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Abstract

This paper is concerned with a quasilinear elliptic system, which involves the Caffarelli-Kohn-Nirenberg inequality and
multiple critical exponents. The existence and multiplicity results of positive solutions are obtained by variational
methods.
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Introduction
The aim of this paper is to establish the existence of
nontrivial solutions to the following quasilinear elliptic
system:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

− �pu − μ
|u|p−2u

|x|p = 1
p∗ Fu(x,u, v) + λ

|u|q−2u
|x|s , x ∈ �,

− �pv − μ
|v|p−2v

|x|p = 1
p∗ Fv(x,u, v) + θ

|v|q−2v
|x|s , x ∈ �,

u = v = 0, x ∈ ∂�,
(1)

where 0 ∈ � is a bounded domain in R
N (N ≥ 3) with

smooth boundary ∂�, λ > 0, θ > 0, 0 ≤ μ < μ �(
N−p
p

)p
, 0 ≤ s < p, 1 ≤ q < p, and p∗(t) � p(N−t)

N−p is the
Hardy-Sobolev critical exponent. Note that p∗(0) = p∗ =
pN
N−p is the Sobolev critical exponent. We assume that F ∈
C1(� × (R+)2,R+) is positively homogeneous of degree
p∗, that is, F(x, tu, tv) = tp∗F(x,u, v) (t > 0) holds for all
(x,u, v) ∈ �×(R+)2, (Fu(x,u, v), Fv(x,u, v)) = ∇F(x,u, v).
Problem (1) is related to the well-known Caffarelli-

Kohn-Nirenberg inequality in [1]:(∫
�

|u|r
|x|t dx

) p
r ≤ Cr,t,p

∫
�

|∇u|pdx, for all u ∈ D1,p
0 (�), (2)
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where p ≤ r < p∗(t). If t = r = p, the above inequality
becomes the well-known Hardy inequality [1-3]:∫

�

|u|p
|x|p dx ≤ 1

μ

∫
�

|∇u|pdx, for all u ∈ D1,p
0 (�).

(3)

In the space D1,p
0 (�), we employ the following norm:

||u|| = ||u||D1,p
0 (�)

:=
(∫

�

(
|∇u|p − μ

|u|p
|x|p

)
dx
) 1

p
,

μ ∈[ 0,μ).

Using the Hardy inequality (3), this norm is equiva-
lent to the usual norm

(∫
�

|∇u|pdx) 1p . The operator L :=(
|∇ · |p−2∇ · −μ

|·|p−2
|x|p
)
is positive in D1,p(�) if 0≤μ<μ.

Now, we define the space W = D1,p
0 (�) × D1,p

0 (�) with
the norm

||(u, v)||p = ||u||p + ||v||p.
Also, by Hardy inequality and Hardy-Sobolev inequality,

for 0 ≤ μ < μ, 0 ≤ t < p and p ≤ r ≤ p∗(t), we can
define the best Hardy-Sobolev constant:

Aμ,t,r(�) = inf
u∈D1,p

0 (�)\{0}

∫
�

(
|∇u|p − μ

|u|p
|x|p
)
dx(∫

�
|u|r
|x|t dx

) p
r

.
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In the important case when r = p∗(t), we simply denote
Aμ,t,p∗(t) as Aμ,t . Note that Aμ,0 is the best constant in the
Sobolev inequality, namely,

Aμ,0(�) = inf
u∈D1,p

0 (�)\{0}

∫
�

(
|∇u|p − μ

|u|p
|x|p
)
dx(∫

�
|u|p∗dx

) p
p∗

.

Also, we denote

Ãμ,F = inf
(u,v)∈W\{(0,0)}

∫
�

(
|∇u|p + |∇v|p − μ

|u|p+|v|p
|x|p

)
dx(∫

�
F(x,u, v)dx

) p
p∗

.

(4)

Throughout this paper, let R0 be the positive constant
such that � ⊂ B(0;R0), where B(0;R0) = {x ∈ R

N : |x| <

R0}. By Hölder and Sobolev-Hardy inequalities, for all u ∈
D1,p
0 (�), we obtain

∫
�

|u|q
|x|s ≤

(∫
B(0;R0)

|x|−s
) p∗(s)−q

p∗(s)
(∫

�

|u|p∗(s)

|x|s
) q

p∗ (s)

≤
(∫ R0

0
rN−s+1dr

) p∗(s)−q
p∗(s)

A
− q

p
μ,s ||u||q

≤
(
NωNRN−s

0
N − s

) p∗(s)−q
p∗(s)

A
− q

p
μ,s ||u||q,

(5)

where ωN = 2π
N
2

N	(N2 )
is the volume of the unit ball in R

N .
Existence of nontrivial nonnegative solutions for ellip-

tic equations with singular potentials was recently studied
by several authors, but, essentially, only with a solely crit-
ical exponent. We refer, e.g., in bounded domains and for
p = 2 in [3-6], and for general p > 1 in [7-11] and the
references therein. For example, Kang [11] studied the fol-
lowing elliptic equation via the generalizedMountain Pass
Theorem [12]:⎧⎪⎨⎪⎩ − �pu − μ

|u|p−2u
|x|p = |u|p∗(t)−2u

|x|t + λ
|u|p−2u

|x|s , x ∈ �,

u = 0, x ∈ ∂�

(6)

where � ⊂ R
N is a bounded domain, 1 < p < N , 0 ≤

s, t < p and 0 ≤ μ < μ �
(
N−p
p

)p
. Also, the authors

in [13] via the Mountain Pass Theorem of Ambrosetti and
Rabinowitz [14] proved that

−�pu − μ
up−1

|x|p = |u|p∗−1 + up∗(s)−1

|x|s , in R
N

admits a positive solution in R
N , whenever μ < μ �(

N−p
p

)p
.

Also, in recent years, several authors have used the
Nehari manifold to solve semilinear and quasilinear prob-
lems (see [15-22] and references therein). Brown and
Zhang [23] have studied a subcritical semi-linear ellip-
tic equation with a sign-changing weight function and a
bifurcation real parameter in the case p = 2 and Dirichlet
boundary conditions. In [22], the author studied the
Equation 6 via the Nehari manifold. Exploiting the rela-
tionship between the Nehari manifold and fibering maps
(i.e., maps of the form t �→ Jλ(tu), where Jλ is the Euler
function associated with the equation), they gave an inter-
esting explanation of the well-known bifurcation result.
In fact, the nature of the Nehari manifold changes as the
parameter λ crosses the bifurcation value. In this work, we
give a variational method which is similar to the fibering
method (see [16,23]) to prove the existence and multiplic-
ity of nontrivial nonnegative solutions of problem (1).
Before stating our result, we need the following

assumptions:

(H1) F : � × (R+)2 → R
+ is a C1 function such that

F(x, tu, tv) = tp∗F(x,u, v) (t > 0) holds for all
(x,u, v) ∈ � × (R+)2;

(H2) F(x, ,u, 0) = F(x, , 0, v) = Fu(x, 0, v) = Fv(x,u, 0) =
0 where u, v ∈ R

+;
(H3) Fu(x,u, v) and Fv(x,u, v) are strictly increasing

functions about u > 0 and v > 0.

Moreover, using assumption (H1), we have the so-called
Euler identity

(u, v) · ∇F(x,u, v) = p∗F(x,u, v), (7)

and

F(x,u, v)≤K
(|u|p+|v|p) p∗p , for some constant K > 0.

(8)

This paper is divided into three sections organized as
follows: In the ‘Notations and preliminaries,’ we establish
some elementary results. Finally, in the ‘Main results and
proof,’ we state our main result (Theorem 1) and prove it.

Notations and preliminaries
The corresponding energy functional of problem (1) is
defined by

Jλ,θ (u, v) = 1
p
||(u, v)||p− 1

p∗

∫
�

F(x,u, v)dx− 1
q
Kλ,θ (u, v),

for each (u, v) ∈ W , where Kλ,θ (u, v) = λ
∫
�

|u|q
|x|s dx +

θ
∫
�

|v|q
|x|s dx.
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In order to verify Jλ,θ ∈ C1(W ,R), we need the following
lemmas:

Lemma 1. Suppose that (H3) holds. Assume that F ∈
C1(� × R

2,R) is positively homogenous of degree p∗, then
Fu, Fv ∈ C(� × R

+2,R+) is positively homogenous of
degree p∗ − 1.

Moreover by Lemma 1, we get the existence of positive
constantM such that

|Fu(x,u, v)| ≤ M
(
|u|p∗−1 + |v|p∗−1

)
, ∀x ∈ �, u, v ∈ R

+,

(9)

|Fv(x,u, v)| ≤ M
(
|u|p∗−1 + |v|p∗−1

)
, ∀x ∈ �, u, v ∈ R

+.

(10)

Now, we consider the functional ψ(u, v) =∫
�
F(x,u, v)dx, then by Lemma 1, (9), (10), and

by similar computation as Lemma 2.2 in [24],
we get the functional ψ of class C1(W ,R+) and
〈ψ ′(u, v), (a, b)〉 = ∫

�
(Fu(x,u, v)a+Fu(x,u, v)b)dx, where

(u, v), (a, b) ∈ W . Thus, we have Jλ,θ ∈ C1(W ,R).
Now, we consider the problem on the Nehari manifold.

Define the Nehari manifold (cf. [25]):

Nλ,θ = {(u, v) ∈ W \ {(0, 0)}|〈J ′λ,θ (u, v), (u, v)〉 = 0
}
,

where

〈J ′λ,θ (u, v), (u, v)〉 = ||(u, v)||p−
∫

�

F(x,u, v)dx−Kλ,θ (u, v).

Note that Nλ,θ contains every nonzero solution of (1).
Define

�λ,θ (u, v) = 〈J ′λ,θ (u, v), (u, v)〉,
then for (u, v) ∈ Nλ,θ ,

〈�′
λ,θ (u, v), (u, v)〉

= p||(u, v)||p − p∗
∫

�

F(x,u, v)dx − qKλ,θ (u, v)

(11)

= (p − q)||(u, v)||p − (p∗ − q)
∫

�

F(x,u, v)dx (12)

= (p − p∗)||(u, v)||p − (q − p∗)Kλ,θ (u, v). (13)

Now, we split Nλ,θ into three parts:

N+
λ,θ = {(u, v) ∈ Nλ,θ : 〈�′

λ,θ (u, v), (u, v)〉 > 0
}
,

N0
λ,θ = {(u, v) ∈ Nλ,θ : 〈�′

λ,θ (u, v), (u, v)〉 = 0
}
,

N−
λ,θ = {(u, v) ∈ Nλ,θ : 〈�′

λ,θ (u, v), (u, v)〉 < 0
}
.

To state our main result, we now present some impor-
tant properties of N+

λ,θ , N0
λ,θ and N−

λ,θ .

Lemma 2. There exists a positive number C =
C(p, q,N , S) > 0 such that if 0 < λ

p
p−q + θ

p
p−q < C, then

N0
λ,θ = ∅.

Proof. Suppose otherwise, let

C =
(

p − q
K(p∗ − q)

) p
p∗−p

(
p∗ − p
p∗ − q

) p
p−q

×
(
NωNRN−s

0
N − s

)− p(p∗(s)−q)
p∗(s)(p−q)

A
q

p−q
μ,s A

p∗
p∗−p
μ,0 .

Then, there exists (λ, θ) with

0 < λ
p

p−q + θ
p

p−q < C,

such that N0
λ,θ �= ∅. Then, for (u, v) ∈ N0

λ,θ , by (12) and
(13), one can get

||(u, v)||p = p∗ − q
p − q

∫
�

F(x,u, v)dx.

By the Sobolev imbedding theorem, the Minkowski
inequality and (8),

∫
�

F(x,u, v)dx ≤ K
(∫

�

(|u|p + |v|p) p∗p dx
) p

p∗ · p∗p

≤ K
((∫

�

|u|p∗
dx
) p

p∗ +
(∫

�

|v|p∗
dx
) p

p∗
) p∗

p

= K
(
||u||pLp∗ (�)

+ ||v||pLp∗ (�)

) p∗
p

≤ KA
− p∗

p
μ,0

(||u||p + ||v||p) p∗p
= KA

− p∗
p

μ,0 ||(u, v)||p∗
.

(14)

It follows that

||(u, v)|| ≥
(

p − q
K(p∗ − q)

A
p∗
p

μ,0

) 1
p∗−p

,

and

p∗ − p
p∗ − q

||(u, v)||p = Kλ,θ (u, v) = λ

∫
�

|u|q
|x|s dx + θ

∫
�

|v|q
|x|s dx

≤
(
NωNRN−s

0
N − s

) p∗(s)−q
p∗(s)

× A
− q

p
μ,s
(
λ

p
p−q + θ

p
p−q
) p−q

p ||(u, v)||q.
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Thus,

||(u, v)|| ≤
(
p∗ − q
p∗ − p

) 1
p−q
(
NωNRN−s

0
N − s

) p∗(s)−q
p∗(s)(p−p)

× A
− q

p(p−p)
μ,s

(
λ

p
p−q + θ

p
p−q
) 1

p .

This implies

λ
p

p−q + θ
p

p−q ≥ C.

This is a contradiction! Here,

C =
(

p − q
K(p∗ − q)

) p
p∗−p

(
p∗ − p
p∗ − q

) p
p−q

×
(
NωNRN−s

0
N − s

)− p(p∗(s)−q)
p∗(s)(p−q)

A
q

p−q
μ,s A

p∗
p∗−p
μ,0 .

Lemma 3. The energy functional Jλ,θ is coercive and
bounded below on Nλ,θ .

Proof. If (u, v) ∈ Nλ,θ , then by (5),

Jλ,θ (u, v) = 1
p
||(u, v)||p − 1

p∗

∫
�

F(x,u, v)dx − 1
q
Kλ,θ (u, v)

≥ p∗ − p
pp∗ ||(u, v)||p −

(
p∗ − q
p∗q

)(NωNRN−s
0

N − s

) p∗(s)−q
p∗(s)

×
(
λ

p
p−q + θ

p
p−q
) p−q

p A
− q

p
μ,s ||(u, v)||q.

Since 0 ≤ s < N , 1 < q < p < p∗, we see that Jλ,θ is
coercive and bounded below on Nλ,θ .

Furthermore, similar to the argument in Brown and
Zhang (see[23], Theorem 2.3 or see Binding et al. [26]), we
can conclude the following result:

Lemma 4. Assume that (u0, v0) is a local minimizer for
Jλ,θ on Nλ,θ and that (u0, v0) /∈ N0

λ,θ , then J ′λ,θ (u0, v0) = 0
in W−1.

Now, by Lemma 2, we let

�C0 =
{
(λ, θ) ∈ R

2 \ {(0, 0)} : 0 < λ
p

p−q + θ
p

p−q < C
}
,

where C0 =
(
q
p

) p
p−q C < C. If (λ, θ) ∈ �C0 , we have

Nλ,θ = N+
λ,θ ∪ N−

λ,θ . Define

ξλ,θ = inf
(u,v)∈Nλ,θ

Jλ,θ (u, v)

ξ+
λ,θ = inf

(u,v)∈N+
λ,θ

Jλ,θ (u, v)

ξ−
λ,θ = inf

(u,v)∈N−
λ,θ

Jλ,θ (u, v)

Lemma 5. There exists a positive number C0 such that if
(λ, θ) ∈ �C0 , then

(i) ξλ,θ ≤ ξ+
λ,θ < 0;

(ii) there exists d0 = d0(p, q,N ,K , S, λ, θ) > 0 such
that ξ−

λ,θ > d0.

Proof. (i) For (u, v) ∈ N+
λ,θ , by (13), we have

Kλ,θ (u, v) ≥ p∗ − p
p∗ − q

||(u, v)||p,

and so

Jλ,θ (u, v) =
(
1
p

− 1
p∗

)
||(u, v)||p −

(
1
q

− 1
p∗

)
Kλ,θ (u, v)

≤
(
1
p

− 1
p∗

)
||(u, v)||p−

(
1
q

− 1
p∗

)
p∗ − p
p∗ − q

||(u, v)||p

= p∗ − p
p∗

(
1
p

− 1
q

)
||(u, v)||p < 0.

Thus, from the definition of ξλ,θ and ξ+
λ,θ , we can

deduce that ξλ,θ < ξ+
λ,θ < 0.

(ii) For (u, v) ∈ N−
λ,θ , by Lemma 2,

||(u, v)|| ≥
(

p − q
K(p∗ − q)

A
p∗
p

μ,0

) 1
p∗−p

.

Moreover, by Lemma 3,

Jλ,θ (u, v) ≥ p∗ − p
pp∗ ||(u, v)||p

−
(
p∗ − q
p∗q

)(NωNRN−s
0

N − s

) p∗(s)−q
p∗(s)

×
(
λ

p
p−q + θ

p
p−q
) p−q

p A
− q

p
μ,s ||(u, v)||q
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= ||(u, v)||q
⎡⎢⎣p∗(t) − p

pp∗ ||(u, v)||p−q

−
(
p∗ − q
p∗q

)(NωNRN−s
0

N − s

) p∗(s)−q
p∗(s)

×A
− q

p
μ,s
(
λ

p
p−q + θ

p
p−q
) p−q

p

⎤⎥⎦
≥
(

p − q
K(p∗ − q)

A
p∗
p

μ,0

) q
p∗−p

[
p∗ − p
pp∗ ||(u, v)||p−q

−
(
p∗ − q
p∗q

)(NωNRN−s
0

N − s

) p∗(s)−q
p∗(s)

×A
− q

p
μ,s
(
λ

p
p−q + θ

p
p−q
) p−q

p

]
.

Thus, if 0 < λ
p

p−q + θ
p

p−q < C0, then for each (u, v) ∈
N−

λ,θ one can get

Jλ,θ (u, v) ≥ d0 = d0(p, q,N ,K , S, λ, θ) > 0.

For each (u, v) ∈ W \ {(0, 0)} such that
∫
�
F(x,u, v)dx >

0, let

tmax =
(

(p − q)||(u, v)||p
(p∗ − q)

∫
�
F(x,u, v)dx

) 1
p∗−p

.

Lemma 6. Assume that 0 < λ
p

p−q + θ
p

p−q < C0. Then,
for every (u, v) ∈ W with

∫
�
F(x,u, v)dx > 0, there exists

tmax > 0 such that there are unique t+ and t− with 0 <

t+ < tmax < t− such that (t±u, t±v) ∈ N±
λ,θ and

Jλ,θ (t+u, t+v) = inf
0≤t≤tmax

Jλ,θ (tu, tv),

Jλ,θ (t−u, t−v) = sup
t≥tmax

Jλ,θ (tu, tv).

Proof. The proof is similar to Lemma 2.6 in [17] and is
omitted.

Remark 1. If

0 < λ
p

p−q + θ
p

p−q < C0,

then, by Lemmas 5 and 6 for every (u, v) ∈ W with∫
�
F(x,u, v)dx > 0, we can easily deduce that there exists

tmax > 0 such that there are unique t− with tmax < t− such
that (t−u, t−v) ∈ N−

λ,θ and

Jλ,θ (t−u, t−v) = sup
t≥0

Jλ,θ (tu, tv) ≥ ξ−
λ,θ > 0.

Main results and proof
We are now ready to state our main result.

Theorem 1. Assume that 0 ≤ s < p, N ≥ 3, 0 ≤ μ < μ

and 1 ≤ q < p. Then, we have the following results:

(i) If λ, θ > 0 satisfy λ
p

p−q + θ
p

p−q < C, then (1) has at
least one positive solution in W.
(ii) If λ, θ > 0 satisfy 0 < λ

p
p−q + θ

p
p−q < C0, then (1)

has at least two positive solutions in W.

Now, we give an example to illustrate the result of
Theorem 1.

Example 1. Consider the problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− �pu−μ

|u|p−2u
|x|p = α

α+β
|u|α−2|v|βu+λ

|u|q−2u
|x|s , x ∈ �,

− �pv−μ
|v|p−2v

|x|p = β

α+β
|u|α|v|β−2v+θ

|v|q−2v
|x|s , x ∈ �,

u = v = 0, x ∈ ∂�,
(15)

where 1 < α,β < p − 1, and α + β = p∗. Then, all condi-
tions of Theorem 1 hold. Hence, the system (15) has at least
one positive solution if λ

p
p−q + θ

p
p−q < C and has at least

two positive solutions if 0 < λ
p

p−q + θ
p

p−q < C0.

First, we get the following result:

Lemma 7. (i) If 0<λ
p

p−q+θ
p

p−q <C, then there exists a
(PS)ξλ,θ -sequence {(un, vn)} ⊂ Nλ,θ in W for Jλ,θ ;
(ii) If 0 < λ

p
p−q + θ

p
p−q < C0, then there exists a

(PS)ξ−
λ,θ
-sequence {(un, vn)} ⊂ N−

λ,θ in W for Jλ,θ ,
where C is the positive constant given in Lemma 2, and

C0 =
(
q
p

) p
p−q C.

Proof. The proof is similar to Proposition 9 in [19] and
is omitted.

Theorem 2. Assume that 0 ≤ s < p, N ≥ 3, 0 ≤ μ < μ,
and 1 ≤ q < p. If 0 < λ

p
p−q + θ

p
p−q < C, then there exists

(u+
0 , v

+
0 ) ∈ N+

λ,θ such that

(i) Jλ,θ (u+
0 , v

+
0 ) = ξλ,θ = ξ+

λ,θ .
(ii) (u+

0 , v
+
0 ) is a positive solution of (1),

(iii) Jλ,θ (u+
0 , v

+
0 ) → 0 as λ → 0+, θ → 0+.

Proof. By Lemma 7, there exists a minimizing sequence
{(un, vn)} for Jλ,θ on Nλ,θ such that

Jλ,θ (un, vn) = ξλ,θ + o(1) and J ′λ,θ (un, vn) = o(1) in W−1.
(16)
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Since Jλ,θ is coercive on Nλ,θ (see Lemma 3), we get
{(un, vn)} is bounded in W. Thus, there is a subsequence
{(un, vn)} and (u+

0 , v
+
0 )) ∈ W such that

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

un ⇀ u+
0 , vn ⇀ v+

0 , weakly in D1,p
0 (�),

un ⇀ u+
0 , vn ⇀ v+

0 , weakly in Lp
∗
(�),

un → u+
0 , vn → v+

0 , strongly in Lq(�, |x|−s),
for 1 ≤ q < p∗(s),

un → u+
0 , vn → v+

0 , a.e. in �.
(17)

This implies that

Kλ,θ (un, vn) → Kλ,θ (u+
0 , v

+
0 ), as n → ∞.

By (16) and (17), it is easy to prove that (u+
0 , v

+
0 ) is a weak

solution of problem (1). Since

Jλ,θ (un, vn) = p∗ − p
pp∗ ||(un, vn)||p − p∗ − q

qp∗ Kλ,θ (un, vn)

≥ −p∗ − q
qp∗ Kλ,θ (un, vn),

and by Lemma 5(i),

Jλ,θ (un, vn) → ξλ,θ < 0 as n → ∞.

Letting n → ∞, we see that Kλ,θ (u+
0 , v

+
0 ) > 0. Now, we

prove that un → u+
0 , vn → v+

0 strongly in D1,p
0 (�) and

Jλ,θ (u+
0 , v

+
0 ) = ξλ,θ .

By applying Fatou’s lemma and (u+
0 , v

+
0 ) ∈ Nλ,θ , we get

ξλ,θ ≤ Jλ,θ (u+
0 , v

+
0 )= p∗ − p

p∗p
||(u+

0 , v
+
0 )||p− p∗ − q

qp∗ Kλ,θ (u+
0 , v

+
0 )

≤ lim inf
n→∞

(
p∗ − p
p∗p

||(un, vn)||p − p∗ − q
qp∗ Kλ,θ (un, vn)

)
≤ lim inf

n→∞ Jλ,θ (un, vn) = ξλ,θ .

This implies that

Jλ,θ (u+
0 , v

+
0 ) = ξλ,θ , lim

n→∞ ||(un, vn)||p = ||(u+
0 , v

+
0 )||p.

Then, un → u+
0 and vn → v+

0 strongly in D1,p
0 (�).

Moreover, we have (u+
0 , v

+
0 ) ∈ N+

λ,θ . In fact, if (u+
0 , v

+
0 ) ∈

N−
λ,θ , by Lemma 6, there are unique t+0 and t−0 such that

(t+0 u
+
0 , t

+
0 v

+
0 ) ∈ N+

λ,θ , (t
−
0 u

+
0 , t

−
0 v

+
0 ) ∈ N−

λ,θ and t+0 < t−0 =
1. Since

d
dt

Jλ,θ (t+0 u
+
0 , t

+
0 v

+
0 ) = 0 and

d2

dt2
Jλ,θ (t+0 u

+
0 , t

+
0 v

+
0 ) > 0,

there exist t+0 < t ≤ t−0 such that Jλ,θ (t+0 u
+
0 , t

+
0 v

+
0 ) <

Jλ,θ (t0u+
0 , t0v

+
0 ). By Lemma 6, we have

Jλ,θ (t+0 u
+
0 , t

+
0 v

+
0 ) < Jλ,θ (t0u+

0 , t0v
+
0 ) ≤ Jλ,θ (t−0 u

+
0 , t

−
0 u

+
0 )

= Jλ,θ (u+
0 , v

+
0 )

which contradicts Jλ,θ (u+
0 , v

+
0 ) = ξ+

λ,θ .
Since Jλ,θ (u+

0 , v
+
0 ) = Jλ,θ (|u+

0 |, |v+
0 |) and (|u+

0 |, |v+
0 |) ∈

N+
λ,θ , by Lemma 4, we may assume that (u+

0 , v
+
0 ) is a

nonnegative solution of problem (1).
Moreover, by Lemmas 3 and 5, we have

0 > ξλ,θ = Jλ,θ (u+
0 , v

+
0 )

≥ −
(
p∗ − q
p∗q

)(NωNRN−s
0

N − s

) p∗(s)−q
p∗(s)

×
(
λ

p
p−q + θ

p
p−q
) p−q

p A
− q

p
μ,s ||(u+

0 , v
+
0 )||q.

This implies that Jλ,θ (u+
0 , v

+
0 ) → 0 as λ → 0+, θ → 0+.

Also, we need the following version of Brèzis-Lieb
lemma [27].

Lemma 8. Consider F ∈ C1((R+)2,R+) with F(0, 0) =
0 and |Fu(x,u, v)|, |Fv(x,u, v)| ≤ C1

(|u|p−1 + |v|p−1) for
some 1 ≤ p < ∞, C1 > 0. Let (un, vn) be bounded
sequence in Lp(�, (R+)2), and such that (un, vn) ⇀ (u, v)
weakly in Wk. Then, one has∫

�

F(un, vn)dx →
∫

�

F(un − u, vn − v)dx

+
∫

�

F(u, v)dx as n → ∞.

Lemma 9. Assume that 0 ≤ s < p, 1 ≤ q < p, and
0 ≤ μ < μ. If {(un, vn)} ⊂ W is a (PS)c-sequence for
Jλ,θ for all 0 < c < c∗ := 1

N (Ãμ,F)
N
p , then there exists

a subsequence of {(un, vn)} converging weakly to a nonzero
solution of (1).

Proof. Suppose (un, vn)} ⊂ W satisfies Jλ,θ (un, vn) → c
and J ′λ,θ (un, vn) → 0 with c < c∗. It is easy to show that
{(un, vn)} is bounded inW and there exists (u, v) such that
(un, vn) ⇀ (u, v) up to a subsequence. Moreover, we may
assume⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

un ⇀ u, vn ⇀ v, weakly in D1,p
0 (�),

un ⇀ u, vn ⇀ v, weakly in Lp
∗
(�),

un → u, vn → v, strongly in Lq(�, |x|−s),
for all 1 ≤ q < p,

un → u, vn → v, a.e. on �.
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Hence, we have J ′λ,θ (u) = 0 by the weak continuity of Jλ,θ
and

Kλ,θ (un, vn) → Kλ,θ (u, v). (18)

Let ũn = un − u and ṽn = vn − v. Then, by Brèzis-Lieb
lemma [27], we obtain

||(̃un, ṽn)||p → ||(un, vn)||p − ||(u, v)||p, as n → ∞,
(19)

and by Lemma 8,∫
�

F(x, ũn, ṽn)dx →
∫

�

F(x,un, vn)dx

−
∫

�

F(x,u, v)dx as n → ∞.

(20)

Since Jλ,θ (un, vn) = c + o(1), J ′λ,θ (un, vn) = o(1) and (18)
to (20), we can deduce that
1
p
||(̃un, ṽn)||p− 1

p∗

∫
�

F(x, ũn, ṽn)dx = c− Jλ,θ (u, v)+o(1),

and

||(̃un, ṽn)||p −
∫

�

F(x, ũn, ṽn)dx = o(1).

Now, we define

l := lim
n→∞

∫
�

F(x, ũn, ṽn)dx, l := lim
n→∞ ||(̃un, ṽn)||p.

(21)

From the definition of Ãμ,F and (21), one can get

Ãμ,F l
p
p∗ = Ãμ,F lim

n→∞

(∫
�

F(x, ũn, ṽn)dx
) p

p∗

≤ lim
n→∞ ||(̃un, ṽn)||p = l,

which implies that either

l = 0 or l ≥ (Ãμ,F)
p∗

p∗−p = (Ãμ,F)
N−t
p−t . (22)

Note that 〈J ′λ,θ (u, v), (u, v)〉 = 0 and

Jλ,θ (u, v) = Jλ,θ (u, v) − 1
p
〈J ′λ,θ (u, v), (u, v)〉 ≥ 0. (23)

From (21) and (23), we get

c = J(un, vn) + o(1) = Jλ,θ (̃un, ṽn) + Jλ,θ (u, v) + o(1)

≥ 1
p
||(̃un, ṽn)||p − 1

p∗

∫
�

F(x, ũn, ṽn)dx

= p∗ − p
pp∗ l + o(1) = 1

N
l + o(1).

(24)

By (22) to (24) and the assumption c < c∗, we deduce
that l = 0. Up to a subsequence, (un, vn) → (u, v) strongly
inW.

Lemma 10. [28] Assume that 1 < p < N, 0 ≤ t < p,
and 0 ≤ μ < μ. Then, the limiting problem⎧⎪⎨⎪⎩ − �pu − μ

|u|p−1

|x|p = |u|p∗(t)−1

|x|t , in R
N \ {0},

u ∈ W 1,p(RN ), u > 0, in R
N \ {0},

has positive radial ground states

Vε(x) � ε
p−N
p Up,μ

(x
ε

)
= ε

p−N
p Up,μ

( |x|
ε

)
, ∀ε > 0,

(25)

that satisfy∫
�

(
|∇Vε(x)|p − μ

|Vε(x)|p
|x|p

)
dx =

∫
�

|Vε(x)|p∗(t)

|x|t dx

= (Aμ,t)
N−t
p−t ,

where Up,μ(x) = Up,μ(|x|) is the unique radial solution of
the limiting problem with

Up,μ(1) =
(

(N − t)(μ − μ)

N − p

) 1
p∗(t)−p

.

Furthermore, Up,μ have the following properties:

lim
r→0

ra(μ)Up,μ(r) = C1 > 0,

lim
r→+∞ rb(μ)Up,μ(r) = C2 > 0,

lim
r→0

ra(μ)+1|U ′
p,μ(r)| = C1a(μ) ≥ 0,

lim
r→+∞ rb(μ)+1|U ′

p,μ(r)| = C2b(μ) > 0,

where Ci(i = 1, 2) are positive constants and a(μ) and
b(μ) are zeros of the function

f (ζ ) = (p−1)ζ p−(N−p)ζ p−1+μ, ζ ≥ 0, 0 ≤ μ < μ,

that satisfy

0 ≤ a(μ) <
N − p

p
< b(μ) ≤ N − p

p − 1
.

Now, we will give some estimates on the extremal func-
tion Vε(x) defined in (25). Form ∈ N large, choose ϕ(x) ∈
C∞
0 (RN ), 0 ≤ ϕ(x) ≤ 1, ϕ(x) = 1 for |x| ≤ 1

2m , ϕ(x) = 0
for |x| ≥ 1

m , ||∇ϕ(x)||Lp(�) ≤ 4m, set uε(x) = ϕ(x)Vε(x).
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For ε → 0, the behavior of uε has to be the same as that of
Vε , but we need precise estimates of the error terms. For
1 < p < N , 0 ≤ s, t < p and 1 < q < p∗(s), we have the
following estimates [28]:∫

�

(
|∇uε |p − μ

|uε |p
|x|p

)
dx = (Aμ,t)

N−t
p−t +O

(
εb(μ)p+p−N

)
,

(26)

∫
�

|uε |p∗(t)

|x|t dx = (Aμ,t)
N−t
p−t + O

(
εb(μ)p∗(t)−N+t

)
, (27)

∫
�

|uε |q
|x|s dx ≥

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Cε
N−s+(1−N

p )q, q >
N − s
b(μ)

,

Cε
N−s+(1−N

p )q| ln ε|, q = N − s
b(μ)

,

Cε
q(b(μ)+1−N

p )q, q <
N − s
b(μ)

.

(28)

Lemma 11. Assume that 0 ≤ s < p, 1 ≤ q < p, and
0 ≤ μ < μ. There exists a nonnegative function (u, v) ∈
W \ {(0, 0)} and δ1 > 0 such that for λ, θ > 0 satisfy 0 <

λ
p

p−q + θ
p

p−q < δ1, we have

sup
τ≥0

J(τu, τv) < c∗ := 1
N

(Ãμ,F)
N
p . (29)

In particular, ξλ,θ < 1
N (Ãμ,F)

N
p for all 0 < λ

p
p−q +

θ
p

p−q < δ1.

Proof. Set u = e1uε , v = e2uε , and (u, v) ∈ W , where
(e1, e2) ∈ (R+)2, ep1 + ep2 = 1 and infx∈� F(x, e1, e2) ≥ K .
Then, we consider the functions

g(τ ) = Jλ,θ (τe1uε , τe2uε) = τp

p
||(e1uε , e2uε)||p

− τ q

q
Kλ,θ (τe1uε , τe2uε)

− τp
∗

p∗

∫
�

F(x, e1uε , e2uε)dx,

g1(τ ) = τp

p
||(e1uε , e2uε)||p − τp

∗

p∗

∫
�

F(x, e1uε , e2uε)dx.

By (26), (27) for t = 0, (4) and the fact that

sup
τ≥0

(
τp

p
A − τp

∗

p∗ B
)

= 1
N

(
A

B
p
p∗

)N
p

, A,B > 0, (30)

we conclude that

sup
τ≥0

g1(τ ) ≤ 1
N

⎛⎝ (ep1 + ep2)
∫
�
(|∇uε |p − μ

|uε |p|x|p )dx

(
∫
�
F(x, e1uε , e2uε)dx)

p
p∗

⎞⎠
N
p

≤ 1
N

⎛⎝∫�(|∇uε |p − μ
|uε |p
|x|p )dx

K
p
p∗ (
∫
�

|uε |p∗dx)
p
p∗

⎞⎠
N
p

≤ 1
N

(
1

K
p
p∗

) N
p
⎛⎝ (Aμ,0)

N
p + O(εb(μ)p+p−N )

((Aμ,0)
N
p + O(εb(μ)p∗−N ))

p
p∗

⎞⎠
N
p

≤ 1
N

(
1

K
p
p∗

) N
p (

Aμ,0 + O(εb(μ)p+p−N )
) N

p

= 1
N

(
1

K
p
p∗

)(
(Aμ,0)

N
p + O(εb(μ)p+p−N )

)
≤ 1

N
(Ãμ,F )

N
p + O(εb(μ)p+p−N ).

(31)

On the other hand, using the definitions of g and uε ,
we get

g(τ ) = Jλ,θ (τe1uε , τe2uε) ≤ τp

p
||(e1uε , e2uε)||p,

for all τ ≥ 0 and λ > 0, θ > 0.

Combining this with (26) and let ε ∈ (0, 1), then there
exists τ0 ∈ (0, 1) independent of ε such that

sup
0≤τ≤τ0

g(τ ) <
1
N

(Ãμ,F)
N
p , for all 0 < λ

p
p−q +θ

p
p−q < δ1.

(32)

Hence, as 0 < λ
p

p−q + θ
p

p−q < δ1, 1 ≤ q < p, by (31), we
have that

sup
τ≥τ0

g(τ ) = sup
τ≥τ0

(
g1(τ ) − τ q

q
Kλ,θ (e1uε , e2uε)

)
≤ 1

N
(Ãμ,F)

N
p + o

(
εb(μ)p+p−N

)
− τ

q
0
q
(
eq1λ + eq2θ

) ∫
�

|uε |q
|x|s dx.

(33)

(i) If 1 ≤ q < N−s
b(μ)

, then by (28), we have that∫
�

|uε |q
|x|s dx ≥ Cε

q(b(μ)p+1−N
p ),

and since b(μ) >
N−p
p , then

(b(μ)p + p − N) > q(b(μ)p + 1 − N
p

).
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Combining this with (32) and (33), for any λ, θ > 0
which 0 < λ

p
p−q + θ

p
p−q < δ1, we can choose ε small

enough such that

sup
τ≥0

J(τe1uε , τe2uε) <
1
N

(Ãμ,F)
N
p .

(ii) If N−s
b(μ)

≤ q < p, then by (28) and b(μ) >
N−p
p we

have that

∫
�

|uε |q
|x|s dx ≥

⎧⎪⎪⎨⎪⎪⎩
Cε

N−s+(1− N
p )q, q >

N − s
b(μ)

,

Cε
N−s+(1− N

p )q| ln ε|, q = N − s
b(μ)

,

and

(b(μ)p + p − N) > N − s + (1 − N
p

)q.

Combining this with (32) and (33), for any λ, θ > 0
which 0 < λ

p
p−q + θ

p
p−q < δ1, we can choose ε small

enough such that

sup
τ≥0

J(τe1uε , τe2uε) <
1
N

(Ãμ,F)
N
p .

From (i) and (ii), (29) holds.
From Lemma 6, (29) and the definitions of ξ−

λ,θ , for any
λ, θ > 0 which 0 < λ

p
p−q + θ

p
p−q < δ1, we obtain that there

exists τ−
λ,θ such that (τ−

λ,θ e1uε , τ−
λ,θ e2uε) ∈ N−

λ,θ and

ξ−
λ,θ ≤ Jλ,θ (τ−

λ,θ e1uε , τ−
λ,θ e2uε) ≤ sup

τ≥0
J(τe1uε , τe2uε)

<
1
N

(Ãμ,F)
N
p .

The proof is complete.

Theorem 3. Assume that 0 ≤ s < p, 1 ≤ q < p, and
0 ≤ μ < μ. There exists � > 0 such that for any λ, θ > 0
satisfy 0 < λ

p
p−q + θ

p
p−q < �, the functional Jλ,θ has a

minimizer (U ,V ) in N−
λ,θ and satisfies the following:

(i) Jλ,θ (U ,V ) = ξ−
λ,θ ,

(ii) (U ,V ) is a positive solution of (1),

where � = min{C0, δ1}

Proof. If 0 < λ
p

p−q + θ
p

p−q < C0 =
(
q
p

) p
p−q C, then by

Lemmas 5(ii), 7, and 11, there exists a (PS)ξλ,θ -sequence
{(un, vn)} ⊂ N−

λ,θ inW for Jλ,θ with ξ−
λ,θ ∈

(
0, 1

N (Ãμ,F)
N
p
)
.

By Lemma 3, {(un, vn)} is bounded in W. From Lemma 9,
there exists a subsequence denoted by {(un, vn)} and non-
trivial solution (U ,V ) ∈ W of (1) such that un ⇀ U ,
vn ⇀ V weakly in D1,p

0 (�).
First, we prove that (U ,V ) ∈ N−

λ,θ . Arguing by contra-
diction, we assume (U ,V ) ∈ N+

λ,θ . Since N−
λ,θ is closed

in W 1,p
0 (�), we have ||(U ,V )|| < lim infn→∞ ||(un, vn)||.

Thus, by Lemma 6, there exists a unique τ− such that
(τ−U , τ−V ) ∈ N−

λ,θ . If (u, v) ∈ N−
λ,θ , then it is easy to see

that

Jλ,θ (u, v) = 1
N

||(u, v)||p − p∗ − q
qp∗ Kλ,θ (u, v). (34)

From Remark 1, (un, vn) ∈ N−
λ,θ , ||(U ,V )|| <

lim infn→∞ ||(un, vn)|| and (34), we can get

ξ−
λ,θ ≤ Jλ,θ (τ−U , τ−V ) ≤ lim

n→∞ Jλ,θ (τ−un, τ−vn)

< lim
n→∞ Jλ,θ (un, vn) = ξ−

λ,θ .

This is a contradiction. Thus, (U ,V ) ∈ N−
λ,θ , Next, by

the same argument as that in Theorem 2, we get that
(un, vn) → (U ,V ) strongly in W and Jλ,θ (U ,V ) = ξ−

λ,θ >

0 for all 0 < λ
p

p−q + θ
p

p−q < C0 =
(
q
p

) p
p−q C. Since

Jλ,θ (U ,V ) = Jλ,θ (|U|, |V |) and (|U|, |V |) ∈ N−
λ,θ , by

Lemma 4 we may assume that (U ,V ) is a nontrivial non-
negative solution of (1). Finally, by the maximum principle
[29], we obtain that (U, V ) is a positive solution of (1). The
proof is complete.

Proof of Theorem 1. The part (i) of Theorem 1 immedi-
ately follows from Theorem 2. When 0 < λ

p
p−q + θ

p
p−q <

C0 =
(
q
p

) p
p−q C < C, by Theorems 2 and 3, we obtain

(1) has at least two positive solutions (u0, v0) and (U ,V )

such that (u0, v0) ∈ N+
λ,θ and (U ,V ) ∈ N−

λ,θ . Since N
+
λ,θ ∩

N−
λ,θ = ∅, this implies that N+

λ,θ and N−
λ,θ are distinct. This

completes the proof of Theorem 1.
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