz′

for z ∈ Da,ϕ , where z0 = c−1
a,ϕ(0), the outer integral is

over any path connecting z0 and z, and
c = u0(z1) − us(z1), z1 being an arbitrary point on
the smooth part of S .

Proof. Indeed, under the assumption of the theorem, the
operator T(ba,ϕ) is invertible in the space Hp+, and the
symbol has a p -factorisation of the form ba,ϕ = b+b−
with

b+(ζ ) = q
√
c′a,ϕ(ζ ),

b−(ζ ) = 1
q
√
c′a,ϕ(ζ )

,

which is due to Theorem 18. Applying Corollary 6, we get
the remaining part of the theorem.

Theorem 26. Let

q <
a
π

cosϕ,

then

(1) The Zaremba problem has a solution in the space
�E1,p(Da,ϕ , σ+

S ) if and only if(
∂

∂ζ

)j ∫
T

1
πı

1
ζ ′ − ζ

ζ ′

ζ ′ − 1
|c′a,ϕ(ζ ′)|
σ−
S (ζ ′)

U0,1(ζ
′)dζ ′

∣∣∣
ζ=0

= 0

for j = 0, 1.
(2) Under these conditions, the solution is unique and

has the following form:
u = us + c with

us(z) = �
∫ z

z0

(ln c−1
a,ϕ(z′))′

σ+
S (c−1

a,ϕ(z′))
c−1
a,ϕ(z′)−1
c
−1
a,ϕ(z′)

×
(∫

T

1
πı

1
ζ −c

−1
a,ϕ(z′)

ζ

ζ −1
|c′a,ϕ(ζ )|
σ−
S (ζ )

U0,1(ζ ) dζ

)
dz′

for z ∈ Da,ϕ , where z0 = c−1
a,ϕ(0), the outer integral is

over any path in Da,ϕ connecting z0 and z, and
c = u0(z1) − us(z1), z1 being an arbitrary point on
the smooth part of S .
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Proof. Indeed, under the assumption of the theorem,
T(ba,ϕ) is a Fredholm operator inHp+ of index−1, and its
symbol has a p -factorisation of the form ba,ϕ = −b+ζb−
with

b+(ζ ) = 1
1 − ζ

q
√
c′a,ϕ(ζ ),

b−(ζ ) =
(
1 − 1

ζ

)
1

q
√
c′a,ϕ(ζ )

(see Theorem 19), so Equation (57) is as follows:

−T(b+ζb−)
(
ζ h̃+) (ζ ) = P+

T

(
g

σ−
S

)
(ζ )

for ζ ∈ T. The operator T(b+b−) is invertible. Applying
the inverse to both sides of the last equality, it yields the
following:

−ζ 2 h̃+(ζ ) = 1
b+(ζ )

P+
T

(
1
b−

g
σ−
S

)
(ζ )

= 1 − ζ

q
√
c′a,ϕ(ζ )

P+
T

(
ζ

ζ − 1
|c′a,ϕ |
σ−
S

2U0,1

)
(ζ ).

The function h̃+ determined from this equality belongs
to Hp+ if and only if the right-hand side of the equal-
ity has zero of multiplicity two at the point ζ = 0. Since
(1 − ζ )/ q

√
c′a,ϕ(ζ ) does not vanish at the origin, familiar

reasoning completes the proof.

Remark 6. We do not consider q = a
π
cosϕ, in which case,

the operator T(ba,ϕ) fails to be Fredholm in Hp+.

Zaremba data on spirals of power type
Consider the Zaremba problem in a simply connected
domain Da,γ ,δ bounded by two power-like spirals and
an auxiliary curve as described in the ‘Dirichlet data on
spirals of power type’ section. The functional theoretic
setting is suggested by the particular method we use for
the study and consists of weighted Hardy-Smirnov spaces
�E1,p(Da,γ ,δ , σ+

S w), wherew(ζ ) = (1−ζ )−μ with−1/q <

μ < 1/p. From what has been shown in section ‘The
Zaremba problem’, it follows that the Toeplitz operator
corresponding to the Zaremba problem has the following
symbol:

ba,γ ,δ(ζ ) = exp
(

ı
2
q
arg c′a,γ ,δ(ζ )

)
w(ζ )

w(ζ )

= exp
(

ı
2
q
arg c′a,γ ,δ(ζ )

)
(−ζ )μ,

for ζ ∈ T.
Our standing assumption on the Zaremba data (u0,u1)

on power-like spirals is u0,1 ∈ Lp(∂Da,γ ,δ ,w/σ−
S ).

Theorem 27. If

μ ∈
(
0,

1
p

)
,

then

(1) For the Zaremba problem to possess a solution in
�E1,p(Da,γ ,δ , σ+

S w), it is necessary and sufficient that

1
πı

∫
T

U0,1(ζ )
|c′a,γ ,δ(ζ )|
σ−
S (ζ )

dζ

ζ
= 0.

(2) If this solvability condition is fulfilled, then the
Zaremba problem has a unique solution in the space
�E1,p(Da,γ ,δ , σ+

S w). The solution is of the form
u = us + c with

us(z) = �
∫ z

z0

(ln c−1
a,γ ,δ(z′))′

σ+
S (c−1

a,γ ,δ(z′))

×
(∫

T

1
πı

1
ζ −c

−1
a,γ ,δ(z′)

|c′a,γ ,δ(ζ )|
σ−
S (ζ )

U0,1(ζ ) dζ

)
dz′

for z ∈ Da,γ ,δ , where z0 = c
−1
a,γ ,δ(0), the outer integral

is over any path connecting z0 and z, and
c = u0(z1) − us(z1), z1 being an arbitrary point on
the smooth part of S .

Proof. Indeed, under the assumption of the theorem, the
operator T(ba,γ ,δ) is invertible in the space Hp+, and the
symbol has a p -factorisation of the form ba,γ ,δ = b+b−
with

b+(ζ ) =
q
√
c′a,γ ,δ(ζ )

w(ζ )
,

b−(ζ ) = w(ζ )

q
√
c′a,γ ,δ(ζ )

,

which is due to Theorem 21, and Corollary 6 gives to us
all statements of the theorem.

Theorem 28. If

μ ∈
(

−1
q
, 0
)
,

then, given any data of class Lp(∂Da,γ ,δ ,w/σ−
S ), the

Zaremba problem possesses a unique solution in the space
�E1,p(Da,ϕ , σ+

S w). This solution is given by u = us+c with

us(z) = �
z∫

z0

1
c
−1
a,γ ,δ(z′)−1

(c−1
a,γ ,δ)

′(z′)
σ+
S (c−1

a,ϕ(z′))

×
⎛
⎝∫
T

1
πı

1
ζ −c

−1
a,γ ,δ(z′)

ζ −1
ζ

|c′a,γ ,δ(ζ )|
σ−
S (ζ )

U0,1(ζ )dζ

⎞
⎠dz′

for z ∈ Da,γ ,δ , where z0 = c
−1
a,γ ,δ(0), the outer integral

is over any curve in Da,γ ,δ connecting z0 and z, and c =
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u0(z1) − us(z1), z1 being an arbitrary point on the smooth
part of S .

Proof. By Theorem 22, T(ba,γ ,δ) is a Fredholm operator
in Hp+ of index 1, and its symbol has a p -factorisation of
the form ba,ϕ = −b+ζ−1b− with

b+(ζ ) = (1 − ζ )

q
√
c′a,γ ,δ(ζ )

w(ζ )
,

b−(ζ ) =
(
1 − 1

ζ

)−1 w(ζ )

q
√
c′a,ϕ(ζ )

.

Thus, Equation 57 is as follows:

−T(b+ζ−1b−)
(
ζ h̃+) (ζ ) = T(b+b−)h̃+ (ζ )

= P+
T

(
g

σ−
S

)
(ζ )

for ζ ∈ T. The operator T(b+b−) is invertible. Apply-
ing the inverse to both sides of the last equality yields the
following unique solution:

−h̃+(ζ ) = 1
b+(ζ )

P+
T

(
1
b−

g
σ−
S

)
(ζ )

= 1
1 − ζ

w(ζ )

q
√
c′a,γ ,δ(ζ )

P+
T

(
ζ − 1

ζ

|c′a,γ ,δ |
σ−
S

2U0,1

)
(ζ ).

The function h̃+ defined by this equality belongs to Hp+,
as is easy to check. We thus obtain u = �f , where f is a
holomorphic function in the domain Da,γ ,δ , satisfying the
following:

f ′(ca,γ ,δ(ζ )) = 1
ζ − 1

1
c′a,γ ,δ(ζ )

1
σ+
S (ζ )

× P+
T

(
ζ − 1

ζ

|c′a,γ ,δ |
σ−
S

2U0,1

)
(ζ )

for all ζ ∈ D. On arguing as in (58), we derive the desired
formula for the solution u.

Remark 7. We do not consider μ = 0, in which case, the
operator T(ba,γ ,δ) fails to be Fredholm in Hp+.

Conclusions
We investigated the main boundary value problems for
harmonic functions in a simply connected plane domain
with strong singularities on the boundary. We developed
a Fredholm theory of such problems in weighted function
spaces when the boundary curve is of one of the follow-
ing three classes: sectorial curves, logarithmic spirals and
spirals of power type.Moreover, we elaborated a construc-
tive invertibility theory for Toeplitz operators and thus
derive explicit solvability conditions as well as formulas
for solutions.
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