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On some structures of soft topology
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Abstract

In this paper, we define soft exterior and study its basic properties. We establish several important results relating soft
interior, soft exterior, soft closure, and soft boundary in soft topological spaces. Moreover, we characterize soft open
sets, soft closed sets, and soft clopen sets via soft boundary. All these findings will provide a base to researchers who
want to work in the field of soft topology and will help to establish a general framework for applications in practical
fields.
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Introduction
In 1999, Molodtsov [1] initiated the theory of soft sets as
a new mathematical tool to deal with uncertainties while
modelling the problems in engineering, physics, computer
science, economics, social sciences, and medical sciences.
In [2], Molodtsov et al. successfully applied soft sets in
directions such as smoothness of functions, game theory,
operations research, Riemann integration, Perron integra-
tion, probability, and theory of measurement. Maji et al.
[3,4] gave the first practical application of soft sets in
decision-making problems. In 2003, Maji et al. [4] defined
and studied several basic notions of the soft set theory. In
2005, Pei andMiao [5] and Chen [6] improved the work of
Maji et al. [3,4].
Many researchers have contributed towards the alge-

braic structure of the soft set theory [7-19]. The appli-
cation of the soft set theory in algebraic structures was
introduced by Aktas and Cagman [8]. They established
the basic notions of soft groups as a generalization of the
idea of fuzzy groups. Jun [9] investigated BCK/BCI alge-
bras and studied their applications in ideal theory. Feng
et al. [20] worked on soft semirings, soft ideals, and ide-
alistic soft semirings. Ali et al. [21] and Shabir and Irfan
Ali [22] studied semigroups and soft ideals over a semi-
group which characterized generalized fuzzy ideals and
fuzzy ideals with thresholds of a semigroup.
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Recently, in 2011, Shabir and Naz [23] and Cagman
et al. [24] initiated the study of soft topology and soft
topological spaces independently. Shabir and Naz [23]
defined soft topology on the collection τ of soft sets over
X. Consequently, they defined basic notions of soft topo-
logical spaces such as soft open and closed sets, soft
subspace, soft closure, soft nbd of a point, soft Ti spaces,
i = 1, 2, 3, 4, soft regular spaces, and soft normal spaces
and established their several properties. In [25], we pre-
sented further several important properties of notions
defined and studied in [23]. On the other hand, Cagman et
al. [24] introduced a soft topology on a soft set and defined
a soft topological space. They defined basic notions and
concepts of soft topological spaces such as soft open and
closed sets, soft interior, soft closure, soft basis, soft nbd
of a point, soft limit point of a soft set, soft complement,
soft difference, and soft boundary and established several
properties of these soft notions. The work in both papers
is appreciable.
The notion of soft topology by Cagman et al. [24] is

more general than that by Shabir and Naz [23]. There-
fore, we continue investigating the work of Cagman et al.
[24] and follow their notations and mathematical formal-
ism. In this paper, first, we define and study soft exterior.
We characterize soft open sets, soft closed sets, and soft
clopen sets in terms of soft boundary.We establish several
interesting properties of soft interior, soft exterior, soft
closure, and soft boundary and their relationship which
are fundamental for further research on soft topology
and will strengthen the foundations of the theory of soft
topological spaces.

© 2012 Ahmad and Hussain; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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Preliminaries
Now, we recall some definitions and results defined and
discussed in [1,4,24]. Hereafter, U refers to an initial
universe, E is a set of parameters, P(U) is the power set of
U , and A is a nonempty subset of E.

Definition 1. A soft set FA on the universe U is defined
by the set of ordered pairs FA = {(x, fA(x)) : x ∈ E, fA(x) ∈
P(U)}, where fA : E → P(U) such that fA(x) = φ if x /∈ A.
Here, fA is called an approximate function of the soft set
FA. The value of fA(x)may be arbitrary. Some of themmay
be empty, and somemay have nonempty intersection. The
class of all soft sets over U will be denoted by S(U).

Example 1. Suppose that there are six houses in the uni-
verse U = {hl, h2, h3, h4, h5, h6} under consideration and
that E = {x1, x2, x3, x4, x5} is a set of decision parame-
ters. The xi (i = 1, 2, 3, 4, 5) stand for the parameters
‘expensive,’ ‘beautiful,’ ‘wooden,’ ‘cheap,’ and ‘in green sur-
roundings,’ respectively.
Consider the mapping fA given by ‘houses (.),’ where (.) is

to be filled in by one of the parameters xi ∈ E. For instance,
fA(x1) means ‘houses (expensive),’ and its functional value
is the set {h ∈ U : h is an expensive house }.
Suppose that A = {x1, x3, x4} ⊆ E and fA(x1) = {h2, h4},

fA(x3) = U , and fA(x4) = {h1, h3, h5}. Then, we can view
the soft set FA as consisting of the following collection of
approximations:

FA = {(x1, {h2, h4}), (x3,U), (x4, {h1, h3, h5})}.

Definition 2. Let FA ∈ S(U). If fA(x) = φ, for all
x ∈ E, then FA is called an empty soft set, denoted by F�.
fA(x) = φ means that there is no element in U related to
the parameter x ∈ E. Therefore, we do not display such
elements in the soft sets as it is meaningless to consider
such parameters.

Definition 3. Let FA ∈ S(U). If fA(x) = U , for all x ∈ A,
then FA is called an A-universal soft set, denoted by FÃ. If
A = E, then the A-universal soft set is called a universal
soft set, denoted by FẼ .

Definition 4. Let FA, FB ∈ S(U). Then, FA is a soft
subset of FB, denoted by FA⊆̃FB, if fA(x) ⊆ fB(x), for all
x ∈ E.

Definition 5. Let FA, FB ∈ S(U). Then, FA and FB are
soft equal, denoted by FA = FB, if fA(x) = fB(x), for all
x ∈ E.

Definition 6. Let FA, FB ∈ S(U). Then, the soft union
FA∪̃FB, the soft intersection FA∩̃FB, and the soft differ-
ence FA\̃FB of FA and FB are defined by the approximate

functions fA∪̃B(x) = fA(x) ∪ fB(x), fA∩̃B(x) = fA(x) ∩ fB(x),
and fA\̃B(x) = fA(x)\fB(x), respectively, and the soft com-
plement Fc̃

A of FA is defined by the approximate function
f c̃A(x) = f cA(x), where f c̃A(x) is the complement of the set
fA(x), that is, f c̃A(x) = U\̃fA(x), for all x ∈ E. It is easy to
see that (Fc̃

A)c̃ = FA and Fc̃
� = FẼ .

Proposition 1. Let FA ∈ S(U). Then,
(1) FA∪̃FA = FA, FA∩̃FA = FA.
(2) FA∪̃F� = FA, FA∩̃F� = F�.
(3) FA∪̃FẼ = FẼ , FA∩̃FẼ = FA.
(4) FA∪̃Fc̃

A = FẼ , FA∩̃Fc
A = F�.

Proposition 2. Let FA, FB, FC ∈ S(U). Then,
(1) FA∪̃FB = FB∪̃FA, FA∩̃FB = FB∩̃FA.
(2) (FA∪̃FB)c̃ = Fc̃

B∩̃Fc̃
A , (FA∩̃FB)

˜̃c = Fc̃
B∪̃Fc̃

A.
(3) FA∪̃(FB∩̃FC) = (FA∪̃FB)∩̃(FA∪̃FC).
(4) FA∩̃(FB∪̃FC) = (FA∩̃FB)∪̃(FA∩̃FC).

Definition 7. Let FA ∈ S(U). The soft power set of FA
is defined by P̃(FA) = {FAi : FAi⊆̃FA, i ∈ I ⊆ N}, and
its cardinality is defined by |P̃(FA)| = 2

∑
x∈E |fA(x)|, where

|fA(x)| is the cardinality of fA(x).

Example 2. Let U = {u1,u2,u3}, E = {x1, x2, x3}, A =
{x1, x2} ⊆ E, and

FA = {(x1, {u1,u2}), (x2, {u2,u3})}. Then,
FA1 = {(x1, {u1})},
FA2 = {(x1, {u2})},
FA3 = {(x1, {u1,u2})},
FA4 = {(x2, {u2})},
FA5 = {(x2, {u3})},
FA6 = {(x2, {u2,u3})},
FA7 = {(x1, {u1}), (x2, {u2})},
FA8 = {(x1, {u1}), (x2, {u3})},
FA9 = {(x1, {u1}), (x2, {u2,u3})},
FA10 = {(x1, {u2}), (x2, {u2})},
FA11 = {(x1, {u2}), (x2, {u3})},
FA12 = {(x1, {u2}), (x2, {u2,u3})},
FA13 = {(x1, {u1,u2}), (x2, {u2})},
FA14 = {(x1, {u1,u2}), (x2, {u3})},
FA15 = FA,
FA16 = F�

are all soft subsets of FA. So, |P̃(FA)| = 24 = 16.

Definition 8. Let FA ∈ S(U). A soft topology on FA,
denoted by τ̃ , is a collection of soft subsets of FA having
the following properties:
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(1) F�, FA ∈ τ̃ .
(2) {FAi⊆̃FA : i ∈ I ⊆ N} ⊆ τ̃ ⇒ ⋃̃

i∈IFAi ∈ τ̃ .
(3) {FAi⊆̃FA : 1 ≤ i ≤ n, n ∈ N} ⊆ τ̃ ⇒ ⋂̃n

i=1FAi ∈ τ̃ .

The pair (FA, τ̃ ) is called a soft topological space.

Example 3. Let us consider the soft subsets of FA that
are given in Example 2. Then, τ̃1 = {F�, FA}, τ̃2 = ˜P(FA),
and τ̃3 = {F�, FA, FA2 , FA11 , FA13} are soft topologies
on FA.

Definition 9. Let (FA, τ̃ ) be a soft topological space.
Then, every element of τ̃ is called a soft open set. Clearly,
F� and FA are soft open sets.

Definition 10. Let (FA, τ̃ ) be a soft topological space
and FB⊆̃FA. Then, FB is said to be soft closed if the soft set
Fc̃
B is soft open.

Theorem 1. Let (FA, τ̃ ) be a soft topological space. Then,
the following hold:

(1) The universal soft set FẼ and Fc̃
A are soft closed sets.

(2) Arbitrary soft intersections of the soft closed sets are
soft closed sets.

(3) Finite soft unions of the soft closed sets are soft
closed sets.

Definition 11. Let (FA, τ̃ ) be a soft topological space
and FB⊆̃FA. Then, the soft interior of a soft set FB is
denoted by F◦

B and is defined as the soft union of all soft
open subsets of FB. Thus, F◦

B is the largest soft open set
contained in FB.

Theorem 2. Let (FA, τ̃ ) be a soft topological space and
FB, FC⊆̃FA. Then,

(1) F◦
� = F�.

(2) F◦
B⊂̃FB.

(3) (F◦
B)◦ = F◦

B.
(4) FB is a soft open set if and only if F◦

B = FB.
(5) FB⊆̃FC implies F◦

B⊆̃F◦
C .

(6) F◦
B∩̃F◦

C = (FB∩̃FC)◦.
(7) F◦

B∪̃F◦
C⊆̃(FB∪̃FC)◦.

Definition 12. Let (FA, τ̃ ) be a soft topological space
and FB⊆̃FA. Then, the soft closure of FB, denoted FB, is
defined as the soft intersection of all soft closed super-
sets of FB. Note that FB is the smallest soft closed set
containing FB.

Theorem 3. Let (FA, τ̃ ) be a soft topological space and
FB⊆̃FA. FB is a closed soft set if and only if FB = FB.

Theorem 4. Let (FA, τ̃ ) be a soft topological space and
FB, FC⊆̃FA. Then,

(1) FB = FB.
(2) FC⊆̃FB implies FC⊆̃FB.
(3) FB∪̃FC = FB∪̃FC .
(4) FB∩̃FC⊇̃FB ∩ FC .

Definition 13. Let (FA, τ̃ ) be a soft topological and
FB⊆̃FA. Then, the soft boundary of soft set FB is denoted
by Fb̃

B and is defined as Fb̃
B = FB ∩ (Fc̃

B).

Definition 14. Let (FA, τ̃ ) be a soft topological space,
FB⊆̃FA, and α ∈ FA. If every soft nbd of α soft intersects
FB in some points other than α itself, then α is called a soft
limit point of FB. The set of all soft limit points of FB is
denoted by F ′

B. In other words, if (FA, τ̃ ) is a soft topologi-
cal space, FB, FC⊆̃FA, and α ∈ FA, then α ∈ F ′

B if and only
if FC∩̃(FB\̃{α}) = F�, for all FC ∈ ν̃(α).

Soft topology
Definition 15. Let (FA, τ̃ ) be a soft topological space

and α ∈ FA. If there is a soft open set FB such that
α ∈ FB, then FB is called a soft open neighborhood
(soft nbd) of α. The set of all soft nbds of α, denoted
ν̃(α), is called the family of soft nbds of α, that is,
ν̃(α) = {FB : FB ∈ τ̃ : α ∈ FB}.

Example 4. Let us consider the topological space
(FA, τ̃3) in Example 3 and α = (x1, {u1,u2}) ∈ FA. Then,
ν̃(α) = {FA, FA13}.

The following theorem gives important properties of the
soft nbd system:

Proposition 3. Let (FA, τ̃ ) be a soft topological space
and FB, FC⊆̃FA. Then, the collection of soft nbd ν̃(α) at α

in (FA, τ̃ ) has the following properties:

(1) If FB ∈ ν̃(α), then α ∈ FB.
(2) If FB, FC ∈ ν̃(α), then FB∩̃FC ∈ ν̃(α).
(3) If FB ∈ ν̃(α) and FB⊆̃FC , then FC ∈ ν̃(α).
(4) If FB ∈ ν̃(α), then there is an FC ∈ ν̃(α) such that

FB ∈ ν̃(β), for each β ∈ FC .
(5) FB⊆̃FA is soft open if and only if FB contains a soft

nbd of each of its points.

Proof. (1) is obvious since FB is a soft open nbd of
α ∈ FA. So, FB is a soft open set such that α ∈ FB.

(2) If FB, FC ∈ ν̃(α), then there exist soft open sets FD
and FG such that α ∈ FD⊆̃FB and α ∈ FG⊆̃FC .
Therefore, α ∈ FD∩̃FG⊆̃FB∩̃FC , and hence,
FB∩̃FC ∈ ν̃(α).
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(3) Since FB ∈ ν̃(α), therefore there exists a soft open set
FD such that α ∈ FD⊆̃FB. Then, α ∈ FD⊆̃FB⊆̃FC or
α ∈ FD⊆̃FC . Hence, FC ∈ ν̃(α).

(4) Since FB ∈ ν̃(α), then α ∈ FC⊆̃FB, for FC soft open
in FA. Since α ∈ FC⊆̃FC , then FC ∈ ν̃(α). If β ∈ FC ,
then by (3) FC⊆̃FB implies that FB ∈ ν̃(β), for each
β ∈ FC .

(5) (i) Suppose FB is a soft open in FA, then
α ∈ FB⊆̃FB implies that FB is a soft nbd of
each α ∈ FB.

(ii) If each α ∈ FB has a soft nbd FCα ⊆̃FB, then
FB = {α : α ∈ FB}⊆̃⋃̃

α∈FBFCα ⊆̃FB or
FB = ⋃̃

α∈FBFCα . This implies that FB is soft
open in FA.

Definition 16. Let (FA, τ̃ ) be a soft topological space. A
soft nbd base at α ∈ FA is a subcollection δ̃(α) of soft nbd
ν̃(α) having the property that each FB ∈ ν̃(α) contains
some FC ∈ δ̃(α), that is, ν̃(α) must be determined by δ̃(α)

as follows:

ν̃(α) = {FB⊆̃FA : FC⊆̃FB, for some FC ∈ δ̃(α)}.

Each FC ∈ δ̃(α) is called a basic soft open neighborhood
of α.

For the soft basic nbd system, we have the following
properties:

Proposition 4. Let (FA, τ̃ ) be a soft topological space
and for each α ∈ FA, let δ̃(α) be a soft nbd base at α. Then,

(1) If FC ∈ δ̃(α), then α ∈ FC .
(2) If FC1 , FC2 ∈ δ̃(α), then there is some FC3 ∈ δ̃(α)

such that FC3⊆̃FC1 ∩̃FC2 .
(3) If FC ∈ δ̃(α), then there is some FC0 ∈ δ̃(α) such that

if γ ∈ FC0 , then there is some FD ∈ δ̃(γ )with FD⊆̃FC .
(4) FB⊆̃FA is soft open if and only if FB contains a soft

basic nbd of each of its points.

Proof. These properties are easily verified for soft basic
nbds by referring to the corresponding properties of soft
nbds in Proposition 3.

Next, we prove the following theorem which relates the
concepts of soft interior and soft closure:

Theorem 5. Let FB be a soft set of soft topological space
(FA, τ̃ ). Then,

(1) (Fc̃
B) = (F◦

B)c̃.
(2) (Fc̃

B)◦ = (FB)c̃.
(3) F◦

B = ((Fc̃
B))

c̃.

(4) FB = (((Fc̃
B)

◦)c̃.
(5) (FB\̃FC)◦⊆̃F◦

B\̃F◦
C .

Proof. (1) Let α ∈ FB such that α /∈ F◦
B. Then, for each

soft open nbd FC of α, FC soft intersects Fc̃
B. Otherwise,

for some soft open nbd FC of α, FC∩̃Fc̃
B = F� or FC⊆̃FB.

Since F◦
B is the largest soft open set in FB, therefore α ∈

FC⊆̃F◦
B, which is a contradiction. Therefore, by Theorem

12(a) [24], α ∈ (Fc̃
B). Hence, (F◦

B)
c̃⊆̃Fc̃

B).
Conversely, suppose α ∈ Fc̃

B), then by Definition 17 [24],
α ∈ Fc̃

B or α is a soft limit point of Fc̃
B. If α ∈ Fc̃

B, then
α ∈ (F◦

B)
c̃. In the second case, α /∈ F◦

B. Otherwise, by
the definition of soft limit point [24], F◦

B∩̃Fc̃
B = F�, which

is false. Therefore, α ∈ Fc̃
B). This shows that Fc̃

B)⊆̃(F◦
B)c̃.

Combining, we get (1).
(2) is proved in [24].
(3) and (4) are directly obtained by taking the comple-

ments of (1) and (2), respectively.

(5) (FB\̃FC)◦ = (FB∩̃Fc̃
C)◦

= F◦
B∩̃(Fc̃

C)◦ (by Theorem 8(3)[24])
= F◦

B∩̃(FC)c̃ (by Theorem 5(2))
⊆̃ F◦

B∩̃(F◦
C)c̃

= F◦
B\̃F◦

C .

Now, we define the following:

Definition 17. Let (FA, τ̃ ) be a soft topological space
and FB⊆̃FA . Then, the soft exterior of a soft set FB is
denoted by (FB)ẽ and is defined as (FB)ẽ = (Fc̃

B)◦.
Thus, α is called a soft exterior point of FB if there exists

a soft open set FC such that α ∈ FC⊆̃Fc̃
B. We observe that

(FB)ẽ is the largest soft open set contained in Fc̃
B.

Example 5. In Example 2, we take FB = {(x1,U),
(x2, {u1,u2})}. Then, the soft exterior of FB is F� since
(FB)c̃ = {(x2, {u3})}, and thus, (FB)ẽ = ((FB)c̃)◦ = F�.

Theorem 6. Let FB and FC be soft sets of a soft topologi-
cal space (FA, τ̃ ). Then,

(1) (FB)ẽ = (Fc̃
B)ẽ.

(2) (FB∪̃FC)ẽ = (FB)ẽ∩̃(FB)ẽ.
(3) (FB)ẽ∪̃(FC)ẽ⊆̃(FB∩̃FC)ẽ.

Proof. (1) The proof follows from the definition.

(2) (FB∪̃FC)ẽ = ((FB∪̃FC)c̃)◦

= (Fc̃
B∩̃Fc̃

C)◦
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= (Fc̃
B)◦∩̃(Fc̃

C)◦ (by Theorem 8(3)[24])

= (FB)ẽ∩̃(FC)ẽ.

(3) (FB)ẽ∪̃(FC)ẽ = (Fc̃
B)◦∪̃(Fc̃

C)◦

⊆̃ (Fc̃
B∪̃Fc̃

C)◦ (by Theorem 8(4)[24])

= ((FB∩̃FC)c̃)◦

= (FB∩̃FC)ẽ.

Theorem 7. Let (FA, τ̃ ) be a soft topological space and
FB⊆̃FA. Then, the following hold:

(1) (Fb̃
B)c̃ = F◦

B∪̃(Fc̃
B)

◦ = F◦
B∪̃(FB)ẽ.

(2) FB = FB∪̃Fb̃
B.

(3) F◦
B = (FB)\̃Fb̃

B.

Proof. We use Theorem 5(1) and (2) to prove (1):

(1) F◦
B∪̃(Fc̃

B)
◦ = ((F◦

B)c̃)c̃∪̃(((Fc̃
B)

◦)c̃)c̃

= [ (F◦
B)

c̃∩̃(((FB)c̃)◦)c̃]c̃

= [ Fc̃
B∩̃(FB)]c̃

= (Fb̃
B)c̃.

(2) FB∪̃Fb̃
B = FB∪̃(FB∩̃Fc̃

B)

= [ FB∪̃FB] ∩̃[ FB∪̃Fc̃
B]

= FB∩̃[ FB∪̃(Fc̃
B]

= FB∩̃FA
= FB.

(3) FB\̃Fb̃
B = FB∩̃(Fb̃

B)c̃

= FB∩̃(F◦
B∪̃(Fc̃

B)
◦) (by (1))

= [ FB∩̃F◦
B] ∪̃[ (FB∩̃Fc̃

B)◦]
= F◦

B∪̃F�

= F◦
B

Remark 1. (a) In [24], it is known that Fb̃
B = (Fc̃

B)
b̃.

(b) From Theorem 7(1), it follows that FA =
F◦
B∪̃(FB)ẽ∪̃Fb̃

B.

Theorem 8. Let (FA, τ̃ ) be a soft topological space and
FB⊆̃FA. Then, the following hold:

(1) Fb̃
B∩̃F◦

B = F�.
(2) Fb̃

B∩̃(FB)ẽ = F�.

Proof.

(1) F◦
B∩̃Fb̃

B = F◦
B∩̃(FB∩̃Fc̃

B)

= F◦
B∩̃FB∩̃(F◦

B)c̃ (by Theorem 5(1))

= F�.

(2) Fb̃
B∩̃(FB)ẽ = (Fc̃

B)
◦∩̃(FB∩̃Fc̃

B)

= (Fc̃
B)

◦∩̃FB∩̃Fc̃
B

= (FB)c̃∩̃FB∩̃Fc̃
B (by Theorem 5(1))

= F�.

Theorem 9. Let (FA, τ̃ ) be a soft topological space and
FB⊆̃FA. Then,

(1) FB is soft open if and only if FB∩̃Fb̃
B = F�.

(2) FB is soft closed if and only if Fb̃
B⊆̃FB.

Proof. (1) Let FB be a soft open set. Then, F◦
B = FB.

Thus, FB∩̃Fb̃
B = F◦

B∩̃Fb̃
B = F� (by Theorem 8(1)).

Conversely, let FB∩̃FB = F�. Then,
FB∩̃[ FB∩̃Fc̃

B]= F�, FB∩̃Fc̃
B = F�, or Fc̃

B⊆̃Fc̃
B, which

implies that Fc̃
B is soft closed, and hence, FB is soft

open.
(2) Let FB be a soft closed set. Then, FB = FB. Now,

Fb̃
B = FB∩̃Fc̃

B⊆̃FB = FB, or Fb̃
B⊆̃FB and conversely.

Theorem 10. Let (FA, τ̃ ) be a soft topological space and
FB, FC⊆̃FA. Then, the following hold:

(1) (FB∪̃FC)
b̃⊆̃[ FB∩̃Fc̃

C]
b̃ ∪̃[ Fb̃

C∩̃Fc̃
B].

(2) [ FB∩̃FC]b̃⊆̃[ FBb̃∩̃FC] ∪̃[ FCb̃∩̃FB].

Proof.

(1) (FB∪̃FC)b̃ = (FB∪̃FC)∩̃(FB∪̃FC)c̃

= (FB∪̃FC)∩̃(Fc̃
B∩̃Fc̃

C) (by Theorem 11(5)[24])

⊆̃ (FB∪̃FC)∩̃(Fc̃
B∩̃Fc̃

C) (by Theorem 11(4)[24])

= [ (FB∩̃(Fc̃
B)∩̃Fc̃

C)] ∪̃[ (FC∩̃(Fc̃
B)∩̃Fc̃

C)]

= [ (FB∩̃(Fc̃
B))∩̃(Fc̃

C)] ∪̃[ ((FC)∩̃(Fc̃
C))∩̃(Fc̃

B)]

= [ Fb̃
B∩̃(FB)] ∪̃[ Fb̃

C∩̃(Fc̃
B)]

⊆̃ Fb̃
B∪̃Fb̃

C .
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(2) [ FB∩̃FC]b̃= (FB∩̃FC)∩̃(FB∩̃FC)c̃

⊆̃ [ FB∩̃FC] ∩̃[ Fc̃
B∪̃Fc̃

C)] (by Theorem 11(4)[24])

= [ FB∩̃FC] ∩̃[ Fc̃
B∪̃Fc̃

C] (by Theorem 11(5)[24])

= [ (FB∩̃FC)∩̃Fc̃
B] ∪̃[ (FB∩̃FC)∩̃Fc̃

C]

= (Fb̃
B∩̃FC)∪̃(FB∩̃Fb̃

C).

Theorem 11. Let (FA, τ̃ ) be a soft topological space and
FB⊆̃FA. Then, the following holds: ((Fb̃

B)b̃)b̃ = (Fb̃
B)b̃.

Proof.

((Fb̃
B)b̃)b̃ = (Fb̃

B)b̃∩̃((Fb̃
B)b̃)c̃)

= (Fb̃
B)b̃∩̃((Fb̃

B)b̃)c̃ . . . (1)

Now, consider

((Fb̃
B)b̃)c̃ =[ (Fb̃

B)∩̃(Fb̃
B)c̃]c̃

=[ Fb̃
B∩̃(Fb̃

B)c̃]c̃

= (Fb̃
B)c̃∪̃((Fb̃

B)c̃)c̃.

Therefore,

((Fb̃
B)b̃)c̃) = [ (Fb̃

B)c̃∪̃(((Fb̃
B)c̃))c̃]

= ((Fb̃
B)c̃)∪̃((((Fb̃

B)c̃))c̃) (by Theorem 11(5)[24])

= (FC∪̃((FC)c̃) = FA . . . (2)

where FC = (((Fb̃
B))c̃). From (1) and (2), we have

((Fb̃
B)b̃)b̃ = (Fb̃

B)b̃∩̃FA = (Fb̃
B)b̃.

Theorem 12. Let (FA, τ̃ ) be a soft topological space and
FB⊆̃FA. Fb̃

B = F� if and only if FB is a soft clopen set.

Proof. Suppose that Fb̃
B = F�.

(1) First, we prove that FB is a soft closed set. Consider

Fb̃
B = F� ⇒ FB∩̃(Fc̃

B) = F�

⇒ FB⊆̃((Fc̃
B))

c̃ = F◦
B⊆̃FB (by Theorem 5(3))

⇒ FB⊆̃FB ⇒ FB = FB.

This implies that FB is a soft closed set.
(2) Using Theorem 5(3), we now prove that FB is a soft

open set:

Fb̃
B = F� ⇒ FB∩̃Fc̃

B or FB∩̃(F◦
B)

c̃

= F� ⇒ FB⊆̃F◦
B ⇒ F◦

B = FB.

This implies that FB is a soft open set.

Conversely, suppose that FB is a soft clopen set. Then,

Fb̃
B = FB∩̃(Fc̃

B)

= FB∩̃(F◦
B)c̃ (by Theorem 5(1))

= FB∩̃Fc̃
B = F�.

Conclusions
In the present work, we have defined and studied the
important properties of soft exterior. We have established
several results relating soft interior, soft exterior, soft clo-
sure, and soft boundary. Moreover, we have characterized
soft open sets, soft closed sets, and soft clopen sets in
terms of soft boundary. We have presented the base of
the theory of soft topological spaces. These findings will
strengthen the foundation of soft topological spaces and
will help to establish a general framework for practical
applications.We hope that researchers working on soft
topological structures will be benefited.
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