
Manafianheris and AghdaeiMathematical Sciences 2012, 6:68
http://www.iaumath.com/content/6/1/68

ORIGINAL RESEARCH Open Access

Application of the Exp-function method
for solving the combined KdV-mKdV
and Gardner-KP equations
Jalil Manafianheris1* and Mehdi Fazli Aghdaei2

Abstract

Purpose: In this article, we establish the exact solutions for the combined KdV-mKdV and Gardner-KP equations.

Methods: The Exp-function method (EFM) is used to construct solitary and soliton solutions of nonlinear evolution
equations.

Results: This method is developed for searching the exact travelling wave solutions of nonlinear partial differential
equations.

Conclusions: It is shown that the EFM, with the help of symbolic computation, provides a straightforward and
powerful mathematical tool for solving nonlinear evolution equations in mathematical physics.

Keywords: Nonlinear partial differential equation, Combined KdV-mKdV and Gardner-KP equations, Travelling wave
solution

Introduction
In the recent decade, the study of nonlinear partial dif-
ferential equations in modelling physical phenomena has
become an important tool. Nonlinear phenomena play
a fundamental role in applied mathematics and physics.
Also, the investigation of the travelling wave solutions
plays an important role in nonlinear sciences. A variety of
powerful methods has been presented, such as the inverse
scattering transform [1], Hirota’s bilinear method [2],
sine-cosine method [3], homotopy perturbation method
[4], homotopy analysis method [5,6], variational itera-
tion method [7,8], tanh-function method [9,10], Bäcklund
transformation [11], and (G

′
G )-expansion method [12,13].

Here we use an effective method for constructing a
range of exact solutions for the following nonlinear par-
tial differential equations which was first presented by
He [14]. A new method called the Exp-function method
(EFM) is presented to look for travelling wave solutions of
nonlinear evolution equations. The EFM has successfully
been applied to many situations. For example, He andWu
[15] have solved the nonlinear wave equations by EFM. He
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and Abdou [16] have used EFM to give new periodic solu-
tions for nonlinear evolution equations. By applying EFM,
generalized solitary solution and compacton-like solu-
tion of the Jaulent-Miodek equations have been obtained
by He [17]. Abdou [18] has solved the generalized soli-
tonary and periodic solutions for nonlinear partial differ-
ential equations by EFM. Manafian and Bagheri [19] have
applied EFM for the modified KdV and the generalized
KdV equations. Authors of [20] have studied the peri-
odic solutions and compacton-like solutions using EFM.
The EFM has been applied to nonlinear equations by Wu
and He [21]. Zhu [22] also examined the hybrid-lattice
system by using EFM. The EFM has recently been used
by Zhang [23] in the high-dimensional nonlinear evolu-
tion equation. The positive and negative models of the
Gardner equation [24,25], or the combined KdV-mKdV
equations, are given by

ut + 6uux ± 6u2ux + uxxx = 0, (1.1)

which describe internal solitary waves in shallow seas.
Those two models will be classified as positive Gardner
equation and negative Gardner equation depending
on the sign of the cubic nonlinear term. The Gardner
equation (Equation 1.1), like the KdV and the mKdV
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equation, is completely integrable with a Lax pair and
inverse scattering transform [26]. Kadomtsov and
Petviashivilli extended the KdV equation to obtain the
Kadomtsov-Petviashivilli (KP) equation

(ut + 6uux + uxxx)x + uyy = 0. (1.2)

Kadomtsov and Petviashivilli relaxed the restriction that
the waves be strictly one-dimensional [26], namely, the x-
direction of the KdV equation, to derive the completely
integrable KP in Equation 1.2. In this article, we used EFM
to investigate the Gardner-KP (GKP) equations [26] given
by

(ut + 6uux ± 6u2ux + uxxx)x + uyy = 0 (1.3)

that will be shown to be completely integrable. We want
to obtain the analytical solutions of nonlinear combined
KdV-mKdV and GKP equations and to determine the
accuracy of the EFM in solving these kinds of problems.
The article is organized as follows: in the section ‘Basic
idea of Exp-function method’, first we briefly give the steps
of the method and apply the method to solve nonlinear
partial differential equations; in sections ‘The combined
KdV-mKdV equations’ and ‘The Gardner-KP equations’,
we examine the combined KdV-mKdV equations and the
GKP equations, respectively; and a conclusion is given in
the ‘Conclusions’ section.

Methods
Basic idea of Exp-function method
We first consider the nonlinear equation of the form

N (u,ut ,ux,uxx, ,uyy,utt ,utx,uty, ...) = 0, (2.1)

and introduce the transformation

u(x, y, t) = u(η), η = x + y − ct, (2.2)

where c is constant to be determined later. There-
fore Equation 2.1 is reduced to an ordinary differential
equation (ODE) as

M(u,−cu′,u′,u′′,u′′, . . .) = 0. (2.3)

EFM is based on the assumption that the travelling wave
solutions in [15] can be expressed in the form

u(η) =
∑d

n=−can exp(nη)∑q
m=−pbm exp(mη)

, (2.4)

where c, d, p, and q are positive integers which could
be freely chosen, an and bm are unknown constants to
be determined. To determine the values of c and p, we
balance the linear term of highest order in Equation 2.3
with the highest-order nonlinear term. Also, to deter-
mine the values of d and q, we balance the linear term
of lowest order in Equation 2.3 with the lowest-order
nonlinear term.

The combined KdV-mKdV equations
In this section, we employ the Exp-function method to the
combined KdV-mKdV equation

ut + 6uux ± 6u2ux + uxxx = 0 (3.1)

and we use the transformation u = v ∓ 1
2 to convert the

model 3.1 into the modified KdV equations as

vt ∓ 3
2
vx ± 6v2vx + vxxx = 0. (3.2)

This shows that the Gardner equation, like the modi-
fied KdV equation, is completely integrable. The Gardner
equation was first derived rigorously within the asymp-
totic theory for long internal waves in a two-layer fluid
with a density jump at the interface. The competition
among dispersion, quadratic, and cubic nonlinearities
constitutes the main interest of this equation [26]. The
Gardner equation has been investigated in the litera-
ture because it is used to model a variety of nonlinear
phenomena.

Case 1: positive Gardner equation
We use the equation

ut + 6uux + 6u2ux + uxxx = 0, (3.3)

and we use transformation

u = v − 1
2

(3.4)

to convert the model 3.3 into the modified KdV equation
of

vt − 3
2
vx + 6v2vx + vxxx = 0, (3.5)

and by using the wave variable η = x − ct reduces it to an
ODE

−
(
c + 3

2

)
v + 2v3 + v′′ = 0, (3.6)

in which Equation 3.6 is obtained by integrating and
neglecting the constant of integration. In order to the
determine values of c and p, we balance the linear term of
the highest order v′′ with the highest order nonlinear term
v3 in Equation 3.6 to get

v′′ = c1 exp((c + 3p)η) + . . .

c2 exp(4pη) + . . .
(3.7)

and

v3 = c3 exp(3cη) + . . .

c4 exp(3pη) + . . .
= c3 exp((3c + p)η) + . . .

c4 exp(4pη) + . . .
,

(3.8)

respectively. Balancing the highest order of the Exp-
function in 3.7 and 3.8 and getting c + 3p = 3c + p lead
to the result of c = p. Similarly, to determine the values of
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d and q for the terms v′′ and v3 in Equation 3.6 by simple
calculation, we obtain

v′′ = . . . + d1 exp(−(d + 3q)η)

. . . + d2 exp(−4qη)
(3.9)

and

v3 = . . . + d3 exp(−3dη)

. . . + d4 exp(−3qη)
= . . . + d3 exp(−(3d + q)η)

. . . + d4 exp(−4qη)
,

(3.10)

respectively. By balancing the highest order of EFM in 3.9
and 3.10 gives us −(d + 3q) = −(3d + q), which leads
to the result d = q. For simplicity, we set p = c = 1 and
d = q = 1. Then Equation 2.4 reduces to

v(η) = a1 exp(η) + a0 + a−1 exp(−η)

b1 exp(η) + b0 + b−1 exp(−η)
. (3.11)

By substituting Equation 3.11 into Equation 3.6 and by
using the well-known Maple software, we will have

1
A
[C3exp(3η) +C2exp(2η)+C1exp(η)+C0+C−1exp(−η)

+C−2 exp(−2η) + C−3 exp(−3η)] = 0,
(3.12)

where

A =[ b−1 exp(−η) + b0 + b1 exp(η)]3 , (3.13)

and Cns are coefficients of exp(nη)s. By equating the coef-
ficients of exp(nη) to zero, we obtain the following set of
algebraic equations for a1, a0, a−1, b1, b0, b−1, and c, as

⎧⎨
⎩
C3 = 0, C2 = 0, C1 = 0,
C0 = 0,
C−3 = 0, C−2 = 0, C−1 = 0.

(3.14)

Solving this system of algebraic equations with the help
of Maple gives the following sets of non-trivial solutions:

(I) The first set is

a1 = 0, a−1 = 0, a0 = a0, b0 = 0, b−1 = b−1,

b1 = a20
4b−1

, c = −1
2
,

(3.15)

v1(x, t) = a0

b−1 exp(−x − 1
2 t) + a20

4b−1
exp(x + 1

2 t)
.

(3.16)

If we choose a0 = 2b−1, then by using 3.4, we would
get

v1,1(x, t) = sech
(
x + 1

2
t
)
,

u1,1(x, t) = −1
2

+ sech
(
x + 1

2
t
)
.

(3.17)

(II) The second set is

a−1 = ±1
2
ib−1, a1 = 0, a0 = a0, b0 = ±2ia0,

b−1 = b−1, b1 = 0, c = −2,
(3.18)

v2(x, t) = ± i
2
b−1 exp(−x − 2t) ∓ 2ia0
b−1 exp(−x − 2t) ± 2ia0

. (3.19)

If we choose b−1 = 2ia0, then by using 3.4, we
would get

v2,1(x, t) = − i
2
tanh

(
x + 2t

2

)
,

v2,2(x, t) = i
2
coth

(
x + 2t

2

)
,

(3.20)

u2,1(x, t) = −1
2

− i
2
tanh

(
x + 2t

2

)
,

u2,2(x, t) = −1
2

+ i
2
coth

(
x + 2t

2

)
.

(3.21)

(III) The third set is

a1 = ±ib1, a−1 = a−1, a0 = 0, b0 = 0, b−1 = ±ia−1,

b1 = b1, c = −7
2
,

(3.22)

v3(x, t) = ±i
b1 exp(x − ct) ∓ ia−1
b1 exp(x − ct) ± ia−1

. (3.23)

If we choose b1 = ia−1, then by using 3.4, we would
get

v3,1(x, t) = i tanh
(
x + 7

2
t
)
,

v3,2(x, t) = −i coth
(
x + 7

2
t
)
,

(3.24)

u3,1(x, t) = −1
2

+ i tanh
(
x + 7

2
t
)
,

u3,2(x, t) = −1
2

− i coth
(
x + 7

2
t
)
.

(3.25)
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(IV) The forth set is

a1 = 1
16

b20 + 4a20
a−1

, a−1 = a−1, a0 = a0,

b0 = b0, b−1 = ±2ia−1, c = −2,

(3.26)

b1 = ∓1
8
b20 + 4a20

a−1
i,

v5(x, t) =
a−1 exp(−x + ct)+a0+ 1

16
b20+4a20
a−1

exp(x − ct)

±2ia−1 exp(−x + ct)+b0 ∓ 1
8
b20+4a20
a−1

i exp(x−ct)
.

Notice that if u(x, t) = v(x, t) − 1
2 , we would have

u5(x, t) =−1
2

+
a−1 exp(−x − 2t) + a0 + 1

16
b20+4a20
a−1

exp(x + 2t)

±2ia−1 exp(−x − 2t) + b0 ∓ 1
8
b20+4a20
a−1

i exp(x + 2t)
.

(3.27)

Case 2: negative Gardner equation
Let

ut + 6uux − 6u2ux + uxxx = 0 (3.28)

and use the transformation

u = v + 1
2
, (3.29)

which converts the model 3.28 into the modified KdV
equation

vt + 3
2
vx − 6v2vx + vxxx = 0 (3.30)

and by using the wave variable η = x − ct reduces it to an
ODE

−
(
c − 3

2

)
v − 2v3 + v′′ = 0, (3.31)

in which Equation 3.31 is obtained by integrating and
neglecting the constant term of integration. By manipulat-
ing the above procedure, we get the following sets.

(I) The first set is

a1 = 0, a−1 = a−1, a0 = a0, b0 = 2a0, b−1 = −2a−1,
b1 = 0, c = 1,

(3.32)

v1(x, t) = a−1 exp(−x + t) + a0
−2a−1 exp(−x + t) + 2a0

. (3.33)

If we choose a0 = a−1, then by using 3.29, we would
get

v1,1(x, t) = 1
2
coth

(
x − t
2

)
,

u1,1(x, t) = 1
2

+ 1
2
coth

(
x − t
2

)
.

(3.34)

(II) The second set is

a−1 = 0, a1 = 0, a0 = a0, b0 = 0, b−1 = b−1,

b1 = −1
4

a20
b−1

, c = 5
2
,

(3.35)

v2(x, t) = a0

b−1 exp(−x + 5
2 t) − 1

4
a20
b−1

exp(x − 5
2 t)

.

(3.36)

If we choose 2b−1 = a0, then by using 3.29, we
would get

v2,1(x, t) = −csch
(
x − 5

2
t
)
,

u2,1(x, t) = 1
2

− csch
(
x − 5

2
t
)
.

(3.37)

(III) The third set is

a−1 = − 1
16

b20 − 4a0
a1

, a1 = a1, a0 = a0, b0 = b0,

b−1 = ∓1
8
b20 − 4a0

a1
,

(3.38)

b1 = ∓2a1, c = 1,

v3(x, t) = − 1
16

b20−4a0
a1 exp(−x + t) + a0 + a1 exp(x − t)

∓ 1
8
b20−4a0

a1 exp(−x + t) + b0 ∓ 2a1 exp(x − t)
.

Notice that if u(x, t) = v(x, t) + 1
2 , we would obtain

u3(x, t) = 1
2

+ − 1
16

b20−4a0
a1 exp(−x + t) + a0 + a1 exp(x − t)

∓ 1
8
b20−4a0

a1 exp(−x + t) + b0 ∓ 2a1 exp(x − t)
.

(3.39)

(IV) The fourth set is

a1 = a1, a−1 = a−1, a0 = 0, b0 = 0, b−1 = a−1, c = −1
2
,

(3.40)

b1 = −a1, v4(x, t) = a−1 exp(−x − 1
2 t) + a1 exp(x + 1

2 t)
a−1 exp(−x − 1

2 t) − a1 exp(x + 1
2 t)

.
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If we choose a−1 = a1, then by using 3.29, we would
get

v4(x, t) = −coth
(
x + 1

2
t
)
,

u4(x, t) = 1
2

− coth
(
x + 1

2
t
)
,

(3.41)

which are the exact solutions of the combined
KdV-mKdV equation. We obtain solitary wave and
complex wave solutions for the combined
KdV-mKdV equation. It can be seen that the results
are the same as the results in [26].

Results and discussion
The Gardner-KP equations
In this section, we study the Gardner-KP equations with
EFM as

(ut + 6uux ± 6u2ux + uxxx)x + uyy = 0, (4.1)

and we use transformation u = v ∓ 1
2 to convert the

model 4.1 into the Gardner-KP equation

(vt ∓ 3
2
vx ± 6v2vx + vxxx)x + vyy = 0. (4.2)

This shows that the positive GKP equation is com-
pletely integrable like the modified KdV equation.

Case 1:positive Gardner-KP equation
Consider

(ut + 6uux + 6u2ux + uxxx)x + uyy = 0, (4.3)

and we use the transformation

u = v − 1
2

(4.4)

to reduce to the model 4.3 into the Gardner-KP equation
as

(vt − 3
2
vx + 6v2vx + vxxx)x + vyy = 0 (4.5)

and by using the wave variable η = x+ y− ct reduces it to
an ODE of

−
(
c + 1

2

)
v + 2v3 + v′′ = 0, (4.6)

in which Equation 4.6 is obtained by integrating and
neglecting the constant term of integration. In order to
the determine values of c and p, we balance v′′ with v3 in
Equation 4.6 to get

v′′ = c1 exp((c + 3p)η) + . . .

c2 exp(4pη) + . . .
(4.7)

and

v3 = c3 exp(3cη) + . . .

c4 exp(3pη) + . . .
= c3 exp((3c + p)η) + . . .

c4 exp(4pη) + . . .
,

(4.8)

respectively. By balancing the highest order of EFM in 4.7
and 4.8, we will have c + 3p = 3c + p which leads to the
result c = p. Similarly, to determine values of d and q for
the terms v′′ and v3 in Equation 4.6, by simple calculation
we obtain

v′′ = . . . + d1 exp(−(d + 3q)η)

. . . + d2 exp(−4qη)
(4.9)

and

v3 = . . . + d3 exp(−3dη)

. . . + d4 exp(−3qη)
= . . . + d3 exp(−(3d + q)η)

. . . + d4 exp(−4qη)
,

(4.10)

respectively. By balancing the highest order of EFM in 4.9
and 4.10, we have −(d + 3q) = −(3d + q) which leads to
the result d = q. Moreover, by substituting Equation 3.11
into Equation 4.6, using the well-known Maple software,
and applying the same manipulation as illustrated above,
we have the following set of solutions.

(I) The first set is

a1 = 0, a−1 = 0, a0 = a0, b0 = 0, b−1 = b−1,

b1 = a20
4b−1

, c = 1
2
,

(4.11)

v1(x, y, t) = a0

b−1 exp(−x − y + 1
2 t) + a20

4b−1
exp(x + y − 1

2 t)
.

(4.12)

If we choose a0 = 2b−1, then by using 4.4, we would
get

v1,1(x, y, t) = sech
(
x + y − 1

2
t
)
,

u1,1(x, y, t) = −1
2

+ sech
(
x + y − 1

2
t
)
.

(4.13)

(II) The second set is

a−1 = ±1
2
ib−1, a1 = 0, a0 = a0, b0 = ±2ia0,

b−1 = b−1, b1 = 0, c = −1,
(4.14)

v2(x, y, t) = ± i
2
b−1 exp(−x − y − t) ∓ 2ia0
b−1 exp(−x − y − t) ± 2ia0

.

(4.15)
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If we choose b−1 = 2ia0, then by using 4.4, we would
get

v2,1(x, y, t) = − i
2
tanh

(
x + y + t

2

)
,

u2,1(x, y, t) = −1
2

− i
2
tanh

(
x + y + t

2

)
,
(4.16)

v2,2(x, y, t) = i
2
coth

(
x + y + t

2

)
,

u2,2(x, y, t) = −1
2

+ i
2
coth

(
x + y + t

2

)
.
(4.17)

(III) The third set is
a1 = ±ib1, a−1 = a−1, a0 = 0, b0 = 0,

b−1 = ±ia−1, b1 = b1, c = −5
2
,

(4.18)

v3(x, y, t) = ±i
b1 exp(x + y − ct) ∓ ia−1
b1 exp(x + y − ct) ± ia−1

. (4.19)

If we choose b1 = ia−1, then by using 4.4, we would
get

v3,1(x, y, t) = i tanh
(
x + y + 5

2
t
)
,

u3,1(x, y, t) = −1
2

+ i tanh
(
x + y + 5

2
t
)
,

(4.20)

v3,2(x, y, t) = −i coth
(
x + y + 5

2
t
)
,

u3,2(x, y, t) = −1
2

− i coth
(
x + y + 5

2
t
)
.
(4.21)

(IV) The fourth set is

a1 = 1
16

b20 + 4a20
a−1

, a−1 = a−1, a0 = a0, b0 = b0,

b−1 = ±2ia−1, c = −1,
(4.22)

b1 = ∓1
8
b20 + 4a20

a−1
i,

v4(x, y, t)

=
a−1 exp(−x − y − t) + a0 + 1

16
b20+4a20
a−1

exp(x + y + t)

±2ia−1 exp(−x − y − t) + b0 ∓ 1
8
b20+4a20
a−1

i exp(x + y + t)
.

Notice that u(x, y, t) = v(x, y, t) − 1
2 , we would have

u4(x, y, t) = −1
2

+
a−1 exp(−x − y − t) + a0 + 1

16
b20+4a20
a−1

exp(x + y + t)

±2ia−1 exp(−x − y − t) + b0 ∓ 1
8
b20+4a20
a−1

i exp(x + y + t)
.

(4.23)

Case 2: negative Gardner-KP equation
Consider

(ut + 6uux − 6u2ux + uxxx)x + uyy = 0, (4.24)

and we use transformation

u = v + 1
2
, (4.25)

to convert the model 4.24 into the Gardner-KP equation

(vt + 3
2
vx − 6v2vx + vxxx)x + vyy = 0 (4.26)

and by using the wave variable η = x+ y− ct reduces it to
an ODE

−
(
c − 5

2

)
v − 2v3 + v′′ = 0, (4.27)

in which Equation 4.27 is obtained by integrating and
neglecting the constant of integration. By manipulating
above procedure we get the following sets.

(I) The first set is

a1 = 0, a−1 = a−1, a0 = a0, b0 = 2a0, b−1 = −2a−1,
b1 = 0, c = 2,

(4.28)

v1(x, y, t) = a−1 exp(−x − y + ct) + a0
−2a−1 exp(−x − y + ct) + 2a0

.

(4.29)

If we choose a0 = a−1, then by using Equation 4.25,
we would get

v1,1(x, y, t) = 1
2
coth

(
x + y − 2t

2

)
,

u1,1(x, y, t) = 1
2

+ 1
2
coth

(
x + y − 2t

2

)
.

(4.30)

(II) The second set is

a−1 = 0, a1 = 0, a0 = a0, b0 = 0,

b−1 = b−1, b1 = −1
4

a20
b−1

, c = 7
2
,

(4.31)

v2(x, y, t) = a0

b−1 exp(−x − y + ct) − 1
4

a20
b−1

exp(x + y − ct)
.

(4.32)
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If we choose 2b−1 = a0, then by using Equation 4.25,
we would get

v2,1(x, y, t) = −csch
(
x + y − 7

2
t
)
,

u2,1(x, y, t) = 1
2

− csch
(
x + y − 7

2
t
)
.

(4.33)

(III) The third set is

a−1 = − 1
16

b20 − 4a0
a1

, a1 = a1, a0 = a0, b0 = b0,

b−1 = ∓1
8
b20 − 4a0

a1
,

(4.34)

b1 = ∓2a1, c = 2,
v3(x, y, t)

= − 1
16

b20−4a0
a1 exp(−x − y + 2t) + a0 + a1 exp(x + y − 2t)

∓ 1
8
b20−4a0

a1 exp(−x − y + 2t) + b0 ∓ 2a1 exp(x + y − 2t)
.

(4.35)

Notice that in u(x, y, t) = v(x, y, t) + 1
2 , we would

obtain

u3(x, y, t) = 1
2

+ − 1
16

b20−4a0
a1 exp(−x − y + 2t) + a0 + a1 exp(x + y − 2t)

∓ 1
8
b20−4a0

a1 exp(−x − y + 2t) + b0 ∓ 2a1 exp(x + y − 2t)
.

(4.36)

(IV) The fourth set is

a1 = a1, a−1 = a−1, a0 = 0, b0 = 0, b−1 = a−1, c = 1
2
,

b1 = −a1,
(4.37)

v4(x, y, t) = a−1 exp(−x − y + ct) + a1 exp(x + y − ct)
a−1 exp(−x − y + ct) − a1 exp(x + y − ct)

.

(4.38)

If we choose a−1 = a1, then by using Equation 4.25,
we would get

v4(x, y, t) = −coth
(
x + y − 1

2
t
)
,

u4(x, y, t) = 1
2

− coth
(
x + y − 1

2
t
)
,

(4.39)

which are the exact solutions of the Gardner-KP
equation. We obtain solitary wave and complex wave
solutions for the combined KdV-mKdV equation. It

can be seen that the results are the same when
compared to the results in [26].

Conclusions
In this article, we obtained the exact solutions for the
combined KdV-mKdV andGardner-KP equations by Exp-
function method. EFM is a useful method for finding trav-
elling wave solutions of nonlinear evolution equations.
This method has been successfully applied to obtain some
new solitary wave solutions to the combined KdV-mKdV
and Gardner-KP equations. Some of these results are
in agreement with the results reported in the literature.
Also, new results are formally developed in this article
considerably. It can be concluded that this method is a
very powerful and efficient technique to find the exact
solutions for a large class of problems.
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