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Abstract

Using the fixed point and direct methods, we prove the generalized Hyers-Ulam stability of the following generalized
Apollonius type quadratic functional equation
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Introduction
The stability problem of functional equations originates
from a question of Ulam [1] concerning the stability of
group homomorphisms. Hyers [2] gave the first affirma-
tive partial answer to the question of Ulam for Banach
spaces. Hyers’ theorem was generalized by Aoki [3] for
additive mappings and by Rassias [4] for linear mappings
by considering an unbounded Cauchy difference.

Theorem1. Let f be an approximately additivemapping
from a normed vector space E into a Banach space E’, i.e., f
satisfies the inequality ‖f (x+ y)− f (x)− f (y)‖ ≤ ε(‖x‖r +
‖y‖r) for all x, y ∈ E, where ε and r are constants with ε >

0 and 0 ≤ r < 1. Then, the mapping L : E → E′ defined by
L(x) = limn→∞ 2−nf (2nx) is the unique additive mapping
which satisfies

‖f (x + y) − L(x)‖ ≤ 2ε
2 − 2r

‖x‖r

for all x ∈ E.
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However, the following example shows that the same
result of Theorem 1 is not true in non-Archimedean
normed spaces.

Example 1. Let p > 2 and let f : Qp → Qp be defined
by f (x) = 2. Then for ε = 1,

|f (x + y) − f (x) − f (y)| = 1 ≤ ε

for all x, y ∈ Qp. However, the sequences
{
f (2nx)
2n

}∞
n=1

and{
2nf

( x
2n

)}∞
n=1 are not Cauchy. In fact, by using the fact that|2| = 1, we have∣∣∣∣ f (2nx)2n

− f (2n+1x)
2n+1

∣∣∣∣ = |2−n ·2−2−(n+1) ·2| = |2−n| = 1

and∣∣∣2nf ( x
2n

)
− 2n+1f

( x
2n+1

)∣∣∣=|2n.2−2(n+1).2| = |2n+1|=1

for all x, y ∈ Qp and n ∈ N. Hence, these sequences are not
convergent in Qp.

The paper of Rassias [4] has provided a lot of influ-
ence on the development of what we call the ‘Hyers-Ulam
stability’ or ‘Hyers-Ulam-Rassias stability’ of functional
equations. A generalization of the Th.M. Rassias theorem
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was obtained by Gǎvruta [5] by replacing the unbounded
Cauchy difference by a general control function in the
spirit of Rassias’ approach.
The functional equation f (x + y) + f (x − y) = 2f (x) +

2f (y) is called a ‘quadratic functional equation’. In partic-
ular, every solution of the quadratic functional equation
is said to be a ‘quadratic mapping’. A Hyers-Ulam stability
problem for the quadratic functional equation was proven
by Skof [6] for mappings f : X → Y , where X is a normed
space and Y is a Banach space. Cholewa [7] noticed that
the theorem of Skof is still true if the relevant domain X
is replaced by an Abelian group. Czerwik [8] proved the
Hyers-Ulam stability of the quadratic functional equation.
The stability problems of several functional equations
have been extensively investigated by a number of authors,
and there are many interesting results concerning this
problem (see [3-47]).
In 1897, Hensel [15] introduced a normed space which

does not have the Archimedean property. It turned out
that non-Archimedean spaces have many nice applica-
tions [17,18,22,48].
In this paper, we prove the Hyers-Ulam-Rassias (or gen-

eralizedHyers-Ulam) stability of the following generalized
Apollonius type quadratic functional equation:
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(1)

in non-Archimedean Banach spaces. It is easy to show that
the function f (x) = x2 satisfies the functional Equation
(1), which is called a quadratic functional equation, and
every solution of the quadratic functional equation is said
to be a quadratic mapping.

Definition 1. By a non-Archimedean field we mean a
field K equipped with a function (valuation) | · | : K →
[ 0,∞) such that for all r, s ∈ K, the following conditions
hold: (a) |r| = 0 if and only if r = 0; (b) |rs| = |r||s|; and
(c) |r + s| ≤ max{|r|, |s|}.

Remark 1. Clearly, |1| = | − 1| = 1 and |n| ≤ 1 for all
n ∈ N.

Definition 2. Let X be a vector space over a scalar field
K with a non-Archimedean, non-trivial valuation | · |. A
function || · || : X → R is a non-Archimedean norm (val-

uation) if it satisfies the following conditions: (a) ||x|| =
0 if and only if x = 0; (b) ||rx|| = |r|||x|| (r ∈ K, x ∈ X);
and (c) the strong triangle inequality (ultrametric), namely

||x + y|| ≤ max{||x||, ||y||}, x, y ∈ X.

Then, (X, || · ||) is called a non-Archimedean space.

Definition 3. A sequence {xn} is Cauchy if and only if
{xn+1 − xn} converges to zero in a non-Archimedean space.
By a complete non-Archimedean space we mean one in
which every Cauchy sequence is convergent.

The most important examples of non-Archimedean
spaces are p-adic numbers. A key property of p-adic num-
bers is that they do not satisfy the Archimedean axiom:
‘for x, y > 0, there exists n ∈ N such that x < ny’.

Example 2. Fix a prime number p. For any nonzero
rational number x, there exists a unique integer nx ∈ Z

such that x = a
bp

nx , where a and b are integers not divis-
ible by p. Then, |x|p := p−nx defines a non-Archimedean
norm onQ. The completion ofQ with respect to the metric
d(x, y) = |x − y|p is denoted by Qp, which is called the p-
adic number field. In fact, Qp is the set of all formal series
x = ∑∞

k≥nx akp
k where |ak| ≤ p−1 are integers. The addi-

tion and multiplication between any two elements of Qp
are defined naturally. The norm | ∑∞

k≥nx akp
k|p = p−nx is

a non-Archimedean norm onQp, and it makesQp a locally
compact field.

Definition 4. Let X be a set. A function d : X × X →
[ 0,∞] is called a generalized metric on X if d satisfies the
following conditions: (a) d(x, y) = 0 if and only if x = y for
all x, y ∈ X; (b) d(x, y) = d(y, x) for all x, y ∈ X; and (c)
d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 2. Let (X,d) be a complete generalized metric
space and J : X → X be a strictly contractive mapping
with Lipschitz constant L < 1. Then, for all x ∈ X, either
d(Jnx, Jn+1x) = ∞ for all nonnegative integers n or there
exists a positive integer n0 such that (a) d(Jnx, Jn+1x) < ∞
for all n0 ≥ n0; (b) the sequence {Jnx} converges to a fixed
point y∗ of J; and (c) y∗ is the unique fixed point of J in
the set Y = {y ∈ X : d(Jn0x, y) < ∞}; (d) d(y, y∗) ≤
1

1−Ld(y, Jy) for all y ∈ Y .

Arriola and Beyer [49] investigated the Hyers-Ulam sta-
bility of approximate additive functions f : Qp → R. They
showed that if f : Qp → R is a continuous function for
which there exists a fixed ε: |f (x + y) − f (x) − f (y)| ≤
ε for all x, y ∈ Qp, then there exists a unique additive
function T : Qp → R such that |f (x) − T(x)| ≤ ε

for all x ∈ Qp. In this paper, using the fixed point and
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direct method, we prove the generalized Hyers-Ulam sta-
bility of the functional equation (1) in non-Archimedean
normed spaces.

Methods
Non-archimedean stability of Equation 1: fixed point
method
Throughout this section, using the fixed point alternative
approach, we prove the generalized Hyers-Ulam stabil-
ity of functional Equation 1 in non-Archimedean normed
spaces. Let X be a non-Archimedean normed space and Y
be a non-Archimedean Banach space.

Remark 2. Let x := ∑m
i=1 xi, y := ∑m

i=1 yi, z :=
∑m

i=1 zi
and |4| 
= 1.

Theorem 3. Let ζ : X2 →[ 0,∞) be a function such that
there exists L < 1 with

ζ
(x
2
,
y
2
,
z
2

)
≤ Lζ(x, y, z)

|4| (2)

for all x, y, z ∈ X. If f : X → Y is a mapping with f (0) = 0
and satisfying

∥∥∥∥f (z − x) + f (z − y) − 1
2
f (x − y) − 2f

(
z − x + y

2

)∥∥∥∥
≤ ζ(x, y, z)

(3)

for all x, y, z ∈ X, then the limit Q(x) = limn→∞ 4nf
( x
2n

)
exists for all x ∈ X and defines a unique quadratic
mapping Q : X → Y such that

‖f (x) − Q(x)‖ ≤ Lζ(x,−x, x)
|2| − |2|L . (4)

Proof. Putting z = x and y = −x in Equation 3, we have∥∥∥∥12 f (2x) − 2f (x)
∥∥∥∥ ≤ ζ(x,−x, x). (5)

Replacing x by x
2 in the above inequality, we obtain

∥∥∥4f (x
2

)
− f (x)

∥∥∥ ≤ |2|ζ
(
x
2
,
−x
2

,
x
2

)
(6)

for all x ∈ X. Consider the set S := {g : X → Y ; g(0) = 0}
and the generalized metric d in S defined by

d(f , g) = inf
{
μ ∈ R+ : ‖g(x) − h(x)‖

≤ μζ(x,−x, x), ∀x ∈ X} , (7)

where inf ∅ = +∞. It is easy to show that (S, d) is com-
plete (see Lemma 2.1 in [20]). Now, we consider a linear
mapping J : S → S such that Jh(x) := 4h

( x
2
)
for all

x ∈ X. Let g, h ∈ S be such that d(g, h) = ε. Then, we have
‖g(x) − h(x)‖ ≤ εζ(x,−x, x) for all x ∈ X, and so,

‖Jg(x)−Jh(x)‖ =
∥∥∥4g (x

2

)
−4h

(x
2

)∥∥∥≤|4|εζ
(
x
2
,
−x
2

,
x
2

)

≤ |4|Lεζ(x,−x, x)
|4|

for all x ∈ X. Thus, d(g, h) = ε implies that d(Jg, Jh) ≤ Lε.
This means that d(Jg, Jh) ≤ Ld(g, h) for all g, h ∈ S. It
follows from Equation 6 that d(f , Jf ) ≤ L

|2| . By Theorem 2,
there exists a mappingQ : X → Y satisfying the following:
(1) Q is a fixed point of J, that is,

Q
(x
2

)
= 1

4
Q(x) (8)

for all x ∈ X. The mapping Q is a unique fixed point of J
in the set � = {h ∈ S : d(g, h) < ∞}. This implies that Q
is a unique mapping satisfying Equation 8 such that there
exists μ ∈ (0,∞) satisfying ‖f (x) − Q(x)‖ ≤ μζ(x,−x, x)
for all x ∈ X. (2) d(Jnf ,Q) → 0 as n → ∞. This implies
the equality limn→∞ 4nf

( x
2n

) = Q(x) for all x ∈ X. (3)
d(f ,Q) ≤ d(f ,Jf )

1−L with f ∈ �, which implies the inequal-
ity d(f ,Q) ≤ L

|2|−|2|L . This implies that the inequality
(Equation 4) holds. By Equation 3, we have∥∥∥∥4nf

(
z − x
2n

)
+ 4nf

(
z − y
2n
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− 4n

2
f
(
x − y
2n

)

−2.4nf
(

z
2n

− x + y
2n+1

)∥∥∥∥ ≤ |4|nζ
( x
2n

,
y
2n

,
z
2n

)

≤ |4|nLnζ(x, y, z)
|4|n

for all x, y ∈ X and n ≥ 1, and so,
∥∥∥Q(z − x) + Q(z − y) −

1
2Q(x − y) − 2Q

(
z − x+y

2

)∥∥∥ = 0 for all x, y ∈ X. There-
fore, the mapping Q : X → Y satisfies Equation 1. On the
other hand,

Q(2x) − 4Q(x) = lim
n→∞ 4nf

( x
2n−1

)
− 4 lim

n→∞ 4nf
( x
2n

)
= 4

[
lim
n→∞ 4n−1f

( x
2n−1

)
− lim

n→∞ 4nf
( x
2n

)]
= 0

So,Q : X → Y is quadratic. This completes the proof.

Corollary 1. Let θ1, θ2 ≥ 0 and r be a real number with
r ∈ (1,+∞). Let f : X → Y be a mapping with f (0) = 0
and satisfying∥∥∥∥ f (z − x) + f (z − y) − 1

2
f (x − y) − 2f

(
z − x + y

2

) ∥∥∥∥
≤ θ1(‖x‖r + ‖y‖r + ‖z‖r) + θ2‖x‖ r

3 .‖y‖ r
3 ‖z‖ r

3

(9)
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for all x, y, z ∈ X. Then, the limit Q(x) = limn→∞ 4nf
( x
2n

)
exists for all x ∈ X, and Q : X → Y is a unique quadratic
mapping such that

‖f (x) − Q(x)‖ ≤ |4|r(3θ1 + θ2)‖x‖r
|2|(1 − |4|r)

for all x ∈ X.

Proof. The proof follows from Theorem 3 if we take

ζ(x, y, z) = θ1(‖x‖r + ‖y‖r + ‖z‖r) + θ2‖x‖ r
3 .‖y‖ r

3 ‖z‖ r
3

for all x, y, z ∈ X. In fact, if we choose L = |4|r , we then
get the desired result.

Theorem 4. Let ζ : X2 →[ 0,∞) be a function such that
there exists an L < 1 with ζ(2x, 2y, 2z) ≤ |4|Lζ(x, y, z)
for all x, y, z ∈ X. Let f : X → Y be mapping with
f (0) = 0 and satisfying Equation 3. Then, the limit
Q(x) limn→∞ f (2nx)

4n exists for all x ∈ X and defines a
unique quadratic mapping Q : X → Y such that

‖f (x) − Q(x)‖ ≤ ζ(x,−x, x)
|2| − |2|L .

Proof. It follows from Equation 5 that
∥∥f (x) − 1

4 f (2x)
∥∥

≤ ζ(x,−x,x)
|2| for all x ∈ X. The rest of the proof is similar to

the proof of Theorem 3.

Corollary 2. Let θ1, θ2 ≥ 0 and r be a real number
with r ∈ (0, 1). Let f : X → Y be a mapping with
f (0) = 0 and satisfying Equation 9. Then, the limit Q(x) =
limn→∞ f (2nx)

4n exists for all x ∈ X, and Q : X → Y is a
unique quadratic mapping such that

‖f (x) − Q(x)‖ ≤ (3θ1 + θ2)‖x‖r
|2|(1 − |4|1−r)

for all x ∈ X.

Proof. The proof follows from Theorem 4 if we take

ζ(x, y, z) = θ1(‖x‖r + ‖y‖r + ‖z‖r) + θ2‖x‖ r
3 .‖y‖ r

3 ‖z‖ r
3

for all x, y, z ∈ X. In fact, if we choose L = |4|1−r , we then
get the desired result.

Non-archimedean stability of Equation 1: direct method
In this section, using the direct method, we prove the
generalized Hyers-Ulam stability of functional Equation 1
in non-Archimedean normed spaces. Throughout this
section, let G be 2-divisible.

Theorem 5. Let G be an additive semigroup and X be a
complete non-Archimedean space. Assume that ζ : G3 →
[ 0,+∞) is a function such that

lim
n→∞

ζ(2nx, 2ny, 2nz)
|4|n = 0 (10)

for all x, y, z ∈ G. Let, for each x ∈ G, the limit

£(x) = lim
n→∞max

{
ζ(2kx,−2kx, 2kx)

|4|k : 0 ≤ k < n
}

(11)

exists for all x ∈ G. Suppose that f : G → X is a mapping
with f (0) = 0 and satisfying the inequality

∥∥∥∥ f (z − x) + f (z − y) − 1
2
f (x − y) − 2f

(
z − x + y

2

) ∥∥∥∥
≤ ζ(x, y, z)

(12)

for all x, y, z ∈ G. Then, the limit α(x) := limn→∞ f (2nx)
4n

exists for all x ∈ G, and α(x) : G → X is a quadratic
mapping satisfying

||f (x) − α(x)|| ≤ |2|−1£(x) (13)

for all x ∈ G. Moreover, if

lim
j→∞ lim

n→∞max
{

ζ(2kx,−2kx, 2kx)
|4|k : j ≤ k < j + n

}
= 0

(14)

then, α(x) is the unique mapping satisfying Equation 13.

Proof. Putting z = x and y =-x in Equation 12, we have∥∥∥∥f (x) − f (2x)
4

∥∥∥∥ ≤ ζ(x,−x, x)
|2| . (15)

for all x ε G. Replacing x by 2nx in Equation 15, we get∥∥∥∥ f (2n+1x)
4n+1 − f (2nx)

4n

∥∥∥∥ ≤ ζ(2nx,−2nx, 2nx)
|2|.|4|n . (16)

It follows from Equations 10 and 16 that the sequence{
f (2nx)
4n

}∞
n=1

is a Cauchy sequence. Since X is complete,{
f (2nx)
4n

}∞
n=1

is convergent. Set α(x) := limn→∞ f (2nx)
4n .

Using induction, we see that

∥∥∥∥ f (2nx)4n
− f (x)

∥∥∥∥ ≤
max

{
ζ(2kx,−2kx,2kx)

|4|k : 0 ≤ k < n
}

|2| .

(17)
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Indeed, Equation 17 holds for n = 1 by Equation 15. Now,
if Equation 17 holds for n, then by Equation 16, we obtain∥∥∥∥ f (2n+1x)

4n+1 − f (x)
∥∥∥∥ =

∥∥∥∥ f (2n+1x)
4n+1 ± f (2nx)

4n
−f (x)

∥∥∥∥
≤ max

{∥∥∥∥ f (2n+1x)
4n+1 − f (2nx)

4n

∥∥∥∥ ,∥∥∥∥ f (2nx)4n
− f (x)

∥∥∥∥
}

≤ 1
|2|max

{
ζ(2nx,−2nx, 2nx)

|4|n ,

max
{
ζ(2kx,−2kx, 2kx)

|4|k : 0 ≤ k < n
}}

= 1
|2|max

{
ζ(2kx,−2kx, 2kx)

|4|k : 0 ≤ k < n + 1
}
.

(18)

So for all n ∈ N and all x ∈ G, Equation 17 holds. By
taking n to approach infinity in Equation 17, one obtains
Equation 13. If β(x) is another mapping that satisfies
Equation 13, then for all x ∈ G, we get

||α(x) − β(x)|| = lim
k→∞

∥∥∥∥∥α(2kx)
4k

− β(2kx)
4k

∥∥∥∥∥
≤ lim

k→∞
max

{∥∥∥∥∥α(2kx)
4k

− f (2kx)
4k

∥∥∥∥∥ ,
∥∥∥∥∥ f (2

kx)
4k

− β(2kx)
4k

∥∥∥∥∥
}

≤ lim
j→∞ lim

n→∞max
{

ζ(2kx,−2kx, 2kx)
|4|k :

j ≤ k < j + n
}

= 0.

Therefore, for all x ∈ G, we obtain α(x) = β(x).

Corollary 3. Let ξ :[ 0,∞) →[ 0,∞) be a function
satisfying

ξ(|2|t) ≤ ξ(|2|)ξ(t) (t ≥ 0), ξ(|2|) < |4|.
Let κ > 0 and f : G → X be a mapping with f (0) = 0 and
satisfying the inequality∥∥∥∥ f (z − x) + f (z − y) − 1

2
f (x − y) − 2f

(
z − x + y

2

) ∥∥∥∥
≤ κ

(
ξ(|x|) + ξ(|y|) + ξ(|z|))

for all x, y, z ∈ G. Then the limit α(x) := limn→∞ f (2nx)
4n

exists for all x ∈ G, and α(x) : G → X is a unique
quadratic mapping satisfying

‖f (x) − α(x)‖ ≤ 3κξ(|x|)
|2|

for all x ∈ G.

Proof. Define ζ : G3 →[ 0,∞) by ζ(x, y, z) := κ (ξ(|x|)+
ξ(|y|) + ξ(|z|)). Since ξ(|2|)

|4| < 1, we have limn→∞
ζ(2nx,2ny,2nz)

|4|n ≤ limn→∞
(

ξ(|2|)
|4|

)n
ζ(x, y, z) = 0 for all

x, y, z ∈ G. Also, for all x ∈ G

£(x) = lim
n→∞max

{
ζ(2kx,−2kx, 2kx)

|4|k : 0 ≤ k < n
}

= 3κξ(|x|)
exists for all x ∈ G. Moreover, limj→∞ limn→∞ max{

ζ(2kx,−2kx,2kx)
|4|k : j ≤ k < j + n

}
= limj→∞ ζ(2jx,−2jx,2jx)

|4|j =
0 for all x ∈ G. Applying Theorem 5, we get the desired
results.

Theorem 6. Let ζ : G3 →[ 0,+∞) be a function such
that

lim
n→∞ |4|nζ

( x
2n

,
y
2n

,
z
2n

)
= 0 (19)

for all x, y, z ∈ G. Let the limit

£(x)= lim
n→∞max

{
|4|kζ

(
x

2k+1 ,
−x
2k+1 ,

x
2k+1

)
: 0 ≤ k < n

}
(20)

exist for each x ∈ G. Suppose that f : G → X is a mapping
with f (0) = 0 and satisfying the inequality∥∥∥∥ f (z − x) + f (z − y) − 1

2
f (x − y) − 2f

(
z − x + y

2

)∥∥∥∥
≤ ζ(x, y, z)

(21)

for all x, y, z ∈ G. Then the limit α(x) := limn→∞ 4nf
( x
2n

)
exists for all x ∈ G, and α : G → X is a quadratic mapping
satisfying

||f (x) − α(x)|| ≤ |2|£(x) (22)

for all x ∈ G. Moreover, if

lim
k→∞

lim
n→∞max

{
|4|kζ

(
x

2k+1 ,
−x
2k+1 ,

x
2k+1

)
: j≤k<n + j

}
= 0

then α(x) is the unique mapping satisfying Equation 22.

Proof. Proof. By Equation 6, we know that∥∥∥4f (x
2

)
− f (x)

∥∥∥ ≤ |2|ζ
(
x
2
,
−x
2

,
x
2

)
(23)

for all x ∈ G. Replacing x by x
2n in Equation 23, we get

∥∥∥4n+1f
( x
2n+1

)
−4nf

( x
2n

)∥∥∥≤|2|.|4|nζ
(

x
2n+1 ,

−x
2n+1 ,

x
2n+1

)
.

(24)
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for all x ∈ G. It follows from Equations 19 and 24 that
the sequence

{
4nf

( x
2n

)}∞
n=1 is a Cauchy sequence. Since X

is complete,
{
4nf

( x
2n

)}∞
n=1 is convergent. It follows from

Equation 24 that

∥∥∥4nf ( x
2n

)
− 4pf

( x
2p

)∥∥∥ =
∥∥∥∥∥∥

n∑
k=p

4k+1f
( x
2k+1

)
−4kf

( x
2k

)∥∥∥∥∥∥
≤max

{∥∥∥4k+1f
( x
2k+1

)
−4kf

( x
2k

)∥∥∥:
p ≤ k < n

}
≤|2|max

{
4|kζ

(
x

2k+1 ,
−x
2k+1 ,

x
2k+1

)
:

p ≤ k < n
}

for all x ∈ G and all nonnegative integers n, p with n >

p ≥ 0. Letting p = 0 and passing the limit n → ∞ in
the last inequality, we obtain Equation 22. The rest of the
proof is similar to the proof of Theorem 5.

Corollary 4. Let ξ :[ 0,∞) →[ 0,∞) be a function
satisfying

ξ(|2|−1t) ≤ ξ(|2|−1)ξ(t) (t ≥ 0), ξ(|2|−1) < |4|−1.

Let κ > 0 and f : G → X be a mapping with f (0) = 0 and
satisfying the inequality

∥∥∥∥ f (z − x) + f (z − y) − 1
2
f (x − y) − 2f

(
z − x + y

2

)∥∥∥∥
≤ κ

(
ξ(|x|).ξ(|y|).ξ(|z|))

for all x, y, z ∈ G. Then the limit α(x) := limn→∞ 4nf
( x
2n

)
exists for all x ∈ G, and α : G → X is a unique quadratic
mapping satisfying

||f (x) − α(x)|| ≤ |2|κξ3(|x|)
|4|3

for all x ∈ G.

Proof. Define ζ : G3 →[ 0,∞) by ζ(x, y, z) := κ (ξ(|x|).
ξ(|y|).ξ(|z|)). The rest of the proof is similar to the proof
of Corollary 3.

Results and discussion
We linked here four different disciplines, namely, non-
Archimedean Banach spaces, functional equations, direct
method and fixed point theory. We established the Hyers-
Ulam-Rassias stability of the functional Equation 1 in

Archimedean Banach spaces by using direct and fixed
point methods.

Conclusions
Throughout this paper, using the fixed point and direct
method we proved the Hyers-Ulam-Rassias stability of a
generalized Apollonius type quadratic functional equation
in non-Archimedean Banach spaces.
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