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Reproducing kernel method for singular
multi-point boundary value problems
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Abstract

Purpose: In this paper, we shall present an algorithm for solving more general singular second-order multi-point
boundary value problems.

Methods: The algorithm is based on the quasilinearization technique and the reproducing kernel method for linear
multi-point boundary value problems.

Results: Three numerical examples are given to demonstrate the efficiency of the present method.

Conclusions: Obtained results show that the present method is quite efficient.
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Background
In this paper, we consider the following second-order
multi-point boundary value problems:

⎧⎨
⎩
a(x)u′′(x)+b(x)u′(x)+c(x)u(x)= f (x,u), 0 ≤ x ≤ 1,

u(0)=
m0∑
i=1

αiu(ξi),u(1)=
m1∑
i=1

βiu(ηi),
(1)

where a(x), b(x), c(x) ∈ C[ 0, 1], f (x,u) is continuous, 0 <

ξi, ηi < 1, a(0) = 0 or a(1) = 0 and a(x) �= 0, x ∈ (0, 1);
that is, the equation may be singular at x = 0, 1.
Multi-point boundary value problems (BVPs) arise in a

variety of applied mathematics and physics. For instance,
the vibrations of a guy wire of uniform cross section
composed of N parts of different densities can be set
up as a multi-point BVP [1]; also, many problems in the
theory of elastic stability can be handled by multi-point
problems in the work of Timoshenko [2]. The existence
and multiplicity of solutions of multi-point boundary
value problems have been studied by many authors, see
the works of Agarwal and Kiguradze, Du, Feng andWebb,
Thompson and Tisdell [3-6], and the references therein.
The shooting method is used to solve multi-point bound-
ary value problems in the works of Kwong and Zou et al.
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[7,8]. However, the shooting method is a trial-and-error
method and is often sensitive to initial guess. This makes
the computation by the conventional shooting method
expensive and ineffective. Lin [9] introduced an algorithm
for solving a class of multi-point BVPs by constructing
reproducing kernel (RK) satisfying multi-point boundary
conditions. However, both the method for obtaining RK
satisfying multi-point boundary conditions and the form
of obtained RK are very complicated in this method.
Tatari and Dehghan [10] introduced the Adomian decom-
position method for multi-point BVPs. Yao [11] proposed
a successive iteration method for multi-point BVPs.
However, there seems to be little discussion about numer-
ical solutions of singular multi-point boundary value
problems. Geng [12] proposed a method for a class of
second-order three-point BVPs by converting the original
problem into an equivalent integro-differential equation.
Li and Wu [13,14] presented RK method for singular
three-point and four-point BVPs by constructing RK
satisfying three-point or four-point boundary conditions.
The goal of this paper is to give an effective method for
solving more general singular multi-point boundary value
problems.
The rest of the paper is organized as follows. In the next

section, three numerical examples are presented. The con-
clusions of this paper are introduced in the ‘Conclusions’
section. The algorithm for solving singular multi-point
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boundary value problems is proposed in the section
‘Methods’.

Results and discussion
In this section, three numerical examples are studied to
demonstrate the accuracy of the present method. The
examples are computed using Mathematica 5.0. Results
obtained by the method are compared with the analyti-
cal solution of each example and are found to be in good
agreement with each other.

Example 1. Consider the following linear singular multi-
point boundary value problem:
⎧⎨
⎩
sin xu′′(x) + ex/2

2 u′(x) + sin
√
xu(x) = f (x), 0 ≤ x ≤ 1,

u(0) = u(1/8) + u(1/2) − 0.652287u(7/8),u(1)
= u(1/8) + 2u(1/2) + 0.00775445u(7/8),

where f (x) = 1
2e

x/2 cosh(x)+(
sin

(√
x
) + sin(3x)

)
sinh(x).

The exact solution is given by u(x) = sinh x.
Using the present method, taking xi = i−1

N−1 , i =
1, 2, · · · ,N , N = 11, 51 and initial approximation
u0(x) = 0, the numerical results are given in Figure 1.
From Figure 1, it is shown that the absolute errors is
monotonically decreasing if N increases.
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Figure 1 Figures of absolute errors.
|u1,11(x) − u(x)|, |u1,51(x) − u(x)| for Example 1.

Example 2. Consider the following nonlinear singular
multi-point boundary value problem:
⎧⎨
⎩
sin xu′′(x)+ ex/2

2 u′(x)+sin
√
xu(x)+u4(x)= f(x), 0≤x≤1,

u(0) = u(1/8) + u(1/2) − 0.652287u(7/8),u(1)
= u(1/8) + 2u(1/2) + 0.00775445u(7/8),

where f (x) = sinh4(x) + sin
(√

x
)
sinh(x) + sin(3x) sinh

(x) + 1
2e

x/2 cosh(x). The exact solution is given by u(x) =
sinh x.
Using the present method, taking k = 3, xi = i−1

n−1 , i =
1, 2, · · ·,N , N = 11, 51 and initial approximation u0(x) =
0, the numerical results are given in Figure 2. From
Figure 2, we can see that the approximate solutions are in
good agreement with exact solutions.

Example 3. The method discussed in the paper is finally
tested on a sandwich problem. The shear deformation
u(x) of sandwich beams is governed by a linear third-order
differential equation with its boundary conditions at three
different points [15]:

{
u′′′(x) − k2u′(x) + r = 0, 0 ≤ x ≤ 1,
u′(0) = 0, u( 12 ) = 0, u′(1) = 0,
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Figure 2 Figures of absolute errors.
|u3,11(x) − u(x)|, |u3,51(x) − u(x)| for Example 2.
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The exact solution is given by u(x) =
r
(
k(2x−1)−2 sinh(kx)+2 cosh(kx) tanh

(
k
2

))
2k3 . The method was

tested for r = 1, k = 5, and 10, and the results are com-
pared with the exact solution. Using our method, taking
n = 1, N = 11, 51, xi = i−1

N−1 , i = 1, 2, · · ·,N , the absolute
errors | un,N (x)−u(x) | between the approximate solution
and exact solution are given in Tables 1 and 2. Numerical
results compared with that of Tirmizi et al. [15] show that
the accuracy of approximate solutions obtained using the
present method is higher.

Discussion
The method introduced in the work of Geng [12]
can only be used to solve special multi-point BVPs
with one multi-point boundary condition, whereas the
present method can be extended to general nonlocal
BVPs with linear nonlocal boundary conditions. Com-
paring with that of Lin’s work [9], this paper provide
a simpler method for constructing reproducing ker-
nel satisfying linear nonlocal boundary conditions. A
major advantage of the present method over the Ado-
mian decomposition method [10] is that it can avoid
unnecessary computation in determining the unknown
parameters.

Conclusions
In this paper, we introduce an algorithm for solving
singular second-order multi-point BVPs. The present
method is based on the reproducing kernel method and
the quasilinearization technique. Results of numerical
examples show that the present method is an accurate
and reliable analytical technique for singular multi-point
BVPs.

Methods
Quasilinearization technique for singular multi-point BVP
(Equation 1)
To solve Equation 1, the quasilinearization technique
is used to reduce Equation 1 to a sequence of linear
problems. By choosing a reasonable initial approximation

u0(x) for the function u(x) in f (x,u) and expanding f (x,u)

around the function u0(x)

f (x,u1) = f (x,u0) + (u1 − u0)
∂f
∂u

|u=u0 + · · ·.
In general, one can write for k = 1, 2, · · ·

f (x,uk) = f (x,uk−1) + (uk − uk−1)
∂f
∂u

|u=uk−1 + · · ·.
Hence, we can obtain the following iteration formula for

Equation 1:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a(x)u′′
k(x) + b(x)u′

k(x) + ck(x)uk(x) = fk(x),

k = 1, 2, · · ·

uk(0) =
m0∑
i=1

αiuk(ξi),uk(1) =
m1∑
i=1

βiuk(ηi),

(2)

where ck(x) = c(x) − ∂ f
∂u |u=uk−1 , fk(x) = f (x,uk−1) −

uk−1
∂ f
∂u |u=uk−1 , u0(x) is the initial approximation.

Therefore, to solve singular multi-point BVP
(Equation 1), it suffices for us to solve the series of linear
problem (Equation 2).

Reproducing kernel method for solving Equation 2
In order to solve Equation 2 using the RKM presented
in previous works [16-21], it is necessary to construct
a reproducing kernel space W 3

2 [ 0, 1] in which every
function satisfies the multi-point boundary conditions of
Equation 2.
First, we construct the following reproducing kernel

space.
Reproducing kernel Hilbert spaceW 3[ 0, 1] is defined as

follows: W 3[ 0, 1]= {u(x) | u′′(x) is an absolutely contin-
uous real value functions, u′′′(x) ∈ L2[ 0, 1] }. The inner
product and norm in W 3[ 0, 1] are given, respectively, by
the following:

(u(y), v(y))W3 = u(0)v(0) + u′(0)v′(0) + u(1)v(1)

+
∫ 1

0
u′′′v′′′dy

Table 1 Exact solution and absolute errors for k = 5 for Example 3

Node x Exact solution Absolute error [15] Present method (u1,11) Present method (u1,51)

0.00 -0.121071 6.65×10−5 2.81×10−5 1.04×10−6

0.10 -0.112685 6.50×10−5 2.26×10−5 8.44×10−7

0.20 -0.009222 5.25×10−5 1.41×10−5 5.27×10−7

0.30 -0.006466 3.63×10−5 7.32×10−6 2.74×10−7

0.40 -0.003320 1.87×10−5 2.95×10−6 1.10×10−7

0.60 0.0033201 1.73×10−5 2.95×10−6 1.10×10−7

0.70 0.0064668 3.40×10−5 7.32×10−6 2.74×10−7

0.80 0.0092222 4.98×10−5 1.41×10−5 5.27×10−7

0.90 0.0112685 6.20×10−5 2.26×10−5 8.44×10−7

1.00 0.1210710 6.34×10−5 2.81×10−5 1.04×10−6
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Table 2 Exact solution and absolute errors for k = 10 for Example 3

Node x Exact solution Absolute error [15] Present method (u1,11) Present method(u1,51)

0.00 -0.00400009 3.51×10−5 1.14×10−5 4.27×10−7

0.10 -0.00363226 3.85×10−5 5.73×10−6 1.60×10−7

0.20 -0.00286501 3.02×10−5 8.65×10−7 4.77×10−8

0.30 -0.00195113 2.23×10−5 2.22×10−6 8.80×10−8

0.40 -0.00098416 1.40×10−5 1.39×10−6 5.40×10−8

0.60 0.000984164 7.00×10−5 1.39×10−6 5.40×10−8

0.70 0.001951130 1.26×10−6 2.22×10−6 8.80×10−8

0.80 0.002865010 1.95×10−5 8.65×10−7 4.77×10−8

0.90 0.003632260 2.74×10−5 5.73×10−6 1.60×10−7

1.00 0.004000090 2.40×10−5 1.14×10−5 4.27×10−7

and

‖ u ‖W3= √
(u,u)W3 , u, v ∈ W 3[ 0, 1] .

Using the works of Cui [16,17], it is easy to obtain its
reproducing kernel:

k(x, y) =
{
h1(x, y), y ≤ x,
h1(y, x), y > x, (3)

where h1(x, y) = 1
120 (−(x2−1)y5+5(x−1)xy4−(x5−5x4+

10x3−366x2+120x+120)y2−120(x−1)xy−120x2+120).

Next, we construct a reproducing kernel space W 3
1 [ 0, 1]

in which every function satisfies u(0) =
m0∑
i=1

αiu(ξi).

Definition 1. W 3
1 [ 0, 1]= {u(x) | u(x) ∈ W 3[ 0, 1] ,u

(0) =
m0∑
i=1

αiu(ξi)}.

Clearly, W 3
1 [ 0, 1] is a closed subspace of W 3[ 0, 1], and

therefore, it is also a reproducing kernel space.

Put L1u(x) = u(0) −
m0∑
i=1

αiu(ξi). The following theorem

give its reproducing kernel.

Theorem 1. If L1xL1yk(x, y) �= 0, then the reproducing
kernel kαβ of W 3

1 [ 0, 1] is given by the following:

k1(x, y) = k(x, y) − L1xk(x, y)L1yk(x, y)
L1xL1yk(x, y)

, (4)

where the subscript x by the operator L1 indicates that the
operator L1 applies to the function of x.

Proof. It is easy to see that k1(x, 0) =
m0∑
i=1

αik1(x, ξi), and

therefore k1(x, y) ∈ W 3
1 [ 0, 1].

For ∀ u(y) ∈ W 3
1 [ 0, 1], obviously, L1yu(y) = 0; it

follows that

(u(y), k1(x, y))W3 = (u(y), k(x, y))W3 = u(x),

that is, k1(x, y) is of ‘reproducing property’. Thus, k1(x, y)
is the reproducing kernel of W 3

1 [ 0, 1], and the proof is
complete.

Similarly, we construct a reproducing kernel space
which is a closed subspace ofW 3

1 [ 0, 1].

Definition 2. W 3
2 [ 0, 1]= {u(x) | u(x) ∈ W 3

1 [ 0, 1] ,u

(1) =
m1∑
i=1

βiu(ηi)}, that is, W 3
2 [ 0, 1]= {u(x) | u(x) ∈ W 3

[ 0, 1] ,u(0) =
m0∑
i=1

αiu(ξi),u(1) =
m1∑
i=1

βiu(ηi)}.

Put L2u(x) = u(1)−
m1∑
i=1

βiu(ηi). By the proof of Theorem

1, it is easy to see that

Theorem 2. The reproducing kernel kαβ of W 3
2 [ 0, 1] is

given by the following:

k2(x, y) = k1(x, y) − L2xk1(x, y)L2yk1(x, y)
L2xL2yk1(x, y),

(5)

In Equation 2, put Lv(x) = a(x)v′′(x) + b(x)v′(x)+
ck(x)v(x), it is clear that L : W 3

2 [ 0, 1]→ W 1[ 0, 1] is a
bounded linear operator. Put ϕi(x) = k(xi, x) and ψi(x) =
L∗ϕi(x) where k(xi, x) is the RK of W 1[ 0, 1], L∗ is the
adjoint operator of L. The orthonormal system {ψ i(x)}∞i=1
of W 3

2 [ 0, 1] can be derived from the Gram-Schmidt
orthogonalization process of {ψi(x)}∞i=1: c

ψ i(x) =
i∑

k=1
βikψk(x), (βii > 0, i = 1, 2, ...). (6)

By the RKM presented in previous works [16-19], we
have the following theorem.
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Theorem 3. For Equation 2, if {xi}∞i=1 is dense on [ 0, 1],
then {ψi(x)}∞i=1 is the complete system of W 3

2 [ 0, 1] and
ψi(x) = Lsk2(x, s)|s=xi .

Theorem 4. If {xi}∞i=1 is dense on [ 0, 1] and the solution of
Equation 2 is unique, then the solution of Equation 2 is as
follows:

uk(x) =
∞∑
j=1

Ajψ j(x), (7)

where Aj =
j∑

l=1
βjlfk(xl).

Now, the approximate solution uk(x) can be obtained by
taking finitely many terms in the series representation of
uk(x) and

uk,N (x) =
N∑
j=1

Ajψ j(x). (8)

Lemma 1. If u(x) ∈ W 3
2 [ 0, 1], then there exists a constant

c such that |u(x)| ≤ c ‖ u(x) ‖W3
2
, |u′(x)| ≤ c ‖ u(x) ‖W3

2
.

From Lemma 1, by convergence of uk,N (x) in the sense
of norm, it is easy to obtain the following theorem.

Theorem 5. The approximate solution uk,N (x) and its
derivatives u′

k,N (x) are all uniformly convergent.
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