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Abstract

Purpose: The purpose of this paper is to study a common fixed point theorem for two pairs of weakly compatible
maps in dislocated metric spaces.

Methods: Using familiar techniques, we extend the results of Hitzler and Kang et al. in dislocated metric spaces.
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Introduction
In 1922, S. Banach proved a fixed point theorem for
contraction mapping in metric space. Since then a num-
ber of fixed point theorems have been proved by differ-
ent authors, and many generalizations of this theorem
have been established. The notion of a dislocated metric
(d-metric) space was introduced by Pascal Hitzler in [1]
as a part of the study of logic programming semantics.
The study of common fixed point mappings in dislo-
cated metric space satisfying certain contractive condi-
tions has been at the center of vigorous research activity,
see for example in [2,3].
In 1996, Jungck [4] introduced the concept of weak

compatibility. Since then, many interesting fixed point
theorems of compatible and weakly compatible maps
under various contractive conditions have been obtained
by a number of authors. We proved two common fixed
point theorems for four weakly compatible maps.

Preliminaries
For convenience we start with the following definitions,
lemmas, and theorems.
Definition 2.1 [5] Let X be a non empty set and let d:

X × X → [0,∞) be a function satisfying the following
conditions:

i. d(x, y) = d(y, x)
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ii. d(x, y) = d(y, x) = 0 implies that x = y and
iii. d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called dislocated metric (or simply d-metric)
on X.
Definition 2.2 [5] A sequence {xn} in a d-metric space

(X, d) is called a Cauchy sequence if given ∈ > 0 there
corresponds n0 ∈ N such that for all m,n ≥ n0, we have d
(xm, xn) < ∈.
Definition 2.3 [5] A sequence {xn} in d-metric space

converges with respect to d (or in d) if there exists x ∈ X
such that d(xn, x) → 0 as n → ∞. In this case, x is called
d-limit of {xn} and we write xn→ x.
Definition 2.4 [5] A d-metric space (X,d) is called

complete if every Cauchy sequence in it is convergent
with respect to d.
Definition 2.5 [5] Let (X,d) be a d-metric space. A

map T:X → X is called contraction if there exists a num-
ber λ with 0 ≤ λ < 1 such that d(Tx,Ty) ≤ λd(x,y). We
state the following lemmas without proof.
Lemma 2.6 [5] Let (X,d) be a d-metric space. If T:

X→X is a contraction function, then {Tn(x0)} is a Cauchy
sequence for x0 ∈ X.
Lemma 2.7 [5] The limits in a d-metric space are

unique.
Definition 2.8 [6] Let A and S be mappings from a

metric space (X,d) into itself. Then A and S are said to
be weakly compatible if they commute at their ‘coinci-
dent point’ x, that is, Ax = Sx implies ASx = SAx.
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Theorem 2.9 [5] Let (X,d) be a complete d-metric
space and let T:X → X be a contraction mapping, then T
has a unique fixed point.

Results and discussion
Theorem 3.1 Let (X,d) be a complete d-metric space. Let
A,B,S,T:X→X be continuous mappings satisfying

I. T(X) ⊂ A(X), S(X) ⊂ B(X)
II. The pairs (S,A) and (T,B) are weakly compatible and
III. d(Sx,Ty) ≤ α max{d(Ax,By), d(Ax,Sx), d(By,Ty)}

For all x, y ∈ X, where 0≤α < 1
2 then A,B,S and T have

a unique common fixed point.
Proof. Using condition (i), we define sequences {xn}

and {yn} in X by the rule
y2n = Bx2n + 1 = Sx2n and y2n + 1 = Ax2n + 2 = Tx2n + 1,

n = 0,1,2. . ., where x0 = x, y0 = y.
If y2n = y2n + 1 is for some n, then Bx2n + 1 = Tx2n + 1.

Therefore x2n + 1 is a coincident point of B and T. Also,
if y2n + 1 = y2n + 2 for some n, then Ax2n + 2 = Sx2n + 2.
Hence, x2n + 2 is a coincident point of S and A.
Assume that y2n ≠ y2n + 1 for all n. Then, we have

d y2n; y2nþ1ð Þ ¼ d Sx2n;Tx2nþ1ð Þ
≤ αmaxfd Ax2n;Bx2nþ1ð Þ;
d Ax2n; Sx2nð Þ; d Bx2nþ1;Tx2nþ1ð Þg
¼ αmaxfd y2n�1; y2nð Þ; d y2n�1; y2nð Þ;
d y2n; y2nþ1ð Þg

¼ αmax d y2n�1; y2nð Þ; d y2n; y2nþ1ð Þf g
¼ αd y2n�1; y2nð Þ

∴d y2n; y2nþ1ð Þ≤αd y2n�1; y2nð Þ;
similarly; d y2n�1; y2nð Þ≤αd y2n�2; y2n�1ð Þ:
Hence; ∀n≥1; d yn; ynþ1ð Þ≤αd yn�1; ynð Þ≤ . . .

≤αnd y0; y1ð Þ

Hence, by induction d(yn,yn + 1) ≤ αnd(y0,y1).
Hence, for any integer n ≥ 1 and q ≥ 1,

d yn; ynþq
� �

≤d yn; ynþ1ð Þ þ d ynþ1; ynþ2ð Þ
þd ynþ2; ynþ3ð Þ þ . . .þ d ynþq�1; ynþq

� �
≤ αn þ αnþ1 þ . . .þ αnþq�1ð Þd y0; y1ð Þ
¼ αn 1þ αþ ::::þ αq�1ð Þd y0; y1ð Þ

¼ αn 1� αqð Þ
1� α

d y0; y1ð Þ
< αnd y0; y1ð Þ; since 0≤α < 1:

Since lim αn = 0, it follows that {yn} is a Cauchy se-
quence in the complete dislocated metric space (X,d). So
there exists z ∈ X such that
ynf g→z:

Therefore, the subsequences

Sx2nf g→z; Bx2nþ1f g→z; Tx2nþ1f g→z and Ax2nþ2f g→z:

Since T(X) ⊂ A(X), there exists u ∈ X such that z =Au.

So; d Su; zð Þ ¼ d Su;Tx2nþ1ð Þ
≤αmaxfd Au;Bx2nþ1ð Þ; d Au; Suð Þ;
d Bx2nþ1;Tx2nþ1ð Þg:

Taking limits as n → ∞ we get,

d Su; zð Þ≤αmax d z;Bx2nþ1ð Þ; d z; Suð Þ; d z; zð Þf g
¼ αmax d z; zð Þ; d z; Suð Þf g
¼ αd z; zð Þ
≤α d z; Suð Þ þ d Su; zð Þ½ �
≤2αd z; Suð Þ ∵ d z; Suð Þ ¼ d Su; zð Þ
¼ βd z; Suð Þ where β ¼ 2α < 1

∴ d z; Suð Þ ¼ 0

∴ Su ¼ z ¼ Au

Again, since S(X) ⊂ B(X), there exists a v ε X such that
z = Bv.
We claim that z = Tv, then

d z;Tvð Þ ¼ d Su;Tvð Þ
≤αmax d Au;Bvð Þ; d Au; Suð Þ; d Bv;Tvð Þf g
¼ αmax d z; zð Þ; d z; zð Þ; d z;Tvð Þf g
¼ αd z; zð Þ
≤2αd z;Tvð Þ

∴d z;Tvð Þ ¼ 0;

so we get z = Tv.
Hence, Su = Au = Tv = Bv = z.
Since the pair (S,A) is weakly compatible, by definition

SAu = ASu implies Sz = Az.
Now, we show that z is a fixed point of S in the follow-

ing:

d Sz; zð Þ ¼ d Sz;Tvð Þ
≤αmax d Az;Bvð Þ; d Az; Szð Þ; d Bv;Tvð Þf g
¼ αmax d Sz; zð Þ; d Sz; Szð Þ; d z; zð Þf g

ð1Þ

Since 0 ≤ α <1 and d(Sz,z) ≤ α d (Sz,z) from Equation 1,
we gset Sz = z. This implies that Az = Sz = z.
Again, the pair (T,B) are weakly compatible, by defin-

ition TBv = BTv implies Tz = Bz.
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Now, we show that z is a fixed point of T as:

d z;Tzð Þ ¼ d Sz;Tzð Þ
≤αmaxd Az;Bzð Þ; d Az; Szð Þ; d Bz;Tzð Þ
¼ αmaxd z;Tzð Þ; d z; zð Þ; d Tz;Tzð Þg

g

¼ αd z;Tzð Þ ∵0 < α < 1; d z;Tzð Þ ¼ 0∴Tz ¼ z:

Hence, we have Az = Bz = Sz = Tz = z. This shows
that ‘z’ is a common fixed point of the self mappings A,
B, S and T.
Uniqueness. Let u ≠ v be two common fixed points of

the mappings A,B,S and T in the following:

d u; vð Þ ¼ d Su;Tvð Þ
≤αmax d Au;Bvð Þ; d Au; Suð Þ; d Bv;Tvð Þf g
¼ αmax d u; vð Þ; d u; uð Þ; d v; vð Þf g:

∴from 2ð Þd u; vð Þ≤αd u; vð Þ
∴d u; vð Þ ¼ 0:

ð2Þ

Since (X, d) is a dislocated metric space, so we have
u = v.
Put A = B = I an identity mapping in above Theorem

3.1 yields Corollary 3.2
Corollary 3.2 Let (X,d) be a complete d-metric space.

Let S,T:X → X be continuous mappings satisfying,

d Sx;Tyð Þ≤αmax d x; yð Þ; d x; Sxð Þ; d y;Tyð Þf g forallx; y∈X;

where 0≤α < 1
2 , then S and T have a unique fixed

point.
Then S = T in Corollary 3.2 yields Corollary 3.3.
Corollary 3.3 Let (X,d) be a complete d-metric space.

Let T:X → X be a continuous mapping satisfying
d(Tx, Ty) ≤ α max{d(x, y), d(x, Tx), d(y, Ty)} for all x, y

∈ X,
where 0≤α < 1

2 then T have unique common fixed
point.
Taking A=T and B=S in Theorem 3.1 yields Corollary

3.4.
Corollary 3.4 Let (X,d) be a complete d-metric space.

Let S,T:X → X be continuous mappings satisfying

d Sx;Tyð Þ≤αmax d Tx; Syð Þ; d Tx; Sxð Þ; d Sy;Tyð Þf g
for all x,y ∈ X, where 0≤α < 1

2 , then S and T have
unique common fixed point.
Theorem 3.5 Let (X,d) be a complete d-metric space.

Let A,B,S,T:X → X be the continuous mapping satisfying,

I. T(X) ⊂ A(X), S(X) ⊂ B(X)

II. The pairs (S,A) and (T,B) are weakly compatible and

III. d Sx;Tyð Þ≤α d Ax;Sxð Þd By;Tyð Þ
n o

þ βd Ax;Byð Þ
d Ax;Byð Þ
for all x,y ∈ X where α; β≥0; 0≤αþ β < 1
4, then A,B,S and

T have a unique common fixed point.
Proof. Using condition (i), we define sequences {xn}

and {yn} in X by the rule,
y2n = Bx2n + 1 = Sx2n, and y2n + 1 = Ax2n + 2 = Tx2n + 1,

n = 0,1,2. . .,
If y2n = y2n + 1 for some n, then Bx2n + 1 = Tx2n + 1.

Therefore, x2n + 1 is a coincident point of B and T. Also,
if y2n + 1 = y2n + 2 for some n, then Ax2n + 2 = Sx2n + 2.
Hence, x2n+2 is a coincident point of S and A.
Assume that y2n ≠ y2n + 1 for all n. Then, we have

d y2n; y2nþ1ð Þ ¼ d Sx2n;Tx2nþ1ð Þ

≤α
d Ax2n; Sx2nð Þd Bx2nþ1;Tx2nþ1ð Þ

d Ax2n;Bx2nþ1ð Þ
� �

þβd Ax2n;Bx2nþ1ð Þ

¼ α
d y2n�1; y2nð Þd y2n; y2nþ1ð Þ

d y2n�1; y2nð Þ
� �

þβd y2n�1; y2nð Þ
¼ α d y2n; y2nþ1ð Þf g þ βd y2n�1; y2nð Þ

⇒d y2n; y2nþ1ð Þ≤ β

1� α
d y2n�1; y2nð Þ

¼ hd y2n�1; y2nð Þ;
where h ¼ β

1� α
< 1 and

similarly; d y2n�1; y2nð Þ≤hd y2n�2; y2n�1ð Þ:

This shows that

d yn; ynþ1ð Þ≤hd yn�1; ynð Þ≤ . . . ≤hnd y0; y1ð Þ:

For every integer q > 0, we have

d yn; ynþq
� �

≤d yn; ynþ1ð Þ þ d ynþ1; ynþ2ð Þ
þd ynþ2; ynþ3ð Þ þ . . .þ d ynþq�1; ynþq

� �
¼ 1þ hþ h2 þ . . .þ hq�1ð Þd y0; y1ð Þ
¼ hn

1� h
d y0; y1ð Þ;

since 0 < h < 1; hn→0 as n→1:
So, when we get d(yn, yn + q) → 0, this implies that {yn}

is a Cauchy sequence in the complete dislocated metric
space. So, there exists z ∈ X such that {yn} → z.
Therefore, the subsequences

Sx2nf g→z; Bx2nþ1f g→z; Tx2nþ1f g→z; and Ax2nþ2f g→z exist:

Since T(X) ⊂ A(X), there exists u ∈ X such that z = Au.
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So,

d Su; zð Þ ¼ d Su;Tx2nþ1ð Þ
≤α

d Au; Suð Þ; d Bx2nþ1;Tx2nþ1ð Þ
d Au;Bx2nþ1ð Þ

� �
þ βd Au;Bx2nþ1ð Þ

¼ α
d z; Suð Þ; d Bx2nþ1;Tx2nþ1ð Þ

d z;Bx2nþ1ð Þ
� �

þ βd z;Bx2nþ1ð Þ:

Taking limits as n→∞ we get,>

d Su; zð Þ≤α d z; Suð Þ; d z; zð Þ
d z; zð Þ

� �
þ βd z; zð Þ

≤αd z; Suð Þ þ 2βd z; Suð Þ
¼ αþ 2βð Þd z; Suð Þ

∴ d z; Suð Þ ¼ 0 since αþ 2β < 1:
So we have Su ¼ z ¼ Au:

Again, since S(X) ⊂ B(X) there exists v ∈ X, such
that z = Bv.
We claim that z=Tv as

d z;Tvð Þ ¼ d Su;Tvð Þ
≤α

d Au; Suð Þ; d Bv;Tvð Þ
d Au;Bvð Þ

� �
þ βd Au;Bvð Þ

¼ α
d z; zð Þ; d z; zð Þ

d z; zð Þ
� �

þ βd z; zð Þ
≤2αd z;Tvð Þ þ 2βd z;Tvð Þ
¼ 2αþ 2β½ �d z;Tvð Þ

∴d z;Tvð Þ ¼ 0: Since 2αþ 2β < 1;

so we get z = Tv and hence, Su = Au = Tv = Bv = z.
Since the pair (S,A) is weakly compatible so by defin-

ition SAu = ASu implies Sz = Az.
Now, we show that z is the fixed point of S.

d Sz; zð Þ ¼ d Sz;Tzð Þ
≤α

d Az; Szð Þ; d Bv;Tvð Þ
d Az;Bvð Þ

� �
þ βd Az;Bvð Þ

¼ α
d Sz; Szð Þ; d z; zð Þ

d Sz; zð Þ
� �

þ βd Sz; zð Þ
≤ 4αþ βð Þd Sz; zð Þ

d Sz; zð Þ ¼ 0; since 4αþ β < 1
⇒Sz ¼ z
∴Az ¼ Sz ¼ z:

Again, the pair (T,B) are weakly compatible, so by def-
inition, TBv = BTv and this also implies Tz=Bz.
Now, we show that z is the fixed point of T.

d z;Tzð Þ ¼ d Sz;Tzð Þ
≤α

d Az; Szð Þ; d Bz;Tzð Þ
d Az;Bzð Þ

� �
þ βd Az;Bzð Þ

¼ α
d z; zð Þ; d Tz;Tzð Þ

d z;Tzð Þ
� �

þ βd z;Tzð Þ

≤4α
d z;Tzð Þ; d z;Tzð Þ

d z;Tzð Þ
� �

þ βd z;Tzð Þ
≤ 4αþ βð Þd z;Tzð Þ

d z;Tzð Þ ¼ 0; since4αþ β < 1
⇒z ¼ Tz
⇒Az ¼ Bz ¼ Sz ¼ Tz ¼ z

This shows that z is a common fixed point of the self
mappings A,B,S and T.
Uniqueness. Let u ≠ v be two common fixed points of

the mappings A,B,S, and T, then we have

d u; vð Þ ¼ d Su;Tvð Þ
≤α

d Au; Suð Þ; d Bv;Tvð Þ
d Au;Bvð Þ

� �
þ βd Au;Bvð Þ

¼ α
d u;uð Þ; d v; vð Þ

d u; vð Þ
� �

þ βd u; vð Þ
≤4αd u; vð Þ þ βd u; vð Þ
¼ 4αþ βð Þd u; vð Þ

∴d u; vð Þ ¼ 0; since 4αþ β < 1:

Since (X,d) is a dislocated metric space, so we have u = v.
Putting A = B = I an identity mapping in above The-

orem 3.5 yields Corollary 3.6.
Corollary 3.6 Let (X,d) be a complete d-metric space.

Let S,T:X → X be continuous mappings satisfying,

d Sx;Tyð Þ≤α d x; Sxð Þd y;Tyð Þ
d x; yð Þ

� �
þ βd x; yð Þ

for all x, y ∈ X where α; β≥0; 0≤αþ β < 1
4 then S and T

have a unique fixed point. If S = T in Corollary 3.6 yields
Corollary 3.7.
Corollary 3.7 Let (X,d) be a complete d-metric space.

Let T:X→ X be a continuous mapping satisfying,

d Tx;Tyð Þ≤α d x;Txð Þd y;Tyð Þ
d x;yð Þ

n o
þ βd x; yð Þ for all x,y ∈ X,

where α; β≥0; 0≤αþ β < 1
4, then T have unique common

fixed point.
Taking A = T and B = S in Theorem 3.5 yields Corol-

lary 3.8. This is the Theorem 2.11 in [7].
Corollary 3.8 Let (X,d) be a complete d-metric space.

Let S,T: X → X be continuous mappings satisfying

d Sx;Tyð Þ≤α d Tx;Sxð Þ d Sy;Tyð Þ
d Tx;Syð Þ

n o
þ βd Tx; Syð Þ , for all x,y ∈

X,where α; β≥0; 0≤αþ β < 1
4 , then S and T have unique

common fixed point.
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Conclusion
The results in this study enable others in applying our
results when one has to deal with dislocated metric spaces.
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