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Numerical solutions of nonlinear Fisher's
reaction–diffusion equation with modified cubic
B-spline collocation method
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Abstract

In this paper, a numerical method is proposed to approximate the numeric solutions of nonlinear Fisher's reaction–
diffusion equation with modified cubic B-spline collocation method. The method is based on collocation of
modified cubic B-splines over finite elements, so we have continuity of the dependent variable and its first two
derivatives throughout the solution range. We apply modified cubic B-splines for spatial variable and derivatives,
which produce a system of first-order ordinary differential equations. We solve this system by using SSP-RK54
scheme. The proposed method needs less storage space that causes less accumulation of numerical errors. The
numerical approximate solution to the nonlinear Fisher's reaction–diffusion equation has been computed without
using any transformation and linearization process. Illustrative three test examples are included to establish the
effectiveness and pertinence of the technique. Easy and economical implementation is the strength of this method.

Keywords: Nonlinear Fisher's reaction–diffusion equation, Modified cubic B-spline basis functions,
SSP-RK54 scheme, Thomas algorithm
Introduction
We consider the nonlinear Fisher's reaction–diffusion
equation

∂u
∂t

¼ α
∂2u
∂x2

þ β u 1� uð Þ; a ≤ x ≤ b; t > 0; ð1:1Þ

with the initial and boundary conditions

u x; 0ð Þ ¼ u0 xð Þ; a ≤ x ≤ b ð1:2Þ
u a; tð Þ ¼ g0 tð Þ; u b; tð Þ ¼ g1 tð Þ; t∈ 0; t½ �: ð1:3Þ

The properties of Fisher's equation have been con-
trived theoretically by many authors. The analysis of
travelling wave solution of Fisher's equation has been
studied by many computational approaches. Travelling
wave fronts have important applications in various fields
of science and engineering, for example, chemistry, biol-
ogy, and medicine [1]. One of the first numerical solu-
tions was described by Gazdag and Canosa [2] with a
pseudo-spectral approach. Ablowitz and Zepetella [3]
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have established an explicit solution of Fisher's equation
for a special wave speed. Twizell et al. [4] and Parekh
and Puri [5] have demonstrated implicit and explicit
finite-differences algorithms to discuss the numerical
study of Fisher's equation. Tang and Weber [6] have pro-
posed a Galerkin finite element method for solving
Fisher's equation. Mickens [7] has introduced a best finite-
difference scheme for Fisher's equation. Mavoungou and
Cherruault [8] have depicted a numerical study of Fisher's
equation by Adomian's method. Qiu and Sloan [9] have
used a moving mesh method for numerical solution of
Fisher's equation. Al-Khaled [10] has proposed the sinc
collocation method for Fisher's equation. Zhao and Wei
[11] have presented a comparison of the discrete singular
convolution and three other numerical schemes for solv-
ing Fisher's equation. Wazwaz and Gorguis [12] have
given the exact solutions to Fisher's equation and to
a nonlinear diffusion equation of the Fisher type by
employing the Adomian decomposition method. Olmos
and Shizgal [13] have constructed the numerical solutions
to Fisher's equation using a pseudo-spectral approach.
Mittal and Kumar [14] and El-Azab [15] have contrived
Fisher's equation by applying the wavelet Galerkin
is an Open Access article distributed under the terms of the Creative Commons
g/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
roperly cited.

mailto:rkjain_2000@rediffmail.com
http://creativecommons.org/licenses/by/2.0


Table 1 Coefficient of cubic B-splines and its derivatives
at knots xj
x xj − 2 xj − 1 xj xj + 1 xj + 2

Bj(x) 0 1 4 1 0

Bj
0(x) 0 3/h 0 −3/h 0

Bj
00(x) 0 6/h2 −12/h2 6/h2 0
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method. Recently, Sahin et al. [16] have applied the B-
spline Galerkin approach to find numerical solution of
Fisher's equation. Cattani and Kudreyko [17] have de-
veloped multiscale analysis of the Fisher equation.
Mittal and Jiwari [18] have developed a numerical study
of Fisher's equation by using differential quadrature
method. Mittal and Arora [19] have presented efficient
numerical solution of Fisher's equation by using B-
spline collocation method.
In this paper, we have presented a simple numerical

method that uses modified cubic B-spline for the
spatial derivatives which produce a system of first-
order ordinary differential equations. We solve this sys-
tem by using SSP-RK54 scheme. This method needs
less storage space that causes less accumulation of nu-
merical errors. The approximate numerical solution to
the nonlinear Fisher's reaction–diffusion equation has
been computed without using any transformation and
linearization process.
This paper is organized as follows: In the ‘Description of

the methods’ section, description of cubic B-spline colloca-
tion method is explained. In the ‘Modified cubic B-spline
collocation method’ section, procedure for implementa-
tion of present method is described for Equations 1.1 to
1.3. In the ‘The initial vector α0’ section, procedure to ob-
tain an initial vector which is required to start our method
is explained. We have discussed three test examples to au-
thenticate the adaptability and accuracy of the presented
method in the ‘Numerical experiments and discussion’
section, followed by the ‘Conclusions’ section that briefly
summarizes the numeric approximate outcomes.
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Figure 1 Approximate solutions at t = 0 to 0.2 with step size h = 0.05
Description of the methods
In the cubic B-spline collocation method, the approxi-
mate solution can be written as a linear combination of
cubic B-spline basis functions for the approximation
space under consideration.
We consider a mesh a = x0 < x1, . . ., xN − 1 < xN = b as a

uniform partition of the solution domain a ≤ x ≤ b by
the knots xj with h ¼ xj � xj�1 ¼ b�a

N ; j ¼ 1; . . . ;N .
Our numerical treatment for solving Equation 1.1

using the collocation method with cubic B-splines is to
find an approximate solution UN(x,t) to the exact solu-
tion u(x,t) in the form

UN x; tð Þ ¼
XNþ1

j¼�1

αj tð ÞBj xð Þ; ð2:1Þ

where αj(t) are unknown time-dependent quantities to
be determined from the boundary conditions and collo-
cation from the differential equation.
0 1 2 3 4
x

.
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Figure 2 Approximate solutions at t = 0 to 5 with step size h = 0.5.
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The cubic B-spline Bj(x) at the knots is given by

Bj xð Þ ¼ 1
h3

x� xj�2
� �3

xε xj�2; xj�1
� �

x� xj�2
� �3 � 4 x� xj�1

� �3
xε xj�1; xj
� �

xjþ2 � x
� �3 � 4 xjþ1 � x

� �3
xjþ2 � x
� �3

0

xε xj; xjþ1
� �

xε xjþ1; xjþ2
� �
otherwise

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð2:2Þ
-40 -30 -20 -10
0

0.2

0.4

0.6

0.8

1

u(
x,

 t)

Figure 3 Approximate solutions at t = 0 to 40 with step size h = 2.
where B1,B0,B1,. . ., BN − 1 BN,BN + 1 forms a basis over
the region a ≤ x ≤ b.
Each cubic B-spline covers four elements, so each

element is covered by four cubic B-splines. The values of
Bj(x) and its derivative may be tabulated as in Table 1.
Using approximate function (2.1) and cubic B-spline

function (2.2), the approximate values of UN(x) and its
two derivatives at the knots/nodes are determined in
terms of the time parameters αj as follows:
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Figure 4 Approximate solutions at t = 0 to 40 with step size h = 2.
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Uj ¼ αj�1 þ 4αj þ αjþ1

hUj
0 ¼ 3 αjþ1 � αj�1

� �
h2Uj

00 ¼ 6 αj�1 � 2αj þ αjþ1
� � ð2:3Þ

Modified cubic B-spline collocation method
In this paper, we have used the following modification in
cubic B-spline basis functions to solve Fisher's equation.
In the proposed method, there is a necessity to modify
the cubic B-spline basis functions into a new set of basis
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Figure 5 Time-dependent profiles versus x for ρ = 2,000 and N = 200
functions in such manner, so we obtained a diagonally
dominant system of differential equations for handling
with Dirichlet boundary conditions. The procedure for
modifying the basis functions is given as follows:

B~0 xð Þ ¼ B0 xð Þ þ 2B�1 xð Þ

B~1 xð Þ ¼ B1 xð Þ � B�1 xð Þ

B~j xð Þ ¼ Bj xð Þ; j ¼ 2; . . . ;N � 2 ð3:1Þ
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x

at t = 0.002, 0.003, 0.004, 0.005, 0.006, 0.007.
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Figure 6 Time-dependent profiles versus x for ρ = 5,000 and N = 200 at t = 0.001, 0.002, 0.003, 0.004, 0.005.
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BN�1 xð Þ ¼ BN�1 xð Þ � BNþ1 xð Þ

B~N xð Þ ¼ BN xð Þ þ 2BNþ1 xð Þ
Now, we consider the approximate solution using
the modified cubic B-spline basis functions in the
form
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Figure 7 Time-dependent profiles versus x for ρ = 10,000 and N = 20
UN x0; tð Þ ¼ g0 tð Þ; for j ¼ 0

UN xj; t
� � ¼ XN

j¼0

αj~Bj xð Þ; for j ¼ 1; . . . ;N � 1

UN xN ; tð Þ ¼ g1 tð Þ; for j ¼ N

ð3:2Þ

To apply the proposed method with the modified set

of cubic B-spline basis functions B~j xð Þ; j ¼ 0; . . . ;N to
Equations 1.1 to 1.3, we proceed as follows:
0.4 0.6 0.8

x

0 at t = 0.001, 0.0015, 0.002, 0.0025, 0.003, 0.0035.



Table 2 Comparison of numerical and exact solutions

x t = 0.001 t = 0.0015 t = 0.002

Mittal and Arora
[19]

Present Exact
solution

Mittal and Arora
[19]

Present Exact
solution

Mittal and Arora
[19]

Present Exact
solution

−0.20 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

−0.15 1.00000 1.00000 1.00000 1.00000 1.00001 1.00000 1.00000 1.00001 1.00000

−0.10 0.99999 0.99999 0.99999 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

−0.05 0.99994 0.99994 0.99994 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

0.05 0.99633 0.99631 0.99631 0.99994 0.99994 0.99994 1.00000 1.00000 1.00000

0.10 0.97203 0.97199 0.97209 0.99956 0.99956 0.99956 0.99999 0.99999 0.99999

0.15 0.80985 0.81066 0.81200 0.99655 0.99657 0.99661 0.99995 0.99995 0.99995

0.20 0.28644 0.29002 0.29376 0.97347 0.97386 0.97430 0.99958 0.99959 0.99959

0.25 0.01580 0.01688 0.01774 0.81756 0.82149 0.82512 0.99670 0.99679 0.99688

0.30 0.00032 0.00035 0.00038 0.29819 0.30817 0.31675 0.97454 0.97551 0.97634

0.40 0.00000 0.00000 0.00000 0.00034 0.00040 0.00045 0.30845 0.32607 0.34035

0.50 0.00000 0.00000 0.00000 0.00000 0.00001 0.00001 0.00036 0.00045 0.00053

0.55 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00001 0.00001

0.60 0.00000 0.00000 0.00000 2.76E−11 0.00000 0.00000 1.03E−07 0.00000 0.00000

0.65 0.00000 0.00000 0.00000 4.65E−13 0.00000 0.00000 1.74E−09 0.00000 0.00000

0.70 0.00000 0.00000 0.00000 7.85E−15 0.00000 0.00000 2.93E−11 0.00000 0.00000
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Our numerical treatment for solving Equation 1.1 using
the collocation method with modified cubic B-splines is to
find an approximate solution UN(x,t) to the exact solution
u(x,t) which is given in (3.2), where αj(t) are time-
dependent quantities to be determined from the boundary
conditions and collocation from the differential equation.
Using approximate solution (3.2) and modified cubic

B-spline function (3.1), the approximate values of Ut
N(x)
Table 3 Comparison of numerical and exact solutions

x t = 0.0025 t =

Mittal and Arora
[19]

Present Exact
solution

Mittal and Arora
[19]

−0.20 1.00000 1.00000 1.00000 1.00000

−0.15 1.00000 1.00001 1.00000 1.00000

−0.10 1.00000 1.00000 1.00000 1.00000

−0.05 1.00000 1.00000 1.00000 1.00000

0.05 1.00000 1.00000 1.00000 1.00000

0.10 1.00000 1.00000 1.00000 1.00000

0.15 1.00000 1.00000 1.00000 1.00000

0.20 0.99999 0.99999 0.99999 1.00000

0.25 0.99995 0.99995 0.99995 1.00000

0.30 0.99960 0.99961 0.99963 0.99999

0.40 0.97545 0.97701 0.97822 0.99961

0.50 0.31797 0.34396 0.36446 0.97625

0.55 0.01903 0.02347 0.02728 0.83391

0.60 0.00038 0.00051 0.00063 0.32714

0.65 6.48E−06 0.00001 0.00001 0.02012

0.70 1.09E−07 0.00000 0.00000 0.00040
at the knots/nodes are determined in terms of the time
parameters αj as follows:

Utð Þ0 ¼ _g0 tð Þ; for j ¼ 0

Utð Þj ¼
XN
j¼0

_αj~Bj xð Þ; for j ¼ 1; . . . ;N � 1

Utð ÞN ¼ _g1 tð Þ; for j ¼ N

ð3:3Þ
0.003 t = 0.0035

Present Exact
solution

Mittal and Arora
[19]

Present Exact
solution

1.00000 1.00000 1.00000 1.00000 1.00000

1.00002 1.00000 1.00000 1.00002 1.00000

1.00000 1.00000 1.00000 1.00000 1.00000

1.00000 1.00000 1.00000 1.00000 1.00000

1.00000 1.00000 1.00000 1.00000 1.00000

1.00000 1.00000 1.00000 1.00000 1.00000

1.00000 1.00000 1.00000 1.00000 1.00000

1.00000 1.00000 1.00000 1.00000 1.00000

1.00000 1.00000 1.00000 1.00000 1.00000

0.99999 0.99999 1.00000 1.00000 1.00000

0.99964 0.99966 0.99999 0.99999 0.99999

0.97839 0.97995 0.99962 0.99966 0.99968

0.84903 0.85994 0.99703 0.99735 0.99757

0.36191 0.38895 0.97700 0.97968 0.98155

0.02608 0.03136 0.83851 0.85715 0.87012

0.00057 0.00074 0.33612 0.37997 0.41371



Table 4 Comparison of numerical and exact solutions at t = 2

x Cattani and Kudreyko [17] Mittal and Arora [19] Present Exact

−20 0.498681 0.498653 0.498652 0.498652

−16 0.495130 0.495745 0.495741 0.495740

−12 0.486758 0.486679 0.486670 0.486669

−8 0.459576 0.459478 0.459477 0.459478

−4 0.386681 0.386742 0.386787 0.386791

2 0.158878 0.159011 0.158859 0.158850

6 0.041822 0.041877 0.041852 0.041851

10 0.006455 0.006426 0.006462 0.006465

14 0.000750 0.000746 0.000754 0.000755

18 7.617E−05 7.79E−05 0.000079 0.000079
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Using (3.1) and Table 1 in (3.3), we obtained

Utð Þ0 ¼ 6 _α0; for j ¼ 0
Utð Þj ¼ _αj�1 þ 4 _αj þ _αjþ1; for j ¼ 1; . . . ;N � 1
Utð ÞN ¼ 6 _αN ; for j ¼ N

ð3:4Þ

Using (3.1) to (3.4) in (1.1) to (1.3), we have

6 _α0 ¼ _g0 tð Þ; for j ¼ 0

XNþ1

0

_αjB~j xð Þ ¼ α
XNþ1

0

αjB~j
00
xð Þ

( )

þ β
XNþ1

0

αjB~j xð Þ
( )

1�
XNþ1

0

αjB~j xð Þ
( )

;

for j ¼ 1; . . . ;N � 1
Table 5 Comparisons of numerical and exact solutions at t =

x Cattani and Kudreyko [17] Mitta

−20 0.498678 0.4994

−16 0.498525 0.4981

−12 0.494757 0.4941

−8 0.481776 0.4817

−4 0.445508 0.4453

2 0.279025 0.2800

6 0.116980 0.1171

10 0.025927 0.0258

14 0.003695 0.0035

18 0.000409 0.0003

6 _αN ¼ _g1 tð Þ; for j ¼ N ð3:5Þ
Using (3.2) to (3.4) in (3.5), we get a system of ordin-
ary differential equations of the form

A _α ¼ φ ð3:6Þ

where A ¼

6 0

1 4 1

⋯ ⋯ ⋯

⋯ ⋯ ⋯

1 4 1

0 6

2
666666664

3
777777775
;

_α ¼

_α0

_α1

⋯

⋯

_αN�1

_αN

2
666666664

3
777777775
; φ ¼

φ0
φ1
⋯

⋯

φN�1

φN

2
666666664

3
777777775

φ0 ¼ _g0 tð Þ; for j ¼ 0
4

l and Arora [19] Present Exact

12 0.499413 0.499413

46 0.498142 0.498142

49 0.494140 0.494140

63 0.481756 0.481756

72 0.445395 0.445398

82 0.279947 0.279941

96 0.116975 0.116963

81 0.025967 0.025974

59 0.003618 0.003622

95 0.000405 0.000406
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Figure 8 Approximate solutions at t = 1 to 5 with step 1.
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φj ¼ α αj�1 � 2 αj þ αjþ1

þβ αj�1 þ 4 αj þ αjþ1
� �

1� αj�1 þ 4 αj þ αjþ1
� �� �

for j ¼ 1; . . . ;N � 1

φN ¼ _g1 tð Þ; for j ¼ N

Here A is the (N + 1) × (N + 1) tridiagonal matrix and
φ is the (N + 1)-order vector which depends on the
boundary conditions.
Now, we solve the first-order ordinary differential

equation system (3.6) by using SSP-RK54 scheme [20].
Once the parameter α0 has been determined at a speci-
fied time level, we can compute the solution at the re-
quired knots. In (3.6), first we solve this system for
vector _α by using a variant of the Thomas algorithm only
once at each time level t > 0, then we get a first-order
system of ordinary differential equations which can be
solved for vector α by using SSP-RK54 scheme, and con-
sequently, the solution UN(x,t) is completely known.

The initial vector α0

The initial vector α0 can be obtained from the initial
condition and boundary values of the derivatives of the
initial condition as the following expressions:

U xj; 0
� � ¼ g0 0ð Þ; j ¼ 0;

U xj; 0
� � ¼ φ xj

� �
; j ¼ 1; . . . ;N � 1

U xj; 0
� � ¼ g1 0ð Þ; j ¼ N :
This yields a (N + 1) × (N + 1) system of equations of
the form
Aα0 = b, (4.1)
where

A ¼

6 0

1 4 1

⋯ ⋯ ⋯

⋯ ⋯ ⋯

1 4 1

0 6

2
666666664

3
777777775
; α0 ¼

α00
α01
⋯

⋯

α0N�1

α0N

2
666666664

3
777777775
; and

b ¼

g0 0ð Þ
φ x1ð Þ
⋯

⋯

φ xN�1ð Þ
g1 0ð Þ

2
666666664

3
777777775

The solution of (4.1) can be found using the Thomas
algorithm.

Numerical experiments and discussion
In order to show the utility and adaptability of the
method, it is tested on the following three test examples.
Example 1. We consider Equation 1.1 as given in [6]

with initial condition

u0 xð Þ ¼ sech2 10xð Þ; ð5:1Þ

and boundary conditions are
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limx→�1u x; tð Þ ¼ 0 and limx→1u x; tð Þ ¼ 0: ð5:2Þ
For all cases, we set α = 0.1, β = 1.0, h = 0.05, and Δt =

0.005.
The space scale L is adjusted to ensure that there is

sufficient space for waves to propagate.
The contour plots of u at different t are shown in

Figures 1, 2, 3, and 4.
Figure 1 is for a short period of time, showing the re-

sults or t = 0 to 0.2 with step size h = 0.05. At the very
beginning, near x = 0, uxx < 0 with a large absolute
value, but the reaction term u(1 − u) is quite small, that
is, the effect of diffusion dominates over the effect of re-
action, so the peak goes down rapidly and gets flatter.
Figure 2 is for the period of time for t = 0 to 5 with

step size h = 0.5. It shows that after the peak of the con-
tour arrives at the lowest level, the reaction term domi-
nates the diffusion (gradually), so it begins to go up and
flatten itself until at the top u = 1.
Figure 3 is for the period of time t = 0 to 40 with step

size h = 2. It shows that after the peak has returned to
its original position, the contour on the top becomes
flatter and flatter. So, after a long time, the contour
looks like a bell with a flat top and very steep lateral
sides, which propagate to the left and right symmetric-
ally. The wave fronts (i.e., the lateral sides) approach a
fixed shape, and their propagating speed approaches a
constant value c.
Finally, in Figure 4, we show the results for the initial

condition

u0 xð Þ ¼ 0:1sech2 10xð Þ
Example 2. We consider Equation 1.1 as given in [19]

with α = 1 as

∂u
∂t

¼ ∂2u
∂x2

þ β u 1� uð Þ; ð5:3Þ

and boundary conditions are

lim
x→�1 u x; tð Þ ¼ 1:0 and lim

x→1 u x; tð Þ ¼ 0: ð5:4Þ

The exact solution of Equation 5.3 is taken as

u x; tð Þ ¼ 1

1þ exp
ffiffi
β
6

q� 	
x� 5β

6


 �
t

� 	� 2 ð5:5Þ

The numerical solution of Equation 5.3 with given
boundary conditions by taking [a, b] = [−0.2, 0.8] has been
computed at β = 2,000, 5,000, and 10,000 with Δt = 0.0001.
The number of partitions is taken 40 for β = 2,000, 5,000,
and 120 for β = 10,000.
The computed results are presented graphically to

compare results with other researchers. Results obtained
are found in good agreement with the results obtained
by Olmos and Shizgal [13] and Mittal and Arora [19].
Figures 5, 6, and 7 have depicted the exact and numer-

ical solutions at different times.
For β = 10,000, results are also presented in a tabular

form in Tables 2 and 3 to compare with the exact
solutions.
Example 3. We consider Fisher's equation as given in

[19]
∂u
∂t

¼ α
∂2u
∂x2

� bu2 þ au; ð5:6Þ

where t ∈ [0,t], 0 < t < ∞, −∞ < x < ∞ with initial condition

u x; 0ð Þ ¼ � 1
4
a
b

sech2 �
ffiffiffiffiffiffiffi
a
24c

r
x

� 	
� 2tanh �

ffiffiffiffiffiffiffi
a
24c

r
x

� 	
� 2

� 
ð5:7Þ

and boundary conditions are

lim
x→�1 u x; tð Þ ¼ 0:5 and lim

x→1 u x; tð Þ ¼ 0: ð5:8Þ

The exact solution of the problem is given as

u x; tð Þ ¼ � 1
4
a
b

sech2 �
ffiffiffiffiffiffiffi
a
24c

r
xþ 5a

12
t

� 	�

�2tanh �
ffiffiffiffiffiffiffi
a
24c

r
xþ 5a

12
t

� 	
� 2


: ð5:9Þ

The solution of the equation predicts a wave front of
increasing allele frequency that propagates through the
population. Only original alleles are present in front of
the wave, and behind the wave is an area taken by over
the mutant allele. In short, this equation states that the
change of the density of labeled particles at a given time
depends on the infection rate −bu2 + au and the diffu-
sion in the neighboring area.
The term au measures the infection rate, which is pro-

portional to the product of the density of the infected
and uninfected particles. The term −bu2 shows how fast
the infected particles are diffusing. Some authors have
already found an analytical solution [12,17] of Equation
5.6 for the initial condition (5.7). This solution presents
a shock-like travelling wave. The amplitude of the wave
is proportional to a

b . It means that the amplitude in-
creases as the coefficient a increases, but decreases as b

increases. The support of the wave is defined by
ffiffiffiffiffi
24c
a

q
.

The rate of the wave propagation is
ð5= ffiffi6p Þffiffiffi

ac
p

The solution of Equation 5.6 is found out by using the
B-spline collocation method for a = 0.5, b = c = 1.0.
The results obtained are shown in Tables 4 and 5 and

compared with the solutions obtained in [17] and [19]
with the exact solution. Figure 8 shows the time-
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dependent profile versus x with h = 0.25 and Δt = 0.01,
where [xL, xR] = [−30, 30], at t = 1, 2, 3, 4, 5.

Conclusions
In this paper, we have developed a collocation method for
solving nonlinear Fisher's reaction–diffusion equation with
Dirichlet's boundary conditions using modified cubic B-
spline basis functions. In the present method, we apply
modified cubic B-splines for spatial variable and derivatives,
which produce a system of first-order ordinary differential
equations. The resulting systems of ordinary differential
equations are solved by using SSP-RK54 scheme. The nu-
merical approximate solutions to nonlinear Fisher's reac-
tion–diffusion equation have been computed without using
any transformation and linearization process. This method
is tested on three test examples, and the approximate nu-
merical outcomes obtained are comparable with existing
solutions found in the literature. Easy and economical im-
plementation is the strength of this method. The computed
results justify the advantage of this method.
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