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Abstract

Fuel blend of alcohol and conventional hydrocarbon fuels for a spark-ignition engine can increase the fuel octane
rating and the power for a given engine displacement and compression ratio. In this work, the influence of butanol
addition to gasoline in a port fuel injection, spark-ignition engine was investigated. The experiments were realized
in a single-cylinder ported fuel injection spark-ignition (SI) engine with an external boosting device. The optically
accessible engine was equipped with the head of a commercial SI turbocharged engine with the same geometrical
specifications (bore, stroke and compression ratio) as the research engine. The effect on the spark ignition
combustion process of 20% and 40% of n-butanol blended in volume with pure gasoline was investigated through
cycle-resolved visualization. The engine worked at low speed, medium boosting and wide-open throttle. Fuel
injections both in closed-valve and open-valve conditions were considered. Comparisons between the parameters
related to the flame luminosity and the pressure signals were performed. Butanol blends allowed working in more
advanced spark timing without knocking occurrence. The duration of injection for butanol blends was increased to
obtain a stoichiometric mixture. In open-valve injection condition, the fuel deposits on intake manifold and piston
surfaces decreased, allowing a reduction in fuel consumption. BU40 granted the performance levels of gasoline and,
in open-valve injection, allowed to minimize the abnormal combustion effects including the emission of ultrafine
carbonaceous particles at the exhaust. In-cylinder investigations were correlated to engine out emissions.

Keywords: Optical diagnostics, Cycle-resolved visualization, PFI SI boosted engine, Butanol-gasoline blend, Injection
timing
Background
Increasing global concern due to air pollution and to the
limited oil reserves has generated much interest in the
environmental friendly fuels alternative to petroleum-
based fuels, in particular for the transport sector in
which the energy consumption depends almost exclu-
sively on fossil fuels. Several countries aim to use sus-
tainable biofuels, which generate a clear and net GHG
saving and have no negative impact on biodiversity and
land use. In this scenario, butanol has strong potential as
a biofuel. Like ethanol, butanol can be produced both by
petrochemical and fermentative processes. The produc-
tion of biobutanol by fermentation for use as a biofuel is
generating considerable interest as it offers certain
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advantages in comparison with bioethanol. These include
higher energy content, lower water adsorption and cor-
rosive properties, better blending abilities and the ability
to be used in conventional internal combustion engines
without the need for modification. Biobutanol can be
produced from starch or sugar-based substrates by fer-
mentation (acetone-butanol-ethanol named ABE fermen-
tation process).
However, cost issues, the relatively low yield and slug-

gish fermentations, as well as problems caused by end
product inhibition and phage infections, meant that ABE
butanol could not compete on a commercial scale with
butanol produced synthetically, and almost all produc-
tion ceased as the petrochemical industry evolved. How-
ever, the increasing interest in the use of biobutanol as a
transport fuel induces a number of companies to explore
novel alternatives to traditional ABE fermentation, which
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would enable biobutanol to be produced on an industrial
scale.

Regarding the automotive use of biobutanol, the tech-
nology to make biobutanol, a nonfood-based biofuel,
cost-competitive with fossil fuels isn't here yet, but sev-
eral companies are working with this target. With re-
spect to gasoline, butanol (or biobutanol) has a number
of advantages over other common alcohol fuels such as
ethanol and methanol. The energy density of gasoline is
about 32 MJ/L, while butanol shows 29.2 MJ/L com-
pared to ethanol, 19.6 MJ/L, and methanol, 16 MJ/L.
This makes butanol so close to gasoline that it can allow
a straight-across replacement in terms of energy [1]. Bu-
tanol is far less hygroscopic than methanol, ethanol and
propanol. These lower alcohols are fully miscible with
water, whereas butanol has only a modest water solubil-
ity. This allows a low-energy intermediate purification
step [2]. Butanol is less corrosive than ethanol, can be
transported in existing pipelines and is much safer to
work with than lower alcohols based on its relatively
high boiling point and flashpoint. In comparison with
ethanol, the adding of butanol to conventional hydrocar-
bon fuels for use in a spark-ignition engine can increase
fuel octane rating and power for a given engine displace-
ment and compression ratio, thereby reducing fossil fuel
consumption and CO2 emissions [3-5]. Ethanol use has
been widely investigated for spark-ignition engines, while
few studies have been performed on butanol-gasoline
combustion and on butanol-fueled engines [6,7]. Litera-
ture is particularly poor with respect to boosted spark-ig-
nition (SI) engine experimental data. Almost all of the
studies about butanol-gasoline blends consisted of the
evaluation of performance, fuel consumption and ex-
haust emissions for different engine-operating conditions
[6-10]. The in-cylinder process characterizations were
principally realized through pressure measurements.
These research activities demonstrated that the concen-
trations of 20% to 40% butanol in gasoline enabled to
run the engine at a leaner mixture than gasoline for a
fixed performance. These blends offered UHC emissions
similar to gasoline, and they increased at higher butanol
concentrations. The blends decreased the NOx emissions
to a lower level than with pure gasoline at its leanest
mixture. The slight increase in specific fuel consumption
(SFC) with the butanol addition was related to the
blend's reduced combustion enthalpy. For example, B40
has a 10% lower combustion enthalpy than gasoline,
which increases SFC of 10% for stoichiometric and
slightly lean mixtures. It was measured that, by adding
butanol, the coefficient of variation of indicated mean ef-
fective pressure (COVIMEP) was reduced, particularly
with lean mixtures, and the fully turbulent combustion
phase (10% to 90% MFB) was similar in duration for all
blends and pure gasoline. This latter finding showed that
butanol has a similar or higher laminar flame speed than
gasoline [6,11].
In recent works, the performance of a gasoline engine

fuelled with gasoline-butanol blends of different mixing
fractions was analyzed. It was demonstrated that butanol
is a very promising alternative fuel with great potential
for saving energy; a reduction of 14% in brake-specific
energy consumption and emissions was observed [12].
Recent experimental investigations conducted using a

single-cylinder spark-ignition research engine allowed
comparing the performance and emissions of neat
n-butanol fuel to that of gasoline and ethanol. It was
found that gasoline and butanol are closest in engine
performance, with butanol producing slightly less brake
torque. Exhaust gas temperature and nitrogen oxide
measurements show that butanol combusts at a lower
peak temperature. Of particular interest were the emis-
sions of unburned hydrocarbons, which were between
two and three times to those of gasoline, suggesting that
butanol is not atomizing as effectively as gasoline and
ethanol [13].

At the same time, fundamental biobutanol combustion
work was carried out; the oxidation of butanol-gasoline
surrogate mixtures (85 to 15 vol.%) was studied using a jet-
stirred reactor in the work by Dagaut and Togbé [14]. The
aim of this paper is better comprehension of in-cylinder
phenomena correlated with butanol-gasoline combustion
in a SI engine. To this goal, cycle-resolved visualization
was performed to follow the flame propagation from the
spark ignition to the late combustion phase. The experi-
ments were realized in a single-cylinder ported fuel injec-
tion (PFI) SI-boosted engine. The optically accessible
engine was equipped with the cylinder head of a commer-
cial SI turbocharged engine with the same geometrical spe-
cifications (bore, stroke and compression ratio) of the
research engine. Butanol-gasoline blend was tested for sev-
eral engine operating conditions. Changes in spark timing
and fuel injection phasing were considered. Comparison
between the parameters related to flame luminosity and to
pressure signals were performed, and in-cylinder investiga-
tions were correlated to engine out emissions.
Methods
Experimental apparatus
The engine used for the experiments was an optically ac-
cessible single-cylinder PFI SI engine. It was equipped with
the cylinder head of a commercial SI turbocharged engine
with the same geometrical specifications. Further details
on the engine are reported in Table 1. The head had four
valves and a centrally located spark plug. The injection sys-
tem was the same as the commercial one with a ten-hole
injector. An external air compressor was used to simulate
boosted conditions of intake air pressure and temperature



Table 1 Specifications of the single-cylinder ported fuel
injection engine

Engine specifications

Displaced volume 399 cc

Stroke 81.3 mm

Bore 79 mm

Connecting rod 143 mm

Compression ratio 10:1

Number of valves 4

Exhaust valve open 153 CAD ATDC

Exhaust valve close 360 CAD ATDC

Inlet valve open 357 CAD ATDC

Inlet valve close 144 CAD BTDC

ATDC, after top dead centre; BTDC, before top dead centre; CAD, crank angle
degree.
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in the ranges of 1,000 to 2,000 mbar and 290 to 340 K,
respectively.
A quartz pressure transducer was flush-installed in

the region between the intake-exhaust valves at the side
of the spark plug. The transducer allowed performing
in-cylinder pressure measurements in real time. An
elongated engine piston was used; it was flat and its
upper part was transparent since it was made of fused
silica UV enhanced (Φ = 57 mm). To avoid window
contamination by the lubricating oil, self-lubricant
Teflon-Bronze composite piston rings were used in the
optical section.
To reduce the initial conditions effects, the engine was

preheated by a conditioning unit, and it was maintained
in motored condition by an electrical engine until the
temperature reached 65°C. After the warm up, the en-
gine worked in fired conditions for 300 consecutive
cycles. The engine parameters and pressure measured in
the last 200 cycles were considered in the work. Then
Figure 1 Experimental setup for optical measurements with bottom f
the engine returned to motored condition for 100 cycles.
This phase allowed checking a possible change in ther-
mal and fluid dynamic status of the engine from the be-
ginning of the measurements.
Figure 1 shows the experimental apparatus for the op-

tical investigations and the bottom field of view of the
combustion chamber. During the combustion process,
the light passed through a quartz window located in the
piston, and it was reflected toward the optical detection
assembly by a 45°-inclined UV-visible mirror located at
the bottom of the engine.
Cycle-resolved flame visualization was performed using

an Optronis model CamRecord 5000 high-speed camera
(Optronis GmbH, Kehl, Germany). It was a complemen-
tary metal oxide semiconductor (CMOS) monochrome
image sensor; its full chip dimension was 512 × 512 pixel,
and the pixel size was 16 × 16 μm. The camera A/D con-
version was 8 bit, and the spectral range extended from
390 to 900 nm. The camera was equipped with a 50-mm
focal Nikon lens (Nikon UK Ltd., Surrey, England); a
camera region of interest was selected (480 × 480 pixel)
to obtain the best match between spatial and temporal
resolution. All the images are a line-of-sight average. The
optical assessment allowed a spatial resolution in a 2D
field of view around 120 μm/pixel. The exposure time
was fixed at 10 μs, and the frame rate was 5,392 fps. In
this work, the optical measurements were performed
during 100 consecutive engine cycles after an engine
warm up under motored conditions and 100 fired cycles.
National Instruments LabVIEW acquisition system
driven by an optical encoder with 0.2 crank angle degree
resolution recorded the TTL signals from the high-speed
camera acquisitions and the pressure transducer. In this
way, it was possible to determine the crank angles at
which the optical measurements were carried out. Fi-
nally, to quantify the variability of indicated work per
cycle, the COVIMEP was calculated.
ield of view of the combustion chamber.
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In-house LabVIEW numerical procedures were applied
for the retrieving of the optical data. The 8-bit gray-scale
images were converted to numerical matrices. In this
way, it was possible to evaluate the luminous signals lo-
cally or as integral on the whole combustion chamber. In
a second procedure, a threshold was applied to each
image. On the resulted binary images, a morphology
function able to evaluate the mean radius of the flame
front as distance between the combustion chamber cen-
ter and the outline of the flame was applied.
Combustion tests were carried out using, as baseline

fuel, the commercial gasoline; moreover, two blends with
the volume of 20% and of 40% n-butanol with gasoline
were tested. The blends were indicated in the following
as BU20 and BU40, respectively. The main properties of
the two fuels are reported in Table 2. Finally, steady-state
measurements of HC, NOx and soot were performed in
the undiluted exhaust. Gaseous emissions were measured
by an AVL Digas 4000 (AVL DiTEST, Graz, Austria)
equipped with an electrochemical sensor for NOx and
nondispersive infrared analyzers for HC. Smoke was
measured by a part flow opacimeter (AVL Opacimeter
439). The opacity can be directly correlated to the par-
ticulate mass concentration [15].
Results and discussion
All the tests presented in this paper were carried out at
an engine speed of 2,000 rpm and wide-open throttle.
Absolute intake air pressure and temperature were fixed
at 1.4 bar and 338 K, respectively. The relative injection
pressure was settled at 3.5 bar. The spark timing was
changed in the range 12 to 20 crank angle degree before
top dead centre (CAD BTDC) in order to identify the
maximum brake torque and the knocking limit. To dis-
tinguish normal combustion cycles from knocking cycles,
the knocking signal was evaluated through 5- to 30-kHz
band-pass filtering of the pressure signals [16-18]. For all
cycles, the evolution of the knock pressure was calcu-
lated using the absolute value of the knock signal. The
Table 2 Fuel specifications

Gasoline Butanol

Low heating value (MJ/kg) 43.5 32.1

Latent heat of vaporization (kJ/L) 223 474

Reid vapor pressure (kPa) 60 to 90 18.6

Stoichiometric air-to-fuel ratio 14.6 11.1

Density (kg/m3) 720 to 775 813

Oxygen (wt.%) <2.7 21.6

Research octane number 95 113

Adiabatic flame temperature (K) 2,370 2,340
combustion cycles were classified in the following way
according to their knock intensity [19-21]:

� normal combustion (knock pressure 2% lower than
the motored pressure at TDC),

� borderline knocking (knock pressure between 2%
and 5% of the motored pressure),

� standard knocking (knock pressure between 5% and
25% of the motored pressure),

� heavy knocking (knock pressure was 25% higher
than the motored pressure).

The duration of injection (DOI) was changed in order
to set λ= 1.0 (±3%), as measured by a lambda sensor at
the engine exhaust, and averaged over 200 consecutive
engine cycles. The fuel injection conditions are resumed
in Table 3. The injection timings were fixed at 130 CAD
after top dead centre (ATDC) and 300 CAD BTDC in
order to inject the fuel when the intake valves were
closed (CV) and open (OV), respectively.
In a port-fuel-injected engine, the fuel is generally

injected at the backside of a closed intake valve to take
advantage of the warm valve and port surfaces for
vaporization [22-24]. However, a large part of the
injected spray is deposited on the intake manifold sur-
faces and forms a layer of liquid film on the valve and
port surfaces. The film needs to be re-atomized by the
shearing airflow as the intake valves open. If these fuel
layers are not well atomized, they enter the cylinder as
drops and ligaments [25-27]. These phenomena occur in
varying degrees and depend upon the engine design, in-
jector location and engine operation. Previous experi-
ments on the same engine fuelled by gasoline and BU20
demonstrated that the injector sprayed the fuel towards
the plate between the intake valves and on the intake
valves stems [28-30]. The droplet impingement induced
fuel layer formation on the intake manifold walls. The
fuel layers were drawn by gravity to the valve head and
gap, where they remained as film due to surface tension.
The stripping of the squeezed fuel film created fuel
Table 3 Fuel injection conditions

Label Fuel SOI DOI

Gas_OV gasoline 300 CAD BTDC 133 CAD

Gas_CV gasoline 130 CAD ATDC 148 CAD

BU20_OV BU20 300 CAD BTDC 145 CAD

BU20_CV BU20 130 CAD ATDC 157 CAD

BU40_OV BU40 300 CAD BTDC 153 CAD

BU40_CV BU40 130 CAD ATDC 165 CAD

ATDC, after top dead centre; BTDC, before top dead centre; BU20, blend of
20% n-butanol with gasoline; BU40, blend of 40% n-butanol with gasoline;
CAD, crank angle degree; CV, closed valve; DOI, duration of injection; Gas,
gasoline; OV, open valve; SOI, start of injection.
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deposits on the optical window. When the injection oc-
curred in open-valve condition, part of the droplets was
carried directly into the combustion chamber by the gas
flow. These droplets, sucked in the combustion chamber,
stuck on the cylinder walls. In both injection conditions,
the fuel deposits on the combustion chamber walls cre-
ated fuel-rich zones on the piston surfaces that influ-
enced the composition of the mixture charge and, hence,
the combustion process. During the normal combustion
process, only a fraction of the fuel deposits was com-
pletely burned. Thus, more fuel should be injected to
reach the selected air-fuel ratio measured at the exhaust
[23].
In the open-valve injection, the fuel deposits amount

and size were smaller than in the closed-valve injection;
thus, the duration of injection resulted shorter [25,29].
Regarding the difference in the injection duration, as with
any alcohol, gasoline-butanol blends have a lower stoichio-
metric air-fuel ratio. Therefore, when using gasoline
blended with butanol, fuel flow must be increased to en-
sure the same relative air-fuel ratio as with pure gasoline.
In order to estimate the effect on engine performance

of the selected fuel injection conditions, IMEP and
COVIMEP were evaluated as average on 100 consecutive
engine cycles. For each spark timing, the IMEP variation
was lower than 5% for all engine conditions and fuels.
For each fuel, the IMEP of CV injection was higher than
that of OV, in agreement with previous works [20,29].
For BU20, the IMEP in the OV condition was higher
than gasoline in OV condition and very close to gasoline
in CV condition. This occurred because butanol-gasoline
blend burns faster than pure gasoline at the same condi-
tions, making higher the indicated efficiency of the en-
gine work cycle. For BU20_OV, the best stability was
measured too [7]. This concurs with the results reported
in the works by Irimescu [31] and Yang et al. [32] in
which, at full load, the power drop is significant only for
butanol concentrations higher than 30% to 40%. About
the spark timing effect, for gasoline fuel, the knocking
limit was evaluated around 16 CAD BTDC for both fuel
injection conditions.
For BU20, the knocking limit was evaluated around 18

CAD BTDC, and for BU40, it advanced until around 20
CAD BTDC. It means that butanol blend allowed work-
ing in more advanced spark timing without occurrence
of knocking combustion. The COVIMEP increased with
spark advance until reaching the highest value in knock-
ing regime. From 16 CAD BTDC, the COVIMEP

increased with retarding spark timing too. This result
agrees with those reported in the works by Szwaja and
Naber [7] and Morey and Seers [33]. It occurs because,
when the ignition is too advanced, the cylinder
temperature is comparatively low. Besides, the quite low
and uneven mixture concentration near the spark plug
brings negative influence on the flame kernel initiation
and development. When the ignition is too delayed, the
low combustion efficiency does harm to combustion sta-
bility. In this work, the optical results obtained at 14
CAD BTDC spark timing are discussed. This choice was
done in order to evaluate the effect of selected fuels on
the normal combustion process at comparable IMEP
(±1%) with satisfactory engine stability. Cycle-resolved
visualization was used for detailing thermal and fluid dy-
namic phenomena that occur in the combustion cham-
ber. Figures 2 and 3 report images of cycle-resolved
flame front evolution for gasoline, BU20 and BU40 in
CV and OV conditions. The images' brightness and con-
trast were changed to enhance the kernel flame luminos-
ity. The combustion process was visualized from the
spark ignition until the flame front reached the cylinder
walls. As expected, for gasoline [29,31], after the evi-
dence of the spark ignition, thanks to the plasma lumi-
nosity detected at 14 CAD BTDC, the flame front
started as kernel from the spark plug, and then, it spread
with radial-like behavior for around 6 to 10 CAD. Then,
the flame front shape showed an asymmetry that
induced the flame to reach first the cylinder wall in the
exhaust valves region, around 20 CAD after the start of
spark timing. This was due to the fuel film deposited on
the intake valves and combustion chamber surfaces pre-
viously discussed. The fuel film develops dynamically
under the effect of the gas flow, influencing mixture
composition and combustion process. In fact, the flame
propagation is influenced by the thermodynamic condi-
tions, mixture composition and local turbulence inten-
sity. When a flame propagates in the normal direction to
a region with an equivalence ratio gradient, each part of
the front evolves in a field with varying fuel concentra-
tion. This induces propagation speed variation along the
flame front and an increase in flame wrinkling in com-
parison with the homogeneous case. A similar combus-
tion process evolution was detected for both butanol
blends.
As can be observed in Figure 2, the asymmetry was

less evident for BU40, which showed a more regular evo-
lution of the flame front with slight border wrinkling.
This was a first marker of a lower amount of fuel depos-
its near the valves for the blend if compared to pure
gasoline. Bright spots were observed in the burned gas
before the flame front reached the chamber wall. The
bright spots were due to the fuel deposits on the optical
window. During the injection of fuel at closed intake
valve, when the gas flow passes through the valves, the
fuel droplets are stripped from the fuel film layer. After
reaching the combustion chamber, the fuel droplets
stuck on the piston surfaces. These fuel deposits also
created fuel-rich zones that ignited when reached by the
normal flame front. In CV condition, the spots are bigger



14°BTDC 8°BTDC 6°BTDC 4°BTDC 2°BTDC

TDC 2°ATDC 4°ATDC 6°ATDC 8°ATDC

10°ATDC 12°ATDC 14°ATDC 16°ATDC 18°ATDC GAS_CV 
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10°ATDC 12°ATDC 14°ATDC 16°ATDC 18°ATDC BU40_CV 

Figure 2 Cycle-resolved flame front evolution for gasoline, BU20 and BU40 in CV condition.
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Figure 3 Cycle-resolved flame front evolution for gasoline, BU20 and BU40 in OV condition.
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Figure 4 Evaluated flame radius of the 100 consecutive engine cycles.
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but less in number than in OV condition. When the in-
jection occurred in open-valve condition, the fuel dro-
plets' sticking was enhanced by the partial carrying of
the injected fuel droplets directly into the combustion
chamber due to the gas flow. The bright spots have a
random nature; during the combustion process, they
decreased in size and number, and then, they disap-
peared before the exhaust valve opening [29]. The evi-
dence of the bright spots decreased with the butanol
percentage increasing. This means that the chemical
composition of the blends helped the vaporization of the
low-volatile component and then the fuel deposits burn-
ing. The presence of the fuel deposits, as squeezed film
or impinged droplets, had direct effect on the flame ra-
dius evolution in terms of kernel cyclic variability and
flame stability [25,34]. Figure 4 reports the trend of the
flame radius for gasoline and BU40 evaluated on 100
consecutive cycles. Figure 5 shows the outline of the
flame front evaluated for two CADs from the sequences
Figure 5 Flame fronts and related outlines evaluated from the sequen
of Figure 2. From its inception until around 6 CAD
BTDC, the flame kernels had the same trends for both
the fuels. Then, a little difference was observed; this was
due to the reduced fuel amount deposited on the intake
valves and on the piston surface that influenced the
flame propagation. At around 4 to 6 CAD ATDC, flame
radius evolution changed dramatically as shown in Figure 5
that shows the outline of the flame front evaluated from
the sequences of Figure 2. This was due to approaching
the intake valve region. In fact, the heat exchange between
the intake ports and the surrounding gas led to the fuel
film deposit evaporation. It influenced the composition of
the mixture, creating locally fuel-rich zones. The higher
fuel amount near the intake valves for gasoline in CV con-
dition induced fuel-richer zones that slowed down the
flame front more than in the other conditions.
When that normal flame front reached the intake

valves, the fuel film layer around the valves burned, and
strong-intensity flames were observed [35,36]. The
ces of Figure 2.
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outlines of the valves are clearly distinguished since 8
CAD ATDC for all the tested conditions (Figures 2 and
3). Previous works demonstrated the presence of diffu-
sion-controlled flames. Their inception was possible
since the oxygen was not completely consumed after
the normal flame front propagation [28,29,37]. The
diffusion-controlled flames persisted in the late com-
bustion phase, and their optical evidence could be
detected until the exhaust valve opening.
The spatial distribution of diffusion-controlled flames

can be analyzed through the images reported in Figure 6.
For all fuels in closed valve injection condition, the
resulting flames were more intense and have bigger sur-
face than in open-valve condition due to the higher
amount of fuel deposited on the valve stem for CV. Until
70 CAD ATDC, the highest intensity of the flames was
observed near the intake valves, as expected, for all con-
ditions. Then, different evolutions and spatial distribu-
tions were detected. This was in part due to the burning
of fuel deposits carried by the gas motion from the in-
take to the exhaust valves. For BU40, the abnormal com-
bustion was lower in intensity and duration. While for
gasoline, the diffusion flame intensity decreased after 150
CAD ATDC due to the exhaust valve opening; for BU40,
flame intensity were strongly reduced just around 130
CAD ATDC. Again, BU20 showed a mean behavior.
The abnormal combustion did not contribute to the

engine work, and it did not influence the pressure signal
[35]: it induced surface diffusion flames that warmed up
the nearby in-cylinder gas by thermal diffusion. This
phenomenon increased the pressure much slower than
the reduction of pressure produced by the movement of
the piston during the expansion stroke. A comparison
between the pressure-related measurements and pro-
cessed optical data was performed.
Figure 7 shows the evolution of the combustion pres-

sure signal and the integral luminosity measured during
the engine cycles of Figures 3 and 4. The combustion
pressure signal was calculated by the subtraction of the
motored in-cylinder pressure from the fired one. From
the spark ignition to the maximum values, the luminous
and pressure signals showed similar trends for all the
fuels and injection conditions. The sharp increase was
due to the chemical reactions occurring in the first
moments of the combustion process that are exothermic
and radiative in the wavelength range of the CMOS cam-
era. Figure 8 reports typical spectra detected in the cen-
ter of the combustion chamber in the early stage of the
combustion process for gasoline fuel [37]. In Figure 8a,
the results obtained at 7 CAD BTDC are shown. For
both signals, the spectral features of OH and CH were
detected [38-40]. In particular, the highest heads at 306
to 309 nm of the OH band system (250 to 320 nm) were
well resolved. Excited OH radical was formed in the
primary combustion zone by the chemiluminescent reac-
tion: CH+O2!CO+OH. Moreover, the CH systems
were observed near 431, 390 and 314 nm. The 431-nm
band is the brightest; the 390-nm band system is very
weak with closely packed heads. The 310-nm band is
usually obscured by OH. In addition to the OH and CH
features, a continuum on which two groups of diffuse
bands were superimposed was detected. The first group
was due to the Emeleus' bands of formaldehyde molecule
CH2O, and it had the highest emission in the range of
350 to 460 nm. The second band system identified the
Vaidya's bands of HCO with the highest heads from 290
to 360 nm. Thus, the longer wavelength bands were
overlapped by the CH2O and continuum emission [39-
41]. When the flame front overcame the spectroscopic
measurement region, CH disappeared and high OH
emission was measured, as shown in Figure 8b. More-
over, the burned gas is characterized by a broadband
emission from UV to visible that is related to the CO2

chemiluminescence [42]. Even if, in the flames, there is
no sufficient energy to excite stable atoms or molecules
to high electronic states, electronic states of CO2 can be
excited during the combustion by consecutive transitions
from the ground state level to intermediate vibrationally
activated levels [43,44]. The emission of CO-O appears
as a continuum, which extends from 300 to 600 nm with
a broad maximum around 375 nm.
The behavior of the combustion pressures and luminous

intensities plotted in Figure 7 became quite different after
the maximum around 20 CAD ATDC. For gasoline, the
luminous signal decreased until a local minimum and then
increased in the late combustion phase, while the pressure
signal rapidly decreased. The diffusion-controlled flames
greatly influenced the evolution of luminous signal, but
their contribution to the combustion pressure was negli-
gible. The diffusion flame intensity was higher for closed-
valve injection than for open-valve due to the higher fuel
amount deposition. For both conditions, the maximum
was detected around 70 to 80 CAD ATDC. Previous inves-
tigations for gasoline fuel [37] showed that the diffusion-
controlled flames were characterized by the optical mar-
kers of carbonaceous structures. Figure 8c reports typical
spectra detected in the combustion chamber in the late
combustion phase. The spectra presented a strong con-
tinuous contribution that increased with the wavelength in
the visible range; this was representative of blackbody-like
emission of soot precursors. Different levels of visible
wavelength luminous intensity in the late combustion
phase were related to different soot concentrations in the
combustion chamber. The results confirmed those
reported in the works of Witze and Green [36] and Kayes
et al. [45] that assigned to the fuel deposition burning the
cause of the volatile organic carbon compounds and ultra-
fine particles emission at the SI PFI exhaust. Regarding the



Figure 6 Cycle-resolved visualization of the late combustion phase.
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Figure 7 Evolution of the combustion pressure signal (dotted line) and the integral luminosity (solid line). Comparison between the net
combustion pressure signal with the integral luminosity measured during the engine cycles of Figures 3 and 4.
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temporal behavior of luminous signal, it should be noted
that the spectra detected in the late combustion in Figure 8c
showed a well-resolved signal due to OH radical that fea-
tured the soot oxidation phase [46]. OH emission was
comparable for both fuel injection conditions. As a conse-
quence, the open-valve condition showed not only a differ-
ent spatial distribution of diffusion-controlled flame if
compared to the closed-valve condition but also a more ef-
ficient soot oxidation phase. For butanol blends, the result-
ing integral luminosities in Figure 7 were less intense,
demonstrating a lower particulate amount produced than
gasoline with stronger soot reduction. This was more evi-
dent for BU40 due to higher oxygen content in the fuel.
Even for butanol blends, higher particulate concentration



Figure 8 Typical spectra detected in the center of the combustion chamber for gasoline fuel [37]. (a) Results obtained at 7 CAD BTDC. (b)
Measurement of high OH emission. (c) Typical spectra detected in the combustion chamber in the late combustion phase.
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was detected for closed valve than for open one, as
expected. At the exhaust valve opening, the soot reduction
rate was not sufficient to complete the oxidation; thus,
part of the particulate matter formed in the combustion
chamber was emitted in the exhaust line. This result par-
tially agrees with the opacity values measured at the un-
diluted exhaust and reported in Table 4. The discrepancy
could be due to the sensitivity of the opacimeter to gas-
eous species such as heavy HC and NO2 that have high ab-
sorption cross section [47,48] in the visible wavelength
range that corresponds to the opacimeter working spectral
region. It should be stressed that the absence of a catalyst
device determined very high concentrations of HC and
NOx, and these can contribute to opacity value. Anyway,
for all the tested fuels, HC in OV condition resulted higher
than in CV. This occurred because, even if open-valve in-
jection greatly reduces the amount of intake port wetting,
it also induced larger in-cylinder wall wetting due to the
direct fuel impingement. Experiments [49] showed that
the many droplets associated with open-valve injection
survived to the crank angle of ignition. This induced an in-
homogeneous charge with poorer flame-front propagation
that is responsible for reduction in performance and
higher HC emission than closed-valve injection. Moreover,
for small n-butanol blending (BU20), HC emissions were
included among those of gasoline and BU40. The reduc-
tion with respect to gasoline was due to the decrease of
Table 4 Engine out emissions

Label HC (ppm) NOx (ppm) Opacity (%)

Gas_CV 395 3,547 23.8

Gas_OV 458 3,749 15.1

BU20_CV 235 2,030 10.7

BU20_OV 408 2,905 9.3

BU40_CV 320 1,968 15.1

BU40_OV 433 2,528 11.5

BU20, blend of 20% n-butanol with gasoline; BU40, blend of 40% n-butanol
with gasoline; CV, close valve; Gas, gasoline; OV, open valve.
the hydrocarbon fraction that led to the decrease of HC
formation. The increase with BU40 could be due to the
higher latent heat of vaporization than BU20. As reported
in the work by Gu et al. [50], increasing butanol concen-
tration in the blend with gasoline led to a decrease in the
HC oxidation during expansion and exhaust processes.

Conclusions
The effect on the spark-ignition combustion process
of n-butanol blended in volume with pure gasoline
was investigated through cycle-resolved visualization
applied in a single-cylinder PFI SI engine working at
low speed, medium boosting and wide-open throttle.
Two injection timings were fixed in order to inject the fuel
at closed intake valve and open intake valve, respectively.
The spark timing was changed to identify the maximum
brake torque and the knocking limit. Blends of butanol up
to 40% allowed working in more advanced spark timing
without negative effects on performance. To work with a
stoichiometric mixture for both fuels, the duration of injec-
tion was slightly increased for the blend. DOI in CV
resulted longer than in OV for both fuels because, in CV in-
jection, part of the injected spray is deposited on the intake
manifold surfaces, forming a layer of liquid film. If these fuel
layers are not well atomized, they enter the cylinder as
drops and ligaments. During the normal combustion
process, only part of the fuel deposits was completely
burned. Thus, more fuel should be injected to reach the
selected air-fuel ratio measured at the exhaust. When the
normal flame front reached the fuel deposits, abnormal
combustion was incepted. This was characterized by intense
diffusion-controlled flames. Their contribution to the com-
bustion pressure was negligible. The different levels of in-
tensity were related to different carbonaceous structures
and soot precursor concentrations. CV condition was char-
acterized by higher fuel deposition amount and thus more
intense diffusion-controlled flames than OV. Gasoline in
CV condition showed the highest luminosity, and BU40 in
OV condition, the lowest one. This demonstrated that
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BU40_OV allowed the reduction of emission of ultrafine
carbonaceous particles at the exhaust and the optimization
of fuel consumption at fixed performance. Moreover,
medium-low percentage of butanol in the gasoline allowed
the reduction of NOx and unburned hydrocarbon emission.
Finally, even if an increase in the injected fuel amount
should be considered to obtain the same air-fuel ratio for
butanol-gasoline blend, if compared to pure gasoline, the
better efficiency of fuel deposit burning allowed the reduc-
tion of that amount.
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