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Abstract

In this paper, we present a new construction and decoding of BCH codes over certain rings. Thus, for a nonnegative
integer t, letA0 ⊂ A1 ⊂ · · · ⊂ At−1 ⊂ At be a chain of unitary commutative rings, where eachAi is constructed
by the direct product of appropriate Galois rings, and its projection to the fields isK0 ⊂ K1 ⊂ · · · ⊂ Kt−1 ⊂ Kt
(another chain of unitary commutative rings), where eachKi is made by the direct product of corresponding residue
fields of given Galois rings. Also,A∗

i andK∗
i are the groups of units ofAi andKi , respectively. This correspondence

presents a construction technique of generator polynomials of the sequence of Bose, Chaudhuri, and Hocquenghem
(BCH) codes possessing entries fromA∗

i andK∗
i for each i, where 0 ≤ i ≤ t. By the construction of BCH codes, we are

confined to get the best code rate and error correction capability; however, the proposed contribution offers a choice
to opt a worthy BCH code concerning code rate and error correction capability. In the second phase, we extend the
modified Berlekamp-Massey algorithm for the above chains of unitary commutative local rings in such a way that the
error will be corrected of the sequences of codewords from the sequences of BCH codes at once. This process is not
much different than the original one, but it deals a sequence of codewords from the sequence of codes over the
chain of Galois rings.
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Introduction
Linear codes over finite rings have been hashed out in a
series of papers introduced by Blake [1,2], Spiegel [3,4],
and Forney [5]. Recently, a keen interest about the struc-
ture of the multiplicative group of units of certain finite
local commutative rings has been developed in coding
theory owing to its wondrous application, especially in
the construction of Bose, Chaudhuri, and Hocquenghem
(BCH) codes. Using the multiplicative group of unit ele-
ments of a Galois ring extension of Zpm , Shankar [6] has
constructed BCH codes over Zpm . However, Andrade and
Palazzo [7] have further extended this construction of
BCH codes over finite commutative rings with identity.
Both construction techniques of [6] and [7] have been
addressed from the approach of specifying a cyclic sub-
group of the group of units of an extension ring of finite

*Correspondence: andrade@ibilce.unesp.br
2Department of Mathematics, São Paulo State University, São José do Rio
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commutative rings. The complexity of this study is to get
the factorization of xn − 1 over the group of units of the
appropriate extension ring of the given local ring and then
construct the generator polynomial for BCH codes.
Let A be a finite commutative ring with identity. The

ring An, with n ∈ Z
+, being a free A-module that

preserves the concept of linear independence among its
elements, is similar to a vector space over a field. Though
it has the constraint that an r × r submatrix of r × n gen-
erator matrix M over A is non-singular or, equivalently,
has a determinant unit inA, the existence of non-singular
matrices having no obligatory unit elements is, in fact,
the primary obstacle in working over a local ring instead
of a field. The notion of elementary row operations in a
matrix, and its consequences, also carries overA with the
understanding that only multiplication of a row by a unit
element in A is allowed, which is in contrast to the mul-
tiplication by any nonzero element in the case of a field.
The structure of the multiplicative group of units of A is
the main motivation to calculate the McCoy rank [8] of a
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matrix M, that is, the largest integer r such that the r × r
submatrix ofM has a determinant unit inA.
Andrade and Palazzo [9] describe a construction tech-

nique of a matrix

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

α1 α2 · · · αn

α2
1 α2

2 · · · α2
n

...
...

. . .
...

αk
1 αk

2 · · · αk
n

⎤
⎥⎥⎥⎥⎥⎥⎦

based on the vector η = (α1,α2, · · · ,αn), where αi, for
1 ≤ i ≤ n, are distinct units in the unitary local ring
A such that 1 − αj, for 1 ≤ j ≤ l, are units. By this,
one can obtain the McCoy rank of the matrix M, whereas
the findings of these types of units are linked with the
multiplicative groupA∗ of units of the ringA.
For h = bt , where b is a prime and t is a positive

integer, there exist corresponding Galois ring extensions
Ri = GR(pm, hi), where 0 ≤ i ≤ t and hi = bi (respec-
tively, their residue fields Ki, where 0 ≤ i ≤ t and hi = bi)
of unitary local ring (R,M) with pm elements (respec-
tively, p elements of residue fieldR/M). For each i, where
0 ≤ i ≤ t, it follows that R∗

i has one and only one
cyclic subgroup Gni of order ni (divides phi − 1) relatively
prime to p (it extends Theorem 2 of [6]). Furthermore, if
β i generates a cyclic subgroup of order ni in K

∗
i , then β i

generates a cyclic subgroup of order nidi in R∗
i , where di

is an integer greater than or equal to 1, and (β i)di gener-
ates the cyclic subgroupGni inR∗

i for each i (an extension
of Lemma 1 of [6]). Consequently, by extending the given
algorithm of [6] for constructing a BCH type of codes with
symbols from the local ring A for each member in chains
of Galois rings and residue fields, respectively, there are
two situations: hi = bi for i = 2 or hi = bi for i ≥ 2.
By these motivations, in this paper, for any t ∈ Z

+, let
A0 ⊂ A1 ⊂ · · · ⊂ At−1 ⊂ At be a chain of unitary com-
mutative rings, whereas for each i such that 0 ≤ i ≤ t, it
follows thatAi is a direct product of Galois rings, i.e.,

A0 = R0 × R0 × · · · × R0
∩ ∩
A1 = R1 × R1 × · · · × R1
∩ ∩
...

...
∩ ∩
At = Rt × Rt × · · · × Rt ,

whereas R0 ⊂ R1 ⊂ · · · ⊂ Rt−1 ⊂ Rt is the chain
of Galois rings. Corresponding to the chain A0 ⊂ A1 ⊂
· · · ⊂ At−1 ⊂ At , there is the chain of rings K0 ⊂ K1 ⊂

· · · ⊂ Kt−1 ⊂ Kt constituted through the direct product
of their residue fields, i.e.,

K0 = K0 × K0 × · · · × K0
∩ ∩
K1 = K1 × K1 × · · · × K1
∩ ∩
...

...
∩ ∩
Kt = Kt × Kt × · · · × Kt ,

whereas K0 ⊂ K1 ⊂ · · · ⊂ Kt−1 ⊂ Kt is the chain of
corresponding residue fields. Also, A∗

i and K∗
i for each i,

where 0 ≤ i ≤ t, are multiplicative groups of units of Ai
and Ki, respectively.
In this work, we present a construction technique of

generator polynomials of BCH codes having entries from
A∗

i and K∗
i for each i, where 0 ≤ i ≤ t. Thus, this

paper is organized as follows: the ‘Preliminaries’ section 2
contains a brief introduction of the basics of polynomial
rings and some results from [7]. In the ‘Sequences of BCH
codes’ section, we describe the construction technique of
the sequence of BCH codes over the chain of commuta-
tive rings constructed by the direct product of appropriate
chains of Galois rings. In the ‘Decoding procedure of
BCH codes’ section, we present the decoding procedure
for the constructed BCH codes. The ‘Conclusions’ section
concludes the whole discussion.

Methods
Preliminaries
Assume that (A,M) is a finite unitary local commutative
ring with residue field K = A

M
∼= GF(pm), where p is a

prime integer andm is a positive integer. The natural pro-
jection π : A[ x]→ K[ x] is defined by π(

∑n
i=0 aixi) =∑n

i=0 aixi, where ai = ai + M for i = 0, · · · , n. Thus, the
natural ring morphism A → K is simply the restriction of
π to the constant polynomials. In the following, we recall
some definitions and results from [8] for the sake of quick
reference.

Definition 1. Let a(x) be a polynomial in A[ x]. We say
that

1. a(x) is a unit if there exists a polynomial b(x) ∈ A[ x]
such that a(x)b(x) = 1.

2. a(x) 
= 0 is a zero divisor if there exists a polynomial
b(x) ∈ A[ x] \{0} such that a(x)b(x) = 0.

3. a(x) is regular if a(x) is not a zero divisor.
4. a(x) is irreducible if a(x) is not a unit, and if

a(x) = a1(x)a2(x), then either a1(x) is a unit or a2(x)
is a unit.
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Theorem 2. (Theorem XIII.2 of [8]) Let (A,M) be a
local ring and a(x) = ∑n

i=0 aixi ∈ A[ x]. The following
assertions are equivalent:

1. a(x) is regular.
2. 〈a1, a2, · · · , an〉 = A.
3. ai is a unit for some i, for 0 ≤ i ≤ n.
4. π(a(x)) 
= 0.

Theorem 3. (Theorem XV.1 of [8]) Let (A,M) be a local
ring and a(x) be a regular polynomial in A[ x] such that
π(a(x)) has a simple (i.e., non-multiple) zero ᾱ inK. Then,
a(x) has one and only one zero α with π(α) = ᾱ.

Theorem 4. (Theorem XIII.7 of [8]) Let (A,M) be a
local ring and a(x) be a regular polynomial in A[ x] such
that π(a(x)) is irreducible in K[ x]. Then, a(x) is irre-
ducible in A[ x].

Let Aj be a finite local ring with characteristic pj, for
each j such that 1 ≤ j ≤ s. Let Kj be the residue fields of
local rings Rj = Aj[ x] /〈fj(x)〉, where fj(x) is a basic irre-
ducible polynomial overAj of degree h, for each j such that
1 ≤ j ≤ s.

Theorem 5. (Theorem 3.3 of [7]) Let R = R1 × R2 ×
R3 × · · · × Rs, where each Rj is a local finite commutative
(Galois) ring. Then,R∗ = R∗

1 × R∗
2 × R∗

3 × · · · × R∗
s .

The following theorem indicates the condition under
which xs − 1 can be factored overR∗:

Theorem 6. (Theorem 3.4 of [7])The polynomials xs−1
can be factored over the multiplicative group R∗ as xs −
1 = (x − α)(x − α2) · · · (x − αs) if and only if βj has order
s in K

∗
j , where gcd(s, pj) = 1 and α corresponds to β =

(β1,β2, · · · ,βs), for j = 1, 2, 3, · · · , s.

Theorem 7. (Theorem 3.5 of [7]) For any positive inte-
ger l, let Ml(x) be the minimal polynomial of αl over R,
where α generates Gn. Then, Ml(x) = ∏

ξ∈Bl (x − ξ), where
Bl are all distinct elements of the sequence {(αl)m : m =∏s

j=1 q
sj
j , qj = pmj

j , 0 ≤ sj ≤ h − 1}.

Theorem 8. (Theorem 2.5 of [7]) Let g(x) be the genera-
tor polynomial of BCH code over A with length n = s such
that αe1 ,αe2 , · · · ,αen−k are the roots of g(x) in Hα,n, where
α has order n, then the minimum Hamming distance of
the code is greater than the largest number of consecutive
integers modulo n in E = {e1, e2, e3, · · · , en−k}.

Sequences of BCH codes
Let (A,M) be a unitary finite local commutative ring with
residue field K = A

M having pm elements. The natural

projection π : A[ x]→ K[ x] is defined by π(
∑n

i=0 aixi) =∑n
i=0 akxi, where ai = ai + M for i = 0, 1, · · · , n. Thus,

the natural ring morphism A → K is simply the restric-
tion of π to the constant polynomials. Now, if f (x) ∈ A[ x]
is a basic irreducible polynomial with degree h = bt ,
where b is a prime and t is a positive integer, then R =
A[x]

〈f (x)〉) = GR(pm, h) is the Galois ring extension of A and
K = R

M = A[x]/〈f (x)〉
〈M,f (x)〉/〈f (x)〉 = A[x]

〈M,f (x)〉 = (A/M)[x]
〈π(f (x))〉 = GF(pmh)

is the residue field of R, where M = 〈M, f (x)〉/〈f (x)〉 is
the maximal ideal ofR.
For the construction of a chain of Galois rings, the

following lemma is of central importance:

Lemma 9. (LemmaVII of [8]) Every subring of GR(pk , h)
is a Galois ring of the form GR(pk , h′), where h′ divides
h. Conversely, if h′ divides h, then GR(pk , h) contains a
unique copy of GR(pk , h′).

Since 1, b, b2, · · · , bt−1, bt are divisors of h, so take h0 =
1, h1 = b, h2 = b2, · · · , ht = bt = h, and by Lemma
9, it follows that there exist basic irreducible polynomials
f1(x), f2(x), · · · , ft(x) ∈ A[ x] with degrees h1, h2, · · · , ht ,
respectively, such that we can constitute the Galois sub-
rings Ri = A[x]

〈fi(x)〉 = GR(pm, hi), for each i, where 1 ≤ i ≤
t, of R with the maximal ideals Mi = 〈M, fi(x)〉/〈fi(x)〉,
for 1 ≤ i ≤ t. Thus, the residue fields of eachRi becomes

Ki = Ri
Mi

= A[ x] /〈fi(x)〉
〈M, fi(x)〉/〈fi(x)〉 = A[ x]

〈M, fi(x)〉 = (A/M)[ x]
〈π(fi(x))〉

= K[ x]
〈f̄i(x)〉

= GF(phi).

As hi divides hi+1 for all 0 ≤ i ≤ t, so by Lemma 9, it
follows that there is a chain

A = R0 ⊂ R1 ⊂ R2 ⊂ · · · ⊂ Rt−1 ⊂ Rt = R

of Galois rings with corresponding chain of residue fields

Zp = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kt−1 ⊂ K.

If Ai = Rr′
i for 0 ≤ i ≤ t, then we obtain a chain of

another unitary commutative rings, i.e.,

A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ At−1 ⊂ At = A

with a corresponding chain of rings

K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kt−1 ⊆ Kt = K,

where Ki = K
r′
i for 0 ≤ i ≤ t.

Let A∗
i and K

∗
i be the multiplicative group of units of

Ai and Ki, respectively, for 0 ≤ i ≤ t. The next corollary
of Theorem XVIII.1 of [8] plays a fundamental role in the
decomposition of the polynomial xni − 1 into linear fac-
tors over the rings A∗

i . This theorem asserts that for each
element αi ∈ A∗

i , there exist unique elements βi ∈ R∗
i ,
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for 0 ≤ i ≤ t, such that αi = (βi,βi, · · · ,βi) are ordered
r′-tuples.

Corollary 10. Let Ai = Rr′
i , for 0 ≤ i ≤ t, where each

Ri is a local finite commutative ring. Then,A∗
i = (R∗

i )
r′ .

The following theorem indicates the condition under
which xni − 1 can be factored overA∗

i , for 0 ≤ i ≤ t:

Theorem 11. For 0 ≤ i ≤ t, the polynomials xni − 1 can
be factored over the multiplicative groupsA∗

i as xni − 1 =
(x−αi)(x−α2

i ) · · · (x−α
ni
i ) if and only if βi has order ni =

phi−1 inK∗
i , where gcd(ni, p) = 1 and αi = (βi,βi, · · · ,βi).

Proof. Suppose that the polynomials xni − 1 can be fac-
tored over A∗

i as xni − 1 = (x − αi)(x − α2
i ) · · · (x − α

ni
i ).

Then, xni − 1 can be factored over R∗
i as xni − 1 =

(x−βi)(x−β2
i ) · · · (x−β

ni
i ), for 0 ≤ i ≤ t. Now, it follows

from the extension of Theorem 3 of [6] that βi has order ni
inK

∗
i , for 0 ≤ i ≤ t. Conversely, suppose that βi has order

ni inK
∗
i , for 0 ≤ i ≤ t. Again, it follows from the extension

of Theorem 3 of [6] that the polynomials xni − 1 can be
factored overR∗

i as xni −1 = (x−βi)(x−β2
i ) · · · (x−β

ni
i ),

for 0 ≤ i ≤ t. Since αi = (βi,βi, · · · ,βi), for 0 ≤ i ≤ t, it
follows that xni − 1 = (x − αi)(x − α2

i ) · · · (x − α
ni
i ) over

A∗
i , for 0 ≤ i ≤ t.

Corollary 12. (Theorem 3.4 of [7]) The polynomials
xn − 1 can be factored over the multiplicative groupR∗ as
xn − 1 = (x − α)(x − α2) · · · (x − αn) if and only if α has
order n in K

∗, where gcd(n, p) = 1.

Let Gni denote the cyclic subgroup of A∗
i generated by

αi, for each i, where 0 ≤ i ≤ t, i.e.,Gni contains all the roots
of xni − 1 provided that the conditions of Theorem 11 are
met. The BCH codes Ci over A∗

i can be obtained as the
direct product of BCH codes Ci overR∗

i . To construct the
cyclic BCH codes Ci over A∗

i , we need to choose certain
elements of Gni as the roots of generator polynomials gi(x)
of the codes, so α

e1
i ,αe2

i ,αe3
i , · · · ,αeni−ki

i are all the roots of
gi(x) in Gni . We construct gi(x) as

gi(x) = lcm{Me1
i (x),Me2

i (x), · · · ,Meni−ki
i (x)},

whereM
eli
i (x) are the minimal polynomials of α

eli
i , for li =

1, 2, · · · , ni−ki, where each α
eli
i = (β

eli
i ,β

eli
i , · · · ,βeli

i ). The
following theorem extended Lemma 3 of [6] and provides
a method for the construction of M

eli
i (x), the minimal

polynomials of α
eli
i over the ringAi.

Theorem 13. For each i, where 0 ≤ i ≤ t, let M
eli
i (x)

be the minimal polynomials of α
eli
i overAi, where α

eli
i gen-

erates Gni , for li = 1, 2, · · · , ni − ki. Then, M
eli
i (x) =

∏
ξi∈Blii

(x−ξi), where Bli
i = {(αeli

i )p
qi : 1 ≤ li ≤ ni−ki, 0 ≤

qi ≤ hi − 1}.

Proof. Let M
eli
i (x) be the projection of M

eli
i (x) over the

fields Ki and M
eli
i,j (x) be the minimal polynomial of α

eli
i

overK∗
i , for each i such that 0 ≤ i ≤ t and 1 ≤ li ≤ ni−ki.

We can verify that eachM
eli
i (x) (the projection ofM

eli
i (x))

is divisible by M
eli
i,j (x) (minimal polynomials of α

eli
i ), for

each i such that 0 ≤ i ≤ t and 1 ≤ li ≤ ni − ki. So,
among its roots, it has distinct elements of the sequence
α
eli
i , (α

eli
i )p, (α

eli
i )p

2 , · · · , (αeli
i )p

hi−1 , for each i such that 0 ≤
i ≤ t and 1 ≤ li ≤ ni − ki. Consequently, M

eli
i (x)

has, among its roots, distinct elements of the sequence
α
eli
i , (α

eli
i )p, (α

eli
i )p

2 , · · · , (αeli
i )p

(hi−1) , for 0 ≤ i ≤ t and 1 ≤
li ≤ ni − ki. Thus, any element ξi = (α

eli
i )p

qi of the above
sequence is a root ofM

eli
i (x), for 0 ≤ i ≤ t, 0 ≤ qi ≤ hi −1

and 1 ≤ li ≤ ni − ki. Hence,M
eli
i (x) = ∏

ξi∈Blii
(x− ξi).

Remark 14. Since, for each i such that 0 ≤ i ≤ t,
M

eli
i (x) is the projection of M

eli
i (x) (minimal polynomial of

α
eli
i ) over the fields Ki, it follows that M

eli
i (x) generates the

sequence of codes over the special chain of rings Ki = K
r′
i .

The lower bound on the minimum distances derived
in the following theorem applies to any cyclic code. The
BCH codes are a class of cyclic codes whose generator
polynomials are chosen so that the minimum distances
are guaranteed by this bound. In this sense, the following
theorem generalizes Theorem 2.5 of [7]:

Theorem 15. Let A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ At−1 ⊂ At
be the chain. For each i such that 0 ≤ i ≤ t, if gi(x) is the
generator polynomial of BCH code Ci over Ai with length
ni such that αe1

i ,αe2
i , · · · ,αeni−ki

i are the roots of gi(x) in Gni ,
where αi has order ni, then the minimum Hamming dis-
tance of Ci is greater than the largest number of consecutive
integers modulo ni in Ei = {e1, e2, e3, · · · , eni−ki}.

Proof. For each i, where 0 ≤ i ≤ t, let {ki, ki + 1, ki +
2, · · · , ki + di − 2} be the largest set of consecutive inte-
gers modulo ni in the set Ei. A sequence of cyclic code
with roots α

e1
i ,αe2

i ,αe3
i , · · · ,αeni−ki

i is the null space of the
matrix

Mi =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 α
e1
i (α

e1
i )2 · · · (α

e1
i )ni−1

1 α
e2
i (α

e2
i )2 · · · (α

e2
i )ni−1

...
...

...
. . .

...

1 α
eni−ki
i (α

eni−ki
i )2 · · · (α

eni−ki
i )ni−1

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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Now, if no linear combination of di − 1 columns of the
matrix

M∗
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 α
ki
i (α

ki
i )2 · · · (α

ki
i )ni−1

1 α
ki+1
i (α

ki+1
i )2 · · · (α

ki+1
i )ni−1

...
...

...
. . .

...

1 α
ki+di−2
i (α

ki+di−2
i )2 · · · (α

ki+di−2
i )ni−1

⎤
⎥⎥⎥⎥⎥⎥⎦

is zero, then clearly no linear combination of di − 1
columns of each Mi is zero, and by the extended form of
Corollary 3.1 of [10], it follows that each code has a mini-
mum distance di or greater. This can be seen by examining
the determinants of any di−1 columns of thematricesM∗

i .
Let M∗∗

i be the matrix where the entries is a collection of
any set of di − 1 columns of matrixM∗

i . Thus,

M∗∗
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

(α
ki
i )j1 (α

ki
i )j2 · · · (α

ki
i )jdi−1

(α
ki+1
i )j1 (α

ki+1
i )j2 · · · (α

ki+1
i )jdi−1

...
...

. . .
...

(α
ki+di−2
i )j1 (α

ki+di−2
i )j2 · · · (α

ki+di−2
i )jdi−1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Now, we want to show that the determinants of matrices
M∗∗

i are non-singular, i.e., it is a unit in eachAi. Note that
the determinant of each matrixM∗∗

i is given by

det(M∗∗
i ) = α

ki(j1+j2+···+jdi−1)
i det(M∗∗∗

i ),

where the matrixM∗∗∗
i is given by

M∗∗∗
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1

αij1 αij2 · · · αi
jdi−1

(αij1)2 (αij2)2 · · · (αi
jdi−1)2

...
...

. . .
...

(αij1)di−2 (αij2)di−2 · · · (αi
jdi−1)di−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The determinant of each M∗∗∗
i is Vandermonde and each

having a unit determinant in each ringAi. Hence, no com-
bination of di − 1 or fewer columns of each Mi is linearly
dependent. So, by Corollary 3.1 of [10], it follows that each
code has a minimum distance di or greater.

Corollary 16. (Theorem 2.5 of [7]) Let g(x) be the gen-
erator polynomial of BCH code over A with length n such
that αe1 ,αe2 , · · · ,αen−k are the roots of g(x) in Gn, where
α has order n. Then, the minimum Hamming distance of
the code is greater than the largest number of consecutive
integers modulo n in E = {e1, e2, e3, · · · , en−k}.

We can also use the extension of Theorem 4 of [6] for
the BCH bound of these codes.

Algorithm
The algorithm for constructing a BCH type of cyclic codes
over the chain of rings A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ At−1 ⊆
At = A is then as follows:

1. Choose irreducible polynomials fi(x) over Zpm of
degree hi = bi, for 1 ≤ i ≤ t, which are also
irreducible over GF(p) and form the chain of Galois
rings

Zpm = GR(pm, h0)⊂GR(pm, h1) ⊂· · ·⊂ GR(pm, ht−1)

⊂ GR(pm, ht) or

A = R0 ⊆ R1 ⊆ R2 ⊆ · · · ⊆ Rt−1 ⊆ Rt = R

and its corresponding chain of residue fields is

Zp = GF(p) ⊂ GF(ph1) ⊂ · · · ⊂ GF(pht−1)

⊂ GF(ph) or

= K0 ⊂ K1 ⊂ K2 · · · ⊂ Kt−1 ⊂ K,

where each GF(phi) � K[x]
〈π(fi(x))〉 , for 1 ≤ i ≤ t.

2. Now, putAi = Rr′
i , for 0 ≤ i ≤ t, and get a chain of

rings

A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ At−1 ⊂ At = A

with another chain of rings

K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kt−1 ⊂ Kt = K,

where each Ki = K
r′
i , for 0 ≤ i ≤ t.

3. Let ηi be the primitive element in K
∗
i , for 0 ≤ i ≤ t.

Then, ηi has order dini inR∗
i for some integers di

and put βi = (ηi)di . Thus, αi = (βi,βi,βi, · · · ,βi) has
order ni inR∗

i and generates Gni . Assume that for
each i, where 0 ≤ i ≤ t, αi be any element of Gni .

4. Let α
e1
i ,αe2

i ,αe3
i , · · · ,αeni−ki

i be the roots of gi(x). Find
the minimal polynomialsM

eli
i (x) of α

eli
i , for

li = 1, 2, · · · , ni − ki, where each
α
eli
i = (β

eli
i ,β

eli
i ,β

eli
i , · · · ,βeli

i ). Thus, gi(x) are given
by

gi(x) = lcm{Me1
i (x),Me2

i (x), · · · ,Meni−ki
i (x)}.

The length of each code in the chain is the least
common multiple of the orders of
α
e1
i ,αe2

i ,αe3
i , · · · ,αeni−ki

i , and the minimum distance
of the code is greater than the largest number of
consecutive integers modulo ni in the set
Ei = {e1, e2, e3, · · · , eni−ki} for each i, where
0 ≤ i ≤ t.

Now, we give the following definition of the sequence of
the BCH codes over the chain of Galois rings as in [11].
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Definition 17. Let αi be a primitive element of Gni . A
sequence of BCH-type codes over the chain of Galois rings
Ai is a sequence of cyclic codes of length ni generated by
the polynomials gi(x) with minimum degree whose distinct
roots are α

bi+1
i ,αbi+2

i ,αbi+3
i , · · · ,αbi+2ti

i , for some bi ≥ 0,
and ti ≥ 1, i.e., gi(x) = lcm{M1

i (x),M
2
i (x), · · · ,M2ti

i (x)},
where Mli

i (x), for 1 ≤ li ≤ 2ti, are minimal polynomials of
α
bi+li
i .

FromDefinition 17, it turns out that vi(x) = vi,0+vi,1x+
vi,2x2 + · · · + vi,ni−1xni−1 ∈ Zpk [ x] is a collection of code-
words if and only if vi(αbi+li

i ) = 0, for 1 ≤ li ≤ 2ti and
0 ≤ i ≤ t. Therefore, a collection of parity-check matrices
Hi for the sequence of BCH-type codes having gi(x) as the
generator polynomial is given by

Hi =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 α
bi+1
i α

2(bi+1)
i · · · α

(ni−1)(bi+1)
i

1 α
bi+2
i α

2(bi+2)
i · · · α

(ni−1)(bi+2)
i

...
...

...
. . .

...

1 α
bi+2ti
i α

2(bi+2ti)
i · · · α

(ni−1)(bi+2ti)
i

⎤
⎥⎥⎥⎥⎥⎥⎦
. (1)

Thus, vi(x) is a collection of codewords if and only if
viHt

i = 0. From the previous discussion, we have the fol-
lowing theorem which is an extension of Theorem 5 of
[11]:

Theorem 18. The minimum Hamming distance of
the sequence of BCH codes defined by the matrices in
Equation 1 is greater than or equal to min{2ti + 1, for
0 ≤ i ≤ t}.

Now, we end this section by the following example:

Example 19. We initiate by constructing a chain of codes
of lengths 1, 3, and 15 over the ring A = Z4. Since M =
{0, 2}, it follows that K = A

M � Z2. The regular polyno-
mial f (x) = x4 + x + 1 ∈ Z4[ x] is such that π(f (x)) =
x4 + x+ 1 is an irreducible polynomial with degree h = 22
over Z2. By Theorem 4, it follows that f (x) = x4 + x + 1
is irreducible over A. Let R = Z4[x]〈f (x)〉 = GR(22, 4) be the
Galois ring and K = Z2[x]〈π(f (x))〉 = GF(24) be the corre-
sponding Galois field. The numbers 1, 2, and 22 are the
only divisors of 4, and therefore, say, h1 = 1, h2 = 2,
and h3 = 22. Then, there exist irreducible polynomials
f1(x) = x2 − x + 1 and f2(x) = f (x) in Z4[ x] with degrees
h2 = 2 and h3 = 4 such that we can constitute the Galois
rings Ri = Z4[x]〈fi(x)〉 = GR(22, hi), where 1 ≤ i ≤ 2. So,
A = R0 ⊂ R1 ⊂ R2 = R. Again, by the same argument,
it follows that Ki = Z2[x]〈π(fi(x))〉 = GF(2hi), where 1 ≤ i ≤ 2,
that is, K0 = Z2, K1 = GF(22), and K2 = K = GF(24),
with K0 ⊂ K1 ⊂ K. If r′ = 2, then Ai = Ri × Ri

such that A0 ⊂ A1 ⊂ A2. Let u = {X} in Ri such that
u = {x} ∈ Ki. Then, u has order 15 in K2, and therefore,
β2 = u. However, u has order 30 inR2, so put β2 = u2 and
get α2 = (β2,β2) which generates G15. The elements of G15
are given by

α2 = (x2, x2)

α2
2 = (3x + 3, 3x + 3)

α3
2 = (3x3 + 3x2, 3x3 + 3x2)

α4
2 = (x2 + 2x + 1, x2 + 2x + 1)

α5
2 = (2x3 + x2 + 3x + 3, 2x3 + x2 + 3x + 3)

α6
2 = (3x3 + x2 + x + 3, 3x3 + x2 + x + 3)

α7
2 = (x3 + 3, x3 + 3)

α8
2 = (2x2 + 3x, 2x2 + 3x)

α9
2 = (3x3 + 2x + 2, 3x3 + 2x + 2)

α10
2 = (2x3 + 3x2 + x, 2x3 + 3x2 + x)

α11
2 = (x3 + 2x2 + 3x + 1, x3 + 2x2 + 3x + 1)

α12
2 = (3x3 + x + 2, 3x3 + x + 2)

α13
2 = (x3 + 3x2 + x, x3 + 3x2 + x)

α14
2 = (x3 + 3x2 + 1, x3 + 3x2 + 1)

α15
2 = (1, 1).

Also, u has order 3 in K
∗
1, so β1 = u. However, u has order

6 in R1, so β1 = u2 and get α1 = (β1,β1) which generates
G3. The elements of G3 are given by

α1 = (x + 3, x + 3)
α2
1 = (3x, 3x)

α3
1 = (1, 1).

Put β0 = 1 and get α0 = (β0,β0) which generates G1.
Choose α2, α3

2 , α1, and α0 to be the roots of the genera-
tor polynomials gi(x) of the BCH codes Ci over the chain
A0 ⊂ A1 ⊂ A2. Thus, M1

0(x), M1
1(x), and M1

2(x) have,
as roots, all distinct elements in the sets B1

0 = {α0} ⊂ G1,
B1
1 = {α1,α2

1} ⊂ G3, and B1
2 = {α2,α2

2,α4
2,α

8
2} ⊂ G15,

respectively. So,

M1
0(x) = a1x + a3, M1

1(x) = a1x2 + a1x + a1, and

M1
2(x) = a1x4 + a1x2 + a3x + a1,

and, similarly,

M3
2(x) = a1x4 + a1x3 + a1x2 + a1x + a1.
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Thus, the generator polynomials are given by

g0(x) = a1x + a3, g1(x) = a1x2 + a1x + a1, and

g2(x) = a1x8+a1x7+a2x6+a1x5+a2x4+a1x3+a1x2+a1,
which generate the cyclic BCH codes C0, C1, and C2 of
lengths 1, 3, and 15 over the direct product of A(r)′ times
with minimum hamming distances at least 2, 4, and 5,
respectively. Also,

g0(x) = a1x + a1, g1(x) = a1x2 + a1x + a1, and

g2(x) = a1x8 + a1x7 + a1x5 + a1x3 + a1x2 + a1,
generate the cyclic BCH codes C′

0, C′
1, and C′

2 of lengths 1, 3,
and 15 overKi with minimum hamming distances at least
2, 4, and 5, respectively, for each i such that 0 ≤ i ≤ 2.
Note that here a1 = (1, 1), a2 = (2, 2), and a3 = (3, 3). If
we take 1, 2, and 3 instead of a1, a2, and a3 in the above
polynomial, then we get the generator polynomials of the
codes Ci and Ci overRi and Ki, respectively.

Results and discussion
Decoding procedure of BCH codes
In this section, we turn to the problem of decoding BCH
codes of length ni, contrived to correct up to r′ti errors. In
[11], a decoding procedure is proposed based on the mod-
ified Berlekamp-Massey algorithm for BCH codes defined
over the integer residue ring Zpk . We have observed that
even with almost evident analogous proofs, this decoding
procedure is applied to the BCH codes over the chains of
arbitrary finite local commutative rings with identity and
also to the BCH codes over the direct product of the chain
of local commutative rings with identity.
LetZpk = R0 ⊂ R1 ⊂ R2 ⊂ · · · ⊂ Rt-1 ⊂ R be a chain

of rings GR(pk , h0) ⊂ GR(pk , h1) ⊂ GR(pk , h2) ⊂ · · · ⊂
GR(pk , ht) and βi be a collection of primitive elements of
Gni , for 1 ≤ i ≤ t. Similarly, let K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂
Kt−1 ⊂ K be the chain of corresponding Galois fields.
SinceAi = Rr′

i , for 0 ≤ i ≤ t, it follows that the new chain
of rings is given by

A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ At−1 ⊂ At = A
with its projection over the chain of fields given by

K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kt−1 ⊂ Kt = K,

i.e., each Ki = K
r′
i , for 1 ≤ i ≤ t. Let ci = (ci,1, ci,2,

ci,3, · · · , ci,ni) be the sequence of transmitted code-
words from the sequence of codes Ci. So, each ci,ki =
(ci,ki , ci,ki , ci,ki , · · · , ci,ki), for 1 ≤ ki ≤ ni, is again a
sequence of transmitted codewords from the sequence of
codes Ci over the chain of Galois rings R0 ⊂ R1 ⊂
R2 ⊂ · · · ⊂ Rt-1 ⊂ R. Let ri = (ri,1, ri,2, ri,3, · · · , ri,ni)
be the sequence of received vectors, where each ri,ki =
(ri,ki,1 , ri,ki,2 , ri,ki,3 , · · · , ri,ki,r′ ), for 1 ≤ ki ≤ ni and
1 ≤ i ≤ t. Thus, the error vector is given by ei =

ri − ci = (ei,1, ei,2, ei,3, · · · , ei,ni), where ei,ki = ri,ki − ci,ki =
(ei,ki,1 , ei,ki,2 , ei,ki,3 , · · · , ei,ki,r′ ), for 1 ≤ ki ≤ ni and 1 ≤ i ≤ t.
The proposed decoding procedure consists of four major
steps like in [11], for 1 ≤ i ≤ t:

1. Calculation of sequences of the syndrome
si = (si,1, si,2, si,3, · · · , si,2ti) such that
si = riH

T
i = (si,1, si,2, si,3, · · · , si,2ti), where each

si,wi = (si,wi,1 , si,wi,2 , si,wi,3 , · · · , si,wi,r′ ), for 1 ≤ wi ≤ 2ti
and 1 ≤ i ≤ t.

2. Calculation of sequences of ‘elementary symmetric
functions’ σi,1, σi,2, σi,3, · · · , σi,vi from si, where each
σi,ui = (σi,ui,1 , σi,ui,2 , σi,ui,3 , · · · , σi,ui,r′ ), for 1 ≤ ui ≤ vi
and 1 ≤ i ≤ t.

3. Calculation of the sequences of the error location
numbers Xi,1,Xi,2,Xi,3, · · · ,Xi,vi from
σi,1, σi,2, σi,3, · · · , σi,vi , where each
Xi,ui = (Xi,ui,1 ,Xi,ui,2 ,Xi,ui,3 , · · · ,Xi,ui,r′ ), for
1 ≤ ui ≤ vi and 1 ≤ i ≤ t.

4. Calculation of the sequences of the error magnitudes
Yi,1,Yi,2,Yi,3, · · · ,Yi,vi from si,j, where each
Yi,ui = (Yi,ui,1 ,Yi,ui,2 ,Yi,ui,3 , · · · ,Yi,ui,r′ ), for
1 ≤ ui ≤ vi and 1 ≤ i ≤ t.

5. Without loss of generality, we can assume that the
set of consecutive roots of the generator polynomials
of the sequence of BCH codes is given by
αi,α2

i ,α
3
i , · · · ,α2ti

i , for 1 ≤ i ≤ t. We can also define
the sets of error location numbers, i.e., it consists of
the elements (β

εi,1
i ,βεi,2

i , · · · ,βεi,r′
i ), where εi,j are any

positive integers, for 1 ≤ i ≤ t and 1 ≤ j ≤ r′. Let vi
be the number of errors introduced by the channel in
each code Ci. Thus, the elementary symmetric
functions σi,1, σi,2, σi,3, · · · , σi,vi of the error location
numbers Xi,1,Xi,2,Xi,3, · · · ,Xi,vi are defined as the
coefficients of the polynomials

(X − Xi,1)(X − Xi,2) · · · (X − Xi,vi)

= Xvi + σi,1Xvi−1 + · · · + σi,vi−1X + σi,vi ,

and also, the relation of syndromes to the error
location numbers and to the magnitudes of the errors
are given by the equation

si,wi =
vi∑

ui=1
Yi,uiX

wi
i,ui , for 1 ≤ wi ≤ 2ti. (2)

In the following, each step of the decoding process is
analyzed. Since the syndrome calculation is so simple,
there is no need to annotate on step 1.
In step 2, we want to calculate the elementary symmet-

ric functions. It is equivalent to finding the sequences of
solution sets σi,1, σi,2, σi,3, · · · , σi,vi , with minimum possi-
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ble vi, to the following sets of linear recurrent equations
over eachRi

si,xi+vi + si,xi+vi−1σi,1 + · · · + si,xi+1σi,vi−1 + si,xiσi,vi

= 0, for xi = 1, 2, · · · , 2ti − vi,
(3)

where the coefficients of σi,ui , for 1 ≤ ui ≤ vi, are the
components of the syndrome vectors. A quick solution to
Equation 3 is made available by the following extension of
the modified Berlekamp-Massey algorithm that holds for
the chain of commutative rings with identity. We concen-
trate on the fact that in rings, we want to take care about
zero divisors, multiple solutions of the systems of linear
equations, and also with an inversionless implementation
of the extension of the original Berlekamp-Massey algo-
rithm. In [11], it is shown that the solution of each system
to Equation 3 is unique if and only if all the error magni-
tudes are units inRi. Let the ni,jth power sums be defined
as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

s
(ni,j)

i,j (σ
(0)
i,j )(ni,j) + s

(ni,j−1)

i,j (σ
(1)
i,j )(ni,j)+· · ·+ s

(ni−lni )

i,j (σ
(lni,j )

i,j )(ni,j) =0

s
(ni,j−1)

i,j (σ
(0)
i,j )

(ni,j)+s
(ni,j−2)

i,j (σ
(1)
i,j )

(ni,j)+· · ·+s
(ni,j−lni,j−1)

i,j (σ
(lni,j )

i,j )(ni,j) =0
...

s
(lni,j+1)

i,j (σ
(0)
i,j )(ni,j) + s

(lni,j )

i,j (σ
(1)
i,j )(ni,j) + · · · + s(1)i,j (σ

(lni,j )

i,j )(ni,j) = 0,

(4)

where s(1)i,j , s
(2)
i,j , s

(3)
i,j , · · · , s

(2ti,j)

i,j are the sequences of
the components of the syndrome vectors and
σ

(1)
i,j , σ

(2)
i,j , σ

(3)
i,j , · · · , σ

(vi,j)
i,j are the sequences of elementary

symmetric functions. The proposed algorithm is also
an iterative method. In this method, at the ni,jth step,
the decoder seeks to determine the collection of sets of
lni,j values (σ

(ui,j)

i,j )(ni,j) such that the systems of ni,j − lni,j
equations, given in Equation 4, are satisfied with lni,j
as small as possible, for 1 ≤ i ≤ t and 1 ≤ j ≤ r′,
where (σ

(0)
i,j )(0) = 1, for 1 ≤ i ≤ t and 1 ≤ j ≤ r′. The

polynomials

(σi,j)
(ni,j)(X)=(σ

(0)
i,j )(ni,j)+(σ

(1)
i,j )(ni,j)X+· · ·+(σ

(lni,j )

i,j )(ni,j)Xlni,j

represent the solutions at the ni,jth stage. The ni,jth dis-
crepancy will be denoted by dni,j and defined by

dni,j = s
(ni,j+1)

i,j (σ
(0)
i,j )(ni,j) + s

(ni,j)

i,j (σ
(1)
i,j )(ni,j) + · · ·

+ s
(ni,j−lni+1)

i,j (σ
(lni,j )

i,j )(ni,j).

Next, we give two lemmas as extensions of Lem-
mas 1 and 2 of [11], concerning the determination
of (σi,j)

(ni,j+1)(X) from (σi,j)
(ni,j)(X), that is, we update

the solution polynomial (σi,j)
(ni,j)(X) at each ni,jth step,

although it is not necessary to have the lowest values
of lni,j .

The following lemma extended Lemma 1 of [11]:

Lemma 20. Suppose that (σi,j)
(ni,j)(X), for each i with

1 ≤ i ≤ t and each j with 1 ≤ j ≤ r′, are solutions to the
first ni,j power sums and has next discrepancy dni,j 
= 0. Let

(σi,j)
(mi,j)(X) = 1+(σ

(1)
i,j )(mi,j)X+· · ·+(σ

(lmi,j )

i,j )(mi,j)Xlmi,j

be a polynomial solution to the first mi,j power sums, for
each i and j, where 1 ≤ mi,j < ni,j, such that the linear
equations inRi,j given by

dni,j − ydmi,j = 0

have solutions in y. Then, the polynomials

(σi,j)
(ni,j+1)(X) = (σi,j)

(ni,j)(X) − yXni,j−mi,j(σi,j)
(mi,j)(X)

are solutions to the first ni,j + 1 power sums. Moreover,
lni,j+1 = max{lni,j , lmi,j + ni,j − mi,j}.

Proof. Since (σi,j)
(ni,j)(X), for each i with 1 ≤ i ≤ t

and each j with 1 ≤ j ≤ r′, are solutions to the first ni,j
power sums, it follows that each system of equations in
Equation 4 holds, i.e.,

lni∑
ui=0

si,ji−uiσ
(ni)
i,ui ={

dni , if ji=ni + 10 i lni + 1 ≤ ji ≤ ni .

(5)

Similarly, σ (mi)
i (X) is a solution to the firstmi power sums

lmi∑
ui=0

si,ji−uiσ
(mi)
i,ui ={

dmi , if ji=mi + 10 if lmi+1≤ ji≤mi.

(6)

If

σ
(ni+1)
i (X) = σ

(ni)
i (X) − yXni−miσ

(mi)
i (X)

is a solution to the first ni + 1 power sums, then we must
have
lni+1∑
ui=0

si,ji−uiσ
(ni+1)
i,ui = 0, for lni+1 + 1 ≤ ji ≤ ni + 1. (7)

This sum has the form
lni+1∑
ui=0

si,ji−ui(σ
(ni)
i,ui − yσ (mi)

i,ui−(ni−mi)
). (8)

Since σ
(ni)
i,ui = 0, for ui < 0 and ui > lni , and σ

(mi)
i,ui = 0,

for ui < 0 and ui > lmi , it follows that Equation 8 can be
written as

lni∑
ui=0

si,ji−uiσ
(ni)
i,ui − y

lmi+ni−mi∑
ui=ni−mi

si,ji−uiσ
(mi)
i,ui−(ni−mi)

(9)
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(or in another way, as
lni∑

ui=0
si,ji−ui σ

(ni)
i,ui − y

lmi∑
ui=0

si,ji−ui−(ni−mi)σ
(mi)
i,ui ). Note that for ji = ni + 1, the first

sum in Equation 9 has the value dni and the second has
the value dmi . Thus, Equation 9 reduces to dni − ydmi = 0
and is true. By Equation 5, it follows that the first sum in
Equation 9 is zero, provided that lni + 1 ≤ ji ≤ ni. By
Equation 6, it follows that the second sum in Equation 9
is zero, provided that lmi + 1 ≤ ji − (ni − mi) ≤ mi
or, equivalently, provided that ni − mi + lmi + 1 ≤
ji ≤ ni. Therefore, Equation 9 is satisfied, provided
that

max{lni , lmi + ni + mi} + 1 ≤ ji ≤ ni + 1.

Since (ni+1)−max{lni , lmi+ni+mi} equations in Equation
4 are satisfied by σ

(ni+1)
i (X), it follows that their degree is

formally given by

lni+1 = max{lni , lmi + ni + mi}.

Finally, note that the coefficients of the higher powers of
the indeterminate X in σ

(ni+1)
i (X) may be zero, and there-

fore, the additional equations in Equation 4may be further
satisfied.

The following lemma extended Lemma 2 of [11]:

Lemma 21. For each i, where 1 ≤ i ≤ t, let σ
(ni)
i (X),

lni and dni 
= 0 be defined as in Lemma 20. Suppose that
σ

(ni+1)
i (X) is any polynomial solution satisfying ni + 1 −

lni+1 power sums. Then,

σ
(ni+1)
i (X) = σ

(ni)
i (X) − aiXni−miσ

(mi)
i (X),

where each ai is a unit inRi and σ
(mi)
i,0 (X) = 1. Therefore,

each polynomial σ
(mi)
i (X) is a polynomial solution to the

first mi− lmi equations of Equation 4 and has next discrep-
ancy satisfying dni + admi = 0 and lmi = lni+1 − (ni −
mi).

Proof. By hypothesis,

lni+1∑
ui=0

si,ji−uiσ
(ni+1)
i,ui = 0, for lni+1+1 ≤ ji ≤ ni+1 (10)

and

lni∑
ui=0

si,ji−uiσ
(ni)
i,ui ={

dni 
=0 if ji=ni+10 if lni+1≤ ji≤ni.

(11)

Since σ
(ni)
i (X) is a minimal solution, for lni+1 ≥ lni , it fol-

lows that subtracting Equation 11 from Equation 10 for
lni+1 + 1 ≤ ji ≤ ni + 1, we get

lni+1∑
ui=0

si,ji−ui(σ
(ni+1)
i,ui − σ

(ni)
i,ui ) = {−dni if ji = ni

+ 10 if lni+1 + 1 ≤ ji ≤ ni.
(12)

Now, suppose that the first ni−mi coefficients of si,ji−ui are
zero (note that since σ

(ni+1)
i,0 = σ

(ni)
i,0 = 1, it follows that

ni − mi > 0, i.e., ni > mi). Thus, Equation 12 reduces to

lni+1∑
ui=ni−mi

si,ji−ui(σ
(ni+1)
i,ui − σ

(ni)
i,ui ) = {−dni if ji = ni

+ 10 if lni+1 + 1 ≤ ji

≤ ni.
(13)

Letting lmi = lni+1 − (ni − mi), Equation 13 can be
rewritten as

lmi∑
ui=0

si,ji−ui(σ
(ni+1)
i,ui+ni−mi

− σ
(ni)
i,ui+ni−mi

) = {−dni if ji = mi

+ 10 if lmi + 1

≤ ji ≤ mi.
(14)

Finally, define the polynomial σ (mi)
i (X) by

σ
(mi)
i = (σ

(ni+1)
i,ui+ni−mi

−σ
(ni)
i,ui+ni−mi

)a−1, for 0 ≤ ui ≤ lmi .

Thus,

lni∑
ui=0

si,ji−uiσ
(mi)
i,ui = {−dnia−1=dmi if ji = mi + 10 if lmi

+ 1 ≤ ji ≤ mi.
(15)

By Equation 15, it follows that each σ
(mi)
i (X) is a solu-

tion to the firstmi − lmi equations in Equation 4 and each
has next discrepancy dmi such that dni + admi = 0. The
degree of σ (mi)

i (X) is given formally by lmi = lni+1 − (ni −
mi). Note that the coefficients of the higher powers of
the indeterminate X in σ

(mi)
i (X) may be zero; thus, some

additional equations in Equation 4 may be satisfied, i.e.,
σ

(mi)
i (X) may not be minimal.

Now, based on these two lemmas, we show that the
following theorem is an extension of Theorem 6 of [11]:
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Theorem 22. For each i with 1 ≤ i ≤ t, let σ
(ni)
i (X) be

a solution polynomial at the nith stage and let σ
(mi)
i (X) be

one of the prior minimal solutions, for 1 ≤ mi < ni, such
that dni − ydmi = 0 has solutions in y and mi − lmi has the
largest value. Further, suppose each σ

(ni)
i (X) is updated in

the following way:

1. If dni = 0, then

σ
(ni+1)
i (X) = σ

(ni)
i (X) and lni+1 = lni . (16)

2. If dni 
= 0, then

σ
(ni+1)
i (X)=σ

(ni)
i (X)−yXni−miσ

(mi)
i (X) and lni+1= lni

and

lni+1 = max{lni , lmi + ni − mi}. (17)

If there is no solution D(ni+1)(X) with degree less than
max{lni , lmi + ni − mi} and such that the coefficient of
the lowest power of the indeterminate X in D(ni+1)(X) −
σ

(ni)
i (X) is a zero divisor in Ri, then each σ

(ni+1)
i (X) is a

minimal polynomial solution at the (ni + 1)th stage.

Proof. If dni = 0, then σ
(ni+1)
i (X) = σ

(ni)
i (X) are min-

imal solutions since σ
(ni)
i (X) are also minimal solutions.

Now, consider the case where dni 
= 0. Since each σ
(mi)
i (X)

and σ
(ni)
i (X) are known, it follows that σ

(ni+1)
i (X) also

are known by Equation 17. By Lemma 20, it follows that
σ

(ni+1)
i (X) are polynomial solutions with degree given by

lni+1 = max{lni , lmi + ni − mi}.
We will now show that these are minimal solutions.

• Ifmi − lmi ≥ ni − lni , then lni+1 = lni by Lemma 20
and σ

(ni+1)
i (X) are minimal solutions at stages ni + 1.

• On the other hand, ifmi − lmi < ni − lni , then

lni+1 = max{lni , lmi+ni−mi} = lmi+ni−mi > lni .

Let us analyze when σ
(ni+1)
i (X) are still minimal solu-

tions. Assume that there exist polynomials D(ni+1)(X)

with degree di such that lni ≤ di < lmi + ni − mi and the
coefficients of the lowest power of the indeterminate X in
D(ni+1)(X) − σ

(ni)
i (X) are units inRi. There are two cases

to consider:

1. If di = lni , then by Lemma 21, it follows that there
are solutions σ

(m′
i)

i (X) with lm′
i
= di − (ni − m′

i), i.e.,
withm′

i − lm′
i
= ni − lni . By hypothesis, it follows

thatmi − lmi < ni − lni , and thus,
m′

i − lm′
i
> mi − lmi . However,mi − lmi was chosen

to be the largest of the values ki − lki for the previous
solutions, which is a contradiction.

2. If di > lni , then by Lemma 21, it follows that
di = lm′

i
+ ni − m′

i. However, sincem′
i − lm′

i
≥

mi − lmi , it follows that

di = ni−(m′
i−lm′

i
) ≥ ni−(mi−lmi) = lni+1 > di,

i.e., di > di, which is a contradiction.

Thus, if the coefficients of the lower power of X in
D(ni+1)(X) − σ

(ni)
i (X) are units in Ri, then σ

(ni+1)
i (X) are

minimal solutions.

Note that the solution σ
(ni+1)
i (X) provided by

Theorem 22 need not be answered because the theorem
does not guarantee minimality when in case (2), the
coefficients of the lowest power of the indeterminate X
in D(ni+1)(X) − σ

(ni)
i (X) are not units in Ri. However,

in many cases, it indicates the minimal solutions at the
(ni + 1)th stages.
By extension of the lemma [12], we can verify that if

σ
(ni)
i (X) satisfies ni − lni equations in Equation 4, but not

ni + 1 − lni equations, then the solutions σ
(ni+1)
i (X) will

satisfy ni + 1 − lni+1 equations in Equation 4, where

lni+1 ≥ max{lni , ni + 1 − lni}.
Now, by using the arguments of ‘section III’ of [12], it is
straightforward to show that if the linear equation over
the chain of the Galois ring Ri, dn′

i
− ydm′

i
= 0, always

have solutions in y for 1 ≤ m′
i < n′

i ≤ ni, then the above
inequalities become equalities, i.e.,

lni+1 = max{lni , ni + 1− lni} = max{lni , ni −mi + lmi}.
In contrast, if there are n′

i such that dn′
i
−ydm′

i
= 0 does not

have solutions in y for anym′
i, with 1 ≤ m′

i < n′
i ≤ ni, then

the solutions σ
(ni)
i (X), for ni ≥ n′

i, given by Theorem 22,
i.e., by Equations 16 and 17, are not necessarily minimal
solutions. In this case, let us suppose that σ

(ni)
i (X) are

minimal solutions at ni stages and σ
(ni+1)
i (X) are any solu-

tion at (ni + 1) stages (obtained from Equations 16 and 17
of Theorem 22). We analyze it in the following:

1. If lni+1 = max{lni , ni + 1 − lni}, then σ
(ni+1)
i (X) are

already the minimal solutions (at stages (ni + 1))
over the chain of ringsRi, for 1 ≤ i ≤ t.

2. If lni+1 > max{lni , ni + 1 − lni}, then it is possible
that there are minimal solutions D(ni+1)(X) with
degree li, wheremax{lni , ni + 1 − lni} ≤ li < lni+1.
Any collection of polynomials D(ni+1)(X) with
minimum degree li (in the range
max{lni , ni + 1 − lni} ≤ li < lni+1) will be minimal
solutions (at stages (ni + 1)) if and only if the
polynomials σ

(mi)
i (X) defined by

Xni−miσ
(mi)
i (X) = D(ni+1)(X) − σ

(ni)
i (X)
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are solutions for the firstmi power sums, where
dmi = −dni and σ

(mi)
i,0 (X) are zero divisors inRi.

Evidence of this emerged in Lemmas 20 and 21 and
from Theorem 22.

We can now collect these results and extend the modified
Berlekamp-Massey algorithm.

Extension of themodified Berlekamp-Massey algorithm for
commutative rings with identity
The collection of syndromes si,1, si,2, si,3, · · · , si,2ti is used
as the input for the algorithm. The output of the algorithm
will be sets of values σi,1, σi,2, σi,3, · · · , σi,vi such that the
equations in Equation 3 hold with minimum vi. We want
to have some initial conditions for starting the algorithm
as in [10], given by

σ
(−1)
i (X) = 1 l−1i = 0 d−1i = 1

σ
(0)
i (X) = 1 l0i = 0 d0i = si,1,

for each i such that 1 ≤ i ≤ t, where 1 is the unity of Ri
and each si,1 is the first nonzero component of the corre-
sponding syndrome vectors si, for each i, for 1 ≤ i ≤ t.
Now, we want to do the following steps:

1. Each ni ← 0.
2. Now, each dni = si,1; if any dnj = 0, for some j,

1 ≤ j ≤ t, then for that j,

σ
(nj+1)
j (X) ← σ

(nj)
j (X) and lnj+1 ← lnj

and go to (5).
3. If any dnk 
= 0, then find anmk ≤ nk − 1 such that

dnk − ydmk = 0 has a solution in y andmk − lmk has
the largest value. Then,

σ
(nk+1)
k (X) ← σ

(nk)
k (X) − yXnk−mkσ

(mk)
k (X)

and

lnk+1 ← max{lnk , lmk + nk − mk},
where the solution of the equation dnk − ydmk = 0,
can be obtained by any of the algorithms presented in
[13].

4. If lnk+1 = max{lnk , nk + 1 − lnk }, then go to (5); else,
search for solution D(nk+1)(X) with minimum degree
lk in the rangemax{lnk , nk + 1 − lnk } ≤ lk < lnk+1

such that σ
(mk)
k (X) defined by

Xnk−mkσ
(mk)
k (X) = D(nk+1)(X) − σ

(nk)
k (X)

is a solution for the firstmk power sums,
dmk = −dnk , with σ

(mk)
k,0 (X) as a zero divisor in

correspondingRk . If such a solution is found, then

σ
(nk+1)
k (X) ← D(nk+1)(X)andlnk+1 ← lk .

5. If all ni < 2ti − 1, then

dni+1 ← si,ni+2+si,ni+1σ
(ni+1)
i,1 +· · ·+si,ni+2−lni+1σ

(ni+1)
i,lni+1

;

else, there is no need to find the values of dni+1.
6. ni ← ni + 1; if ni < 2ti, then go to (2); else, stop.
7. In this way, we compute σ

(2ti)
i (X) in the nth iteration

procedure, where n = max{ni : 1 ≤ i ≤ t}.
The coefficients σ

(2ti)
i,1 , σ (2ti)

i,2 , σ (2ti)
i,3 , · · · , σ (2ti)

i,vi of σ
(2ti)
i

(X) satisfy Equation 3, for each i, where 1 ≤ i ≤ t. This
concludes step 2. This process contains n iterations, where
n = max{ni : 1 ≤ i ≤ t}, and in each iteration, it
deals t codewords of codes Ci at once, for each i, where
1 ≤ i ≤ t. By this procedure, we compute t elemen-
tary symmetric functions in the chain of rings with less
computation. This process is not much different than the
original one, but it deals a sequence of t codewords from
the sequence of codes Ci over the chain of Galois ringsRi,
for each i, where 1 ≤ i ≤ t, at a time. Also, this process
does not necessarily lead to a minimal solution σ

(ni+1)
i (X)

(at the (ni + 1)th stages). As in [11], step 4 had to be intro-
duced in the original algorithm so that the new solutions
σ

(ni+1)
i (X), calculated at step 3, are checked to be minimal

solutions. If these are not so, then a search is necessary to
be carried out to find minimal solutions, which consists of
finding the polynomials σ

(mi)
i (X), which are solutions for

the firstmi power sums, and satisfying certain conditions.
Step 4 does not essentially increase the complexity due to
less number of polynomials.
In step 3, the calculation of error location numbers

over the chain of rings requires one more step than that
over the chain of fields because in Ri, the solutions to
Equation 3 are generally not unique and the reciprocals
of polynomials σ

(2ti)
i (X), namely ρi(X), may not be the

correct error locator polynomial

(X − Xi,1)(X − Xi,2) · · · (X − Xi,vi), (18)

where Xi,ui = αci,ui (ci,ui are integers in the range 0 ≤
ci,ui ≤ ni−1 that indicate the position of the uith errors in
the sequence of codewords) are the correct error location
numbers and vi are the numbers of errors in the sequence
of codewords and are defined earlier.
Now, we describe how to convert the roots of ρi(X)

into the correct error location numbers. The following
proposition extends Proposition 3 of [11]:

Proposition 23. Suppose that ρi(X) has at least vi dis-
tinct roots over Ri, namely Zi,1,Zi,2,Zi,3, · · · ,Zi,vi , that
is,

ρi(X) = Xvi + σi,1 · Xvi−1 + · · · + σi,vi−1 · X + σi,vi (19)

= (X − Zi,1)(X − Zi,2) · · · (X − Zi,vi) (20)
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(note that at least one sequence of ρi(X) produced by
the extension of the modified Berlekamp-Massey algorithm
will have this property), where σi,ui are the elementary
symmetric functions found in step 2). Further, suppose
that the error magnitudes are Yi,1,Yi,2,Yi,3, · · · ,Yi,vi . Then,
Yi,uiPi,ui = 0, where Pi,ui = ρi(Xi,ui), for 1 ≤ ui ≤ vi and
1 ≤ i ≤ t.

Proof. From Equation 19, it follows that

Yi,uiX
ji
i,ui(X

vi + σi,1Xvi−1 + · · · + σi,vi−1X + σi,vi) (21)

= Yi,uiX
ji
i,ui(X − Zi,1)(X − Zi,2) · · · (X − Zi,vi), (22)

for 1 ≤ ui ≤ vi, 1 ≤ ji ≤ 2ti − vi and 1 ≤ i ≤ t. Substitut-
ing X for Xi,ui in Equation 21 and summing the right-hand
side for 1 ≤ ji ≤ 2ti − vi, we get

sji+vi + sji+vi−1σi,1 + · · · + sji+1σi,vi−1 + sjiσi,vi . (23)

Note that Equation 23 vanishes for very ji such that 1 ≤
ji ≤ 2ti − vi (since the σi,ui ’s form solutions to the linear
system in Equation 3). Consequently,

vi∑
ui=1

Yi,uiX
ji
i,ui(Xi,ui−Zi,1)(Xi,ui−Zi,2) · · · (Xi,ui−Zi,vi) = 0,

(24)

for 1 ≤ ji ≤ 2ti−vi (the left-hand side of Equation 24 is the
collection of sums of the right-hand side of Equation 21
for 1 ≤ ui ≤ vi). In a matrix form, the sets of equations in
Equation 24 can be written as

⎡
⎢⎢⎢⎢⎢⎢⎣

Xi,1 Xi,2 · · · Xi,vi

X2
i,1 X2

i,2 · · · X2
i,vi

...
...

. . .
...

X2ti−vi
i,1 X2ti−vi

i,2 · · · X2ti−vi
i,vi

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

Yi,1Pi,1
Yi,2Pi,2

...

Yi,viPi,vi

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

(25)

where

Pi,ui =
vi∏

l′i=1

(Xi,ui − Zi,l′i), for1 ≤ ui ≤ viand0 ≤ i ≤ t.

Equation 25 can be viewed as homogeneous linear sys-
tems over the chain of rings Ri in the unknowns
Yi,1Pi,1,Yi,2Pi,2, · · · ,Yi,viPi,vi . The values 2ti − vi are always
greater than or equal to vi (since vi ≤ ti), and the McCoy
rank of the matrices that appears in Equation 25 is vi,
which is exactly the number of unknowns. By Theorem 5.3
of [14], this implies that the only solutions to Equation 25
are the trivial one, i.e., Yi,uiPi,ui = 0 for 1 ≤ ui ≤ vi.

Thus, from Proposition 23, we concluded that each
product Pi,ui is necessarily a zero divisor inRi. Thus, Pi,ui ,

where 1 ≤ ui ≤ vi, has at least l′ith factors (Xi,ui − Zi,l′i)
which are zero divisors in Ri. Moreover, if some (li,1)th
factors of Pi,ui are zero divisors, say bi1 , and some other
(li,2)th factors of Pi,ki are also zero divisors, say bi2 , then
li,1 
= li,2 for ui 
= ki and 1 ≤ i ≤ t. It can be solved in the
following way: Suppose that li,1 = li,2 for ui 
= ki. Thus,
(Xi,ui − Zi,li,1) = bi1 and (Xi,ki − Zi,li,2) = bi2 . Therefore,
Xi,ui − Xi,ki are zero divisors in Ri, which is a contradic-
tion for ui 
= ki. Hence, there are unique error location
numbers Xi,ui in Ri corresponding to each Zi,ui , where
1 ≤ ui ≤ vi, for 0 ≤ i ≤ t.
Based on these given facts, we can obtain the following

procedure for the calculation of the correct error location
numbers:

1. Compute the roots of each ρi(X), say,
Zi,1,Zi,2,Zi,3, · · · ,Zi,vi .

2. Among Xi,0 = α0,Xi,1 = α1, · · · ,Xi,ni−1 = αni−1,
select those Xi,c(i,ui) such that (Xi,c(i,ui) − Zi,ui) are
zero divisors inRi. The selected elements give the
correct error location numbers.

This concludes step 3.
In step 4, the calculation of error magnitudes is based

on Forney’s method [5], where the error magnitudes
Yi,1,Yi,2,Yi,3, · · · ,Yi,vi are given by

Yi,ui =

vi−1∑
l′i=1

σ
(ui,l′i)
i svi−l′i

∑
σ

(ui,l′i)
i Xvi−l′i

(26)

and the coefficients σi,l′i are defined by

σ
(ui,l′i)
i = σi,ui + Xi,uiσ

(ui,l′i−1)
i for 0 ≤ l′i ≤ vi − 1.

Starting with σ
(ui,0)
i = σi,0 = 1, here, from [11, p. 1018],

the denominator of Equation 26 is always a unit inRi.
Next, we give an example on this four-step decoding

procedure.

Example 24. Let C1 and C2 be a collection of (3, 1) and
(15, 7) BCH codes, respectively, over the chain of Galois
rings A1 ⊂ A2, referring to Example 19, with generator
polynomials

g1(x) = x2+x+1 and g2(x) = x8+x7+x5+x3+x2+1.

We know that α1 = (x + 3, x + 3) and α2 = (x2, x2) be the
primitive elements of G3 and G15, respectively. Both codes
C1 and C2 have an error-correcting capability equal to t1 =
1 and t2 = 2 errors. So, C1 and C2 have an error-correcting
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capability equal to t1 = 1 and t2 = 2 errors. Parity-check
matrices of C1 and C2 are given by

H1 =
[
1 α1 α2

1
1 α2

1 α1

]
,

H2 =

⎡
⎢⎢⎣
1 α α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14

1 α2 α4 α6 α8 α10 α12 α14 α α3 α5 α7 α9 α11 α13

1 α3 α6 α9 α12 1 α3 α6 α9 α12 1 α3 α6 α9 α12

1 α4 α8 α12 α α5 α9 α13 α2 α6 α10 α14 α3 α7 α11

⎤
⎥⎥⎦.

Assume that the all zero codewords
c1 = ((0, 0)(0, 0)(0, 0)) and
c2 = ((0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)

× (0, 0)(0, 0)(0, 0)(0, 0)(0, 0)

are transmitted through the channel and the error pattern
is
e1 = ((0, 0)(0, 2)(1, 0)) and
e2 = ((2, 0)(0, 1)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)

× (0, 0)(0, 0)(0, 0)(3, 0)(0, 2).

The received vectors are then given by

r1 = c1 + e1 = ((0, 0)(0, 2)(1, 0)) and
r2 = c2 + e2 = ((2, 0)(0, 1)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)

× (0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(3, 0)(0, 2).

Applying the decoding procedure, first, we get syndromes

s1=r1HT
1 =(s1,1, s1,2) and s2=r2H

T
2 =(s2,1 s2,2 s2,3 s2,4),

where
s1,1 = (s1,11 , s1,12) = (3x, 2x + 2), s1,2 = (s1,21 , s1,22)

= (x + 3, 2x)
s2,1 = (s2,11 , s2,12) = (3x3 + x2 + 3x + 2, 2x3 + 3x2 + 2),
s2,2 = (s2,21 , s2,22)=(3x3+2x2+x+1, 2x3 + 2x2 + x + 3),
s2,3 = (s2,31 , s2,32) = (x3 + 2x, x3 + 3x2 + 2x) and
s2,4 = (s2,41 , s2,42) = (3x3 + 3, 2x3 + x2 + 3).

The extension of the modified Berlekamp-Massey algo-
rithm is applied to s1 and s2, obtaining Table 1, where
s1,3 = (x, 2x + 2), s1,4 = (x + 1, 2x), and s1,5 = (x, x + 1),
and Table 2, where

σ
(2)
1 (X) = 1 + s1,5X

and

σ
(4)
2 (X) = 1 + s2,10X + s2,11X2

based on a four- and six-iteration process.
The roots of ρ1(X) = X + s1,5 and ρ2(X) = X2 +

s2,10X + s2,11 are Z1,1 = −s1,5 and Z2,1 = (2x + 1, x2),
Z2,2 = (x3 + 3x2 + x, x3 + 3x2 + 1). Among the elements
of G3 and G15, it follows that X1,1 = (0,β1), X1,2 = (β2

1 , 0),
X2,1 = (1, 0), X2,2 = (0,β), X2,3 = (β13, 0), and X2,4 =
(0,β14) are such that X1,1−Z1,1, X1,2−Z1,2 are zero divisors
inR1 ⊂ R2 and X2,1 −Z2,1, X2,2 −Z2,2 are zero divisors in

Table 1 Calculation of the polynomial σ (2)
1 (X)

n1 σ
(n1)
1 (X) dn1 ln1 n1 − ln1

−1 1 1 0 −1

0 1 s1,1 0 0

1 1 + s1,3X s1,4 1 0

2 1 + s1,5X − 1 1

R1 ⊂ R2. Therefore, X1,1, X1,2, X2,1, X2,2, X2,3, and X2,2 are
the correct error location numbers and indicate that two
errors have occurred in c1, one at position 2 and the other
at position 3, while four errors have occurred in c2, respec-
tively, at positions 1, 2, 14, and 15. The correct elementary
symmetric functions σ1,1, σ2,1, and σ2,2 are obtained from

(X − X1,1) = X + σ1,1 and
(X − X2,1)(X − X2,2) = X2 + σ2,1X + σ2,2.

Finally, Forney’s procedure is applied to si, and we get the
error magnitudes Y1,1 = 3, Y1,2 = 6, Y2,1 = 6, and Y2,2 =
3. Therefore, the error pattern is given by

e1 = ((0, 0)(0, 2)(1, 0)) and
e2 = ((2, 0)(0, 1)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)

× (0, 0)(0, 0)(0, 0)(3, 0)(0, 2).

Conclusions
For a nonnegative integer t, let A0 ⊂ A1 ⊂ · · · ⊂ At−1 ⊂
At be a chain of unitary commutative rings, where each
Ai is constructed by the direct product of suitable Galois
rings with multiplicative group A∗

i of units, and let K0 ⊂
K1 ⊂ · · · ⊂ Kt−1 ⊂ Kt be the corresponding chain of
unitary commutative rings, where each Ki is constructed
by the direct product of corresponding residue fields of
given Galois rings, with multiplicative groupsK∗

i of units.
Despite [7], the construction of BCH codes with symbols
from the commutative ringAi, the direct product of local
commutative rings Ri,j, where 0 ≤ i ≤ t and 1 ≤ j ≤ r′,
has residue fields Ki,j, where 0 ≤ i ≤ t and 1 ≤ j ≤ r′.
For each member in the chain of the direct product of
Galois rings and residue fields, respectively, we obtain the
sequence of BCH codes C0, C1, · · · , Ct−1, C over the direct

Table 2 Calculation of the polynomial σ (4)
2 (X)

n2 σ
(n2)
2 (X) dn2 ln2 n2 − ln2

−1 1 1 0 −1

0 1 s2,1 0 0

1 1 + s2,3 X s2,4 1 0

2 1 + s2,5X s2,6 1 1

3 1 + s2,7X + s2,8X2 s2,9 2 1

4 1 + s2,10X + s2,11X2 − 2 2
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product of local commutative rings Ri,j with different
lengths and sequences of BCH codes C′

0, C′
1, · · · , C′

t−1, C′
over the direct product of residue fields Ki,j with proper
lengths, i.e.,

C0 ⊂ C0,0 × C0,1 × · · · × C0,r′

C1 ⊂ C1,0 × C1,1 × · · · × C1,r′

...
...

C ⊂ Ct,0 × Ct,1 × × Ct,r′

and

C ′
0 ⊂ C′

0,0 × C′
0,1 × · · · × C′

0,r′

C′
1 ⊂ C′

1,0 × C′
1,1 × · · · × C′

1,r′

...
...

C′ ⊂ C′
t,0 × C′

t,1 × × C′
t,r′ .

In fact, this technique provides a choice to select the most
suitable BCH code Ci (respectively, BCH code C′

i), where
0 ≤ i ≤ t, with required error-correcting capabilities
and code rate but with compromising length. We extend
the modified Berlekamp-Massey algorithm for the chain
of unitary commutative local rings in such a way that the
error will be corrected by a sequence of codewords from
the sequence of BCH codes C0,C1, · · · ,Ct−1,C. In this
process, step 2 contains n iterations, where n = max{ni :
0 ≤ i ≤ t}, and in each iteration, it deals t codewords
of codes Ci for each i, where 0 ≤ i ≤ t at once. By the
algorithm of step 2, we compute t elementary symmet-
ric functions in the chain of rings with less computation.
This process is not much different than the original one,
but it deals a sequence of t codewords from the sequence
of codes Ci over the chain of Galois rings Ri, for each i,
where 0 ≤ i ≤ t, at once.
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