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Effects of EPA supplementation on plasma fatty
acids composition in hypertriglyceridemic
subjects with FABP2 and PPARα genotypes
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Abstract

Background: Fatty acid binding protein 2 (FABP2) and peroxisome proliferator-activated receptor α (PPARα) are
involved in cellular uptake and metabolism of fatty acids. Polymorphism of FABP2 and PPARα may influence plasma
levels of fatty acids in those who take supplemental eicosapentaenoic acid (EPA). The purpose of this study was to
study the potential associations between the Ala54/Thr polymorphism in FABP2 protein and the Leu162/Val in exon
5 and G/C in intron 7 of PPARα with plasma fatty acids composition after EPA supplementation.

Methods: Twenty three FABP2 Ala54 and twenty three Thr54 carriers with hypertriglyceridemia were enrolled in
this study. Participants took 2 g of pure EPA daily for 8 wks. Plasma fatty acids composition was determined and
changes from the baseline were measured.

Results: Although EPA supplementation increased the level of plasma EPA and ω-3 fatty acids in both carriers of
FABP2 and PPARα genes, these effects were more pronounced in Thr54 and Val162 carriers. EPA supplementation
decreased the level of some n-6 fatty acids such as arachidonic acid.

Conclusion: EPA consumption has more favorable effects on blood n-3 fatty acids and can change the level of
plasma n-3 fatty acids, particularly EPA. Because the FABP2 Thr54 polymorphism appears to be prevalent in
hypertriglyceridemic subjects, increasing EPA intake in these subjects could be an effective strategy for preventing
cardiovascular diseases. Finally, diets and micronutrient recommendations should be individualized for high risk
people.

Keywords: Plasma fatty acids composition, Eicosapentaenoic acid, Polymorphism, Fatty acid binding protein-2,
Peroxisome proliferator-activated receptor
Introduction
Dietary fat intake is believed to contribute to development
of chronic diseases, in particular cardiovascular disease
[1]. No biomarkers reflect the absolute fat intake, however,
measuring fatty acids concentrations in various biological
samples reflect to some extent, the proportional intake of
fatty acids [2]. Fatty acids can be measured as free fatty
acids in serum, components of circulating triglycerides,
components of erythrocyte membranes, phospholipids or
cholesterol esters, or adipose tissue from different sites.
The amount of serum or plasma fatty acids reflects the
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composition of dietary intakes of the past few hours
(triglyceride) or the past few days (cholesterol ester and
phospholipids fatty acids) [3].
Changes in plasma fatty acids composition reflect

abnormalities in lipoprotein metabolism and dietary
habits and have been widely studied in many animal and
epidemiological [4,5] and clinical human studies [6,7].
Fatty acids of the n-3 family, particularly the long-

chain n-3 fatty acids, are important nutrients throughout
the life. Several epidemiological studies have shown that
n-3 fatty acids in blood differ significantly among indivi-
duals [8-10]. This family of fatty acids has been historic-
ally associated with a lower risk of cardiovascular disease,
including stroke [11] and coronary heart disease [12,13].
In children, cardiovascular benefits have been attributed
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to long-chain n-3 fatty acids [14,15]. Docosahexaenoic
acid (DHA) and eicosapentaenoic acid (EPA) two well-
known long-chain n-3 fatty acids are important for their
protective effects on cardiovascular disease; increased
dietary intake of them has resulted in decreased cardiac
mortality in a large secondary prevention study [16].
The composition of serum fatty acids can not only be

used as an indicator of dietary fat quality [17], but can
also be used as a biomarker for assessing metabolic and
cardiovascular disease risk [18,19]. Intestinal fatty acid
binding protein 2 (FABP2) is a small cytosolic protein
involved in intracellular fatty acid (FA) transfer and me-
tabolism. Peroxisome proliferator-activated receptor α
(PPARα) is involved in glucose and lipid metabolism and
thus may have a role in development of dyslipidemia,
atherosclerosis, obesity, insulin resistance, and type II
diabetes mellitus. We have shown that FABP2 genotypes
influence the lipid-lowering effects of EPA supplementa-
tion in hypertriglyceridemic subjects [20]. We, therefore,
conducted this study to determine the potential associa-
tions between the Ala54/Thr polymorphism in FABP2
protein and the Leu162/Val in exon 5 and G/C in intron
7 of PPARα with plasma fatty acids composition after
EPA supplementation.

Subjects and methods
Subjects
Participants were selected from the hypertriglyceridemic
subjects referred from Tehran Central Laboratories to
Endocrinology and Metabolism Research Center (EMRC).
The inclusion criteria were a serum TG level >200 mg/dL
(>2.3 mmol/L), and a fasting blood glucose of <110 mg/dL
(<6.2 mmol/L). Those who had received lipid lowering
agents, oral contraceptive pills, diuretics, sex hormones,
thyroid medications, or omega-3 supplement, and patients
with a history of gastrointestinal diseases, and smokers
were excluded from the study.
After determination of their FABP2 genotypes, the first

23 eligible subjects who were found as Ala54 carriers
and the first 23 eligible Thr54 carriers were enrolled in
the study. Participants took two grams per day of pure
EPA for eight weeks (four gel caps, each containing
500 mg ethyl ester EPA 90%, courtesy of Minami Nutri-
tion, Edegem, Belgium). Two capsules were taken in the
morning and two in the evening. The participants were
followed weekly at the EMRC; a checklist for weekly con-
sumption of capsules was filled and capsules for the next
week were given to them. All of the subjects consumed
controlled diet (Percentage of energy from carbohydrate,
fat, and protein diets were similar).
A blood sample was drawn from each participant fol-

lowing a 14-hour overnight fasting at the baseline and
after eight weeks of EPA supplementation. Height and
weight were measured by a Seca scale (Germany) with
light clothing and no shoes on. Body mass index (BMI)
was then calculated. Waist circumference was measured
with a flexible tape midway between the lowest rib and
the iliac crest. The hip circumference was measured at
the widest part of the gluteal region.
The study was approved by Ethics Committee of

EMRC, Tehran University of Medical Sciences (TUMS).
All participants were informed of the nature of the
study and gave a written informed consent. The bio-
chemical analyses were carried out at EMRC laboratory,
TUMS. Genetic studies were conducted at the Depart-
ment of Medical Genetics, TUMS. The plasma fatty
acids composition was determined at the Department
of Medicinal Chemistry and Pharmaceutical Sciences
Laboratory, TUMS.
We calculated the sample size as fallow:

α ¼ 0:5 1� β ¼ 0:80 P value < 0:05

n ¼ Z1�α=2

� �þ Z1�β

� �� �
=d

� �2
d ¼ 0:61

n ¼ 20

Laboratory analyses
Plasma samples and sera were separated from blood
samples by centrifuging at 4C and 1800 g for 15 min
and stored in 1-mL aliquots in sterile tubes at -80C until
used. Serum and plasma lipid and lipoprotein levels were
measured as described previously [20].

Plasma fatty acid extraction and gas chromatography
Fatty acid extraction was done by Folch method [21]
with some modifications. Plasma was homogenized in
chloroform: methanol (2:1 vol/vol containing 50 mg/L
butylated hydroxy toluene); normal saline was added to
the solution, shacked vigorously and allowed for phase
separation. The upper layer was drawn off by aspiration
and washed several times; the lower phases were col-
lected. Extracted lipids were dried under a stream of ni-
trogen. The dried lipids were soaponified by the method
described previously [22]. Soaponified fatty acids were
transesterified by boron trifluoride (BF3) in methanol.
BF3 was added to the sample and incubated at 100°C
in a water bath for an hour. After cooling to room
temperature, hexane, HCl and water were added, shacked
vigorously, centrifuged, and the upper phase was taken
into a new tube and dried with nitrogen. Before injecting
to the instrument, methanol and ethylated margaric acid
(as an internal standard) were added to samples. Fatty
acids methyl esters (FAMEs) were measured by gas
chromatography. A capillary column with 60 m length,
0.25 mm internal diameter and 0.2 μM film thickness
on an HP 6890 GC equipped with flame ionization
detector was used to qualify and quantify FAMEs.
The initial column temperature was set at 195°C for
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2 min, which increased to 205°C by increments of
2°C/min, then to 214°C by 1°C/min, then to 240°C by
15°C/min and held for 10 min. Helium was used as the
carrier gas at an initial flow rate of 1 mL/min for
8 min, which increased to 1.3 mL/min for 4.2 min and
then to 1.9 mL/min. The detector temperature was set at
300°C and the injector temperature at 250°C. FAMEs
were identified by comparison with the retention times
of Supelco 37 component FAME mix standard. We
focused on PUFAs in chromatogram and excluded short-
and medium-chain saturated fatty acids from chromato-
gram. Different concentrations of FAME mix with added
ethylated margaric acid were injected to gas chroma-
tography machine (GC) to obtain the standard curve
for each fatty acid. The peak area of a given fatty acid
was divided by the peak area of the internal standard
(ethylated margaric acid) then with respect to the
standard curve, concentrations of fatty acids in plasma
were estimated.

Genotyping
Ala54Thr (Gene ID: 2169)
Genomic DNA was extracted using the Flexi Gene DNA
kit (Qiagen, GmbH, Hilden, Germany) as described pre-
viously [20]. A 180-bp DNA fragment containing the
G to A nucleotide substitution in exon 2 (codon 54)
of the FABP2 gene (Ala54Thr) was genotyped by poly-
merase chain reaction-restriction fragment length poly-
morphism (PCR-RFLP) as described previously [20].

Leu162Val (gene ID: 55465)
The Leu162Val mutation of the PPARα gene is caused by
a C to G transversion at nucleotide 484 in exon 5. The
PCR-RFLP method was used as described earlier [23].
Table 1 Plasma fatty acids composition in hypertriglyceridem

Fatty Acids Concentration in
plasma μg/mL n=46

Miristic acid (C14:0) 20.95±0.6

Palmitic acid (C16:0) 152.07±44.7

Stearic acid (C18:0) 105.91±12.1

Arachidic acid (C20:0) 12.4±7.7

Behenic acid (C22:0) 13.2±1.3

Oleic acid (C18:1) 131.69±20.2

11-Ecosenoic acid(C20-1) 9.41±1.5

Nervonic acid (C24:1) 11.45±5.36

Linoleic acid (C18:2) 200.5±35.2

Gamma linolenic acid (C18:3, n-6) 7.4±3.4

11,14-Ecosadienoic acid (C20:2, n-6) 21.65±6.9

Dihomo gamma Linolenic acid (C20:3 n-6) 8.27±1.2

Arachidonic Acid 52.1±23.0

Values are means±SE.
Intron 7
The PCR-RFLP method was used to determine intron
7 polymorphism (mutation) as described previously [23].

Statistical analyses
The normality of distribution of continuous variables
was tested by one-sample Kolmogorov-Smirnov test.
To normalize the continuous variables not normally
distributed, a log transformation was applied. The mean
plasma fatty acids concentrations between the two study
groups with different FABP2 genotypes were compared
by independent sample Student’s t test.
Since only few subjects with Thr54/Thr were found

among the participants, they were pooled with Ala54/
Thr subjects and analyses were carried out on the
pooled data. Results are presented as Means±SE unless
otherwise noted. Analyses were performed by SPSSW for
WindowsW ver 11.5. A p value <0.05 was considered sta-
tistically significant.

Results
The baseline characteristics of subjects were described
previously [20,23]. Table 1 shows the plasma fatty acids
compositions in hypertriglyceridemic subjects.
Table 2 shows plasma fatty acids levels of studied sub-

jects stratified by their FABP2 genotypes. Concentrations
of EPA (p<0.001), DHA (p<0.055), and some of n-3 fatty
acids (p<0.001) were higher in those with Thr54 poly-
morphism than Ala54 after EPA supplementation.
Changes in levels of other fatty acids did not significantly
differ between subjects with G or A alleles.
Plasma fatty acids levels in hypertriglyceridemic sub-

jects with Val162 polymorphism in PPARα genotypes are
shown in Table 3. The concentrations of EPA (p<0.001),
ic subjects

Fatty Acids Concentration in
plasma μg/mL n=46

13,16-Docosadienoic acid (DDA, C22:2 n-6) 8.28±1.2

alpha-Linilenic acid 4.9±17.9

11,14,17-Eicosatrienoic acid (C20:3 n-3) 4.12±0.9

Eicosapentaenoic acid (C20:5, n-3) 2.5±1.2

Docosahexaenoic acid (C22:6, n-3) 11.9±8.2

Sum of saturated fatty acids 304.5±32.1

Sum of monounsaturated fatty acids 164.79±26.2

Sum of polyunsaturated fatty acids 360.5±50.2

Sum of W-6 fatty acids 110.3±218.2

Sum of W-3 fatty acids 20.6±11.4

Total fatty acids 777.96±95.6

Arachidonic/DGLA+EPA 23.7±21

W6:W3 ratio 10.0±1.6



Table 2 Plasma fatty acids concentration after 8 weeks of EPA supplementation in hypertriglyceridemic subjects stratified by FABP2 genotypes

Concentration in plasma μg/mL p

Fatty acids Pre-treatment Post-treatment Paired t-test
P value

Pre-treatment Post-treatment Paired t-test
P value

Difference between
pre- and post-treatment

Ala54 (n=23) Thr54§ (n=23) Ala54 (n=23) Thr54§ (n=23)

Eicosapentaenoic acid (C20:5, n-3) 1.45±0.4 6.66±0.8 0.001* 4.65±1.0 67.96±12.9 0.001* 5.20±0.8 61.76±12.3 0.001**

Docosahexaenoic acid (C22:6, n-3) 10.47±1.5 16.12±2.0 0.06* 22.22±5.9 19.63±1.9 NS 5.65±2.9 29.94±13.1 0.055

Sum of saturated fatty acids 251.03±32.5 286.76±47.4 NS 357.96±43.5 286.76±453.5 0.006* 35.72±55.7 153.01±66.8 0.07

Sum of monounsaturated fatty acids 105.38±17.8 173.1±39.6 0.001* 224.2±34.5 2306.3±2261.6 0.001* 67.72±41.6 2175.3±2157.9 0.07

Sum of polyunsaturated fatty acids 174.93±34.6 322.75±61.5 0.08* 442.41±65.8 800.55±74.7 0.05* 147.82±81.1 351.38±82.5 0.08

Sum of W6 fatty acids 156.96±32.9 289.0±57.9 NS 403.4±63.6 662.24±65.2 0.001* 132.04±76.5 251.55±76.9 NS

Sum of W3 fatty acids 15.97±2.3 33.75±4.1 0.006* 38.97±6.9 138.3±16.2 0.05* 15.78±5.1 99.82±16.5 0.001**

Total fatty acids 531.35±70.5 782.62±138.7 NS 1024.57± 120.7 24326.97± 22645.9 0.005*

W6:W3 ratio 7.65±0.9 7.58±0.9 NS 12.37±2.2 5.54±0.5 0.005* −0.073±1.6 −6.76±2.2 0.02**

Miristic acid (C14:0) 20.46±0.6 21.73±0.61 NS 21.46±0.56 23.38±0.96 0.05* 1.27±0.96 1.77±0.79 NS

Palmitic acid (C16:0) 104/94±65/2 152.29±30.7 NS 199.2±24.3 319.6±33.5 0.01* 47.35±39.3 116.7±40.9 NS

Stearic acid (C18:0) 92.96±12.0 96.13±15.5 NS 118.85±12.0 152.27±25.9 0.05* 31.17±18.2 28.5±33.2 NS

Oleic acid (C18:1) 76.95±14.3 143.12±35..2 NS 186.43±27.6 316.83±34.9 0.004 46.17±40.2 124.92±47.3 NS

Values are mean±SEM.
§Because the number of subjects in the Thr54/Thr group was small, data from the Ala54/Thr group were combined with data from the Thr54 (Ala54/Thr Thr54/Thr) groups.
**Significant difference between Ala54 and Thr54 groups.
*Significant differences between post- and pre-intervention values.
NS: No significant difference.
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Table 3 Plasma fatty acids concentration after 8 weeks of EPA supplementation in hypertriglyceridemic subjects stratified by PPARα genotypes

Concentration μg/mL Independent
t-test P valueFatty acids Pre-treatment Post-treatment Paired t-test P value Pre-treatment Post - treatment Paired t-test P value Difference between

pre and post treatment

Leu (n=38) Val (n=8) Leu (n=38) Val (n=8)

Eicosapentaenoic acid
(C20:5, n-3)

3.04±0.7 21.9±3.9 0.001* 3.5±1.2 104.35±28.9 0.05* 18.9±3.5 100.9±28.5 0.001**

Docosahexaenoic acid
(C22:6, n-3)

15.5±3.7 28.7±7 0.01* 19.03±4.3 58.7±16.3 NS 13.15±7.8 39.63±17.4

Sum of saturated fatty acids 288.5±26 367.0±37.8 NS 371.53±60.6 542.9±113.5 NS 78.5±44.6 171.38±139.4 0.05**

Sum of monounsaturated
fatty acids

152.36±22.5 277.1±38.5 0.01* 219.5±51.7 596.6±59.3 NS 542.9±41.7 594.4±59.3 NS

Sum of polyunsaturated
fatty acids

259.3±37.5 482.2±58.2 0.01* 509.23±60.1 887.18±149.4 0.05* 222.94±66.6 378.9±127.7 NS

Sum of W6 fatty acids 231.98±35.2 416.5±51.2 0.01* 476.5±129.7 707.5±135.6 NS* 184.6±61.6 231.1±120.3 NS

Sum of W3 fatty acids 27.32±4.3 65.73±9.5 0.001* 32.76±8.6 180.65±26.8 0.01 38.3±9.1 147.89±25.5 0.001**

Total fatty acids 700.16±79.1 1126.34±128 0.01* 1100.28±202.8 61063.12±594.5 NS 426.18±142.9 5999.85±594.7 NS

Arachidonic/DGLA+EPA 2.68±1.0 1.41±0.2 NS 112.8±109.8 0.89±0.2 NS −1.3±0.9 −11.9±109.8 NS

W6:W3 ratio 8.59±0.8 6.89±0.6 0.05* 15.91±5.5 4.57±0.9 NS −1.7±1.1 −3.5±1.5 0.01**

Values are means±SE.
**Significant difference between Leu and Val groups.
*Significant differences between post- and pre-intervention values.
NS: No significant differences.
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Table 4 Plasma fatty acids concentration after 8 weeks of EPA supplementation in hypertriglyceridemic subjects stratified by PPARα (GG/GC) genotypes

Concentration μg/mL Independent
t-test p valueFatty acids Pre-treatment Post-treatment Pairedt-test

p value
Pre-treatment Post-treatment Paired t-test

p value
Difference
between pre- and
post-treatment

Difference
between after
and before values

GG (n=24) GC (n=22) GG (n=24) GC (n=22)

Eicosapentaenoic acid
(C20:5, n-3)

1.83±0.62 15.35±5.2 0.001* 4.49±0.9 60.24±12.4 0.001* 12.52±4.9 55.74±12.1 0.001**

Docosahexaenoic acid
(C22:6, n-3)

11.26±1.7 26.49±6.6 0.04* 21.31±5.9 42.38±11.6 0.003* 15.23±6.9 21.07±12.8 NS

Sum of saturated fatty acids 262.08±35.3 243.09±53.9 NS 247.81±30.9 459.06±51.9 <0.009* 81.01±52.2 111.25±60.4 NS

Sum of monounsaturated
fatty acids

112.44±20.1 217.36±42.9 0.03* 218.71±33.7 229.6±22.6 0.002* 103.9±42.0 227.4±22.6 NS

Sum of polyunsaturated
fatty acids

237.53±57.6 437.02±81.5 NS 277.32±56.6 684.23±79.2 0.001* 199.53±99.8 206.9±93.3 NS

Sum of W6 fatty acids 217.9±55.7 382.97±73.0 NS 329.88±53.6 562.5±67.0 0.001* 165.08±92.0 222.62±83.0 NS

Sum of W3 fatty acids 19.62±2.9 54.1±11.1 0.009* 37.46±6.8 121.73±17.4 0.001* 34.45±11.2 84.27±18.7 0.02**

Total fatty acids 613.03±92.3 997.5±172.1 0.06* 942.4±116.2 24105.8±226.5 <0.001* 384.47±17.04 23161.9±226.4 NS

Arachidonic/DGLA+EPA 42.24±39.9 1.54±0.2 NS 2.14±0.5 1.08±0.2 NS −41.7±39.9 −1.06±0.6 NS

W6:W3 ratio 9.65±2.2 7.56±0.9 NS 102.26±1.1 5.3±0.5 0.007* −2.09±2.4 −4.97±1.3 NS

Values are means±SE.
**Significant difference between GG and GC carriers.
*Significant difference between post- and pre-intervention values.
NS: No significant difference.
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and n-3 fatty acids (p<0.001) were significantly higher
and the n-6:n-3 ratio (p<0.01) was significantly lower in
Val162 than in Leu162 polymorphism. Changes in levels
of other fatty acids did not significantly differ between
Leu or Val carriers. The levels of EPA (p<0.001) and n-3
fatty acids (p<0.02) were significantly different between
GG and GC groups (Table 4).

Discussion
We found that EPA supplementation could increase the
level of plasma EPA, in both FABP2 and PPARα geno-
types with more effects on subjects with either Thr or
Val162 alleles. These results are in keeping with the
hypothesis which indicates that presence of the Thr54
allele may increase the binding affinity of FABP2 to
long-chain fatty acids (LCFAs) [24]. Furthermore, enhanced
intestinal absorption of fatty acids, higher levels of plasma
lipids and the consequent enhanced lipid oxidation rates
would inhibit in vivo tissue sensitivity to insulin. It was later
confirmed, in a healthy white population with normal
glucose tolerance, that the Thr54 allele was associated
with insulin resistance [25].
In fact, in subjects with Thr54 allele, EPA supplemen-

tation results in absorption of EPA by entrocytes, which
leads to a higher plasma EPA concentration. Although
EPA is the precursor of DHA, we did not observe any
increase in plasma level of DHA which might be due to
poor enzymatic conversion of EPA to DHA. Arterburn,
et al., previously reported that n-3 fatty acids consump-
tion increased their levels in plasma. They showed that
supplementation of adults with 4 g/day pure EPA ethyl
ester results in significant increase in EPA concentration
in whole plasma and plasma or serum phospholipids,
but no increase was seen in DHA concentration, which is
consistent with retro conversion of DHA to EPA [26-28].
In the present study, the levels of some fatty acids in
plasma were changed. After EPA supplementation, the
level of EPA, n-3 fatty acids, MUFA, PUFA and some
saturated fatty acids such as miristic, palmitic, oleic, and
stearic increased in both The54 and Ala54 carriers, the
increase was more pronounced in Thr54 groups. These
results were approved the Thr54 hypothesis which states
increased fatty acids uptake and transport by Thr54 car-
riers. King, et al., reported that with consuming two dif-
ferent fat diets the level of fatty acids composition would
be different [29]. There are some evidence that the level
of n-6 fatty acids will decrease after consumption of n-3
fatty acids [26,30-32]. In the current study, the level of
some plasma n-6 fatty acids such as arachidonic acid
(AA) decreased in both Ala54 and Thr54 carriers after
EPA supplementation; although we could not observe
any interaction between EPA consumption and genotype.
A decrease in the level of plasma AA after n-3 consump-
tion has been reported previously [32-34]. Hlavaty, et al.,
reported that supplementing diet with n-3 fatty acids
decreases plasma level of some n-6 fatty acids [35].
Berstad, et al., reported that n-3 supplementation
decreases plasma AA level [33]. Polymorphism in codon
54 had no significant effect on serum fatty acids compos-
ition in adults Finns [36]. In Pima, no significant differ-
ence between the long-chain fatty acids amount in
adipose and muscle tissues was observed between Ala54
and Thr54 carriers [37]. One study showed that in obese
children who were Thr54 carriers, EPA consumption
decreased the amount of plasma AA level. In the current
study, AA concentrations were lower in Thr54 than
Ala54 carriers after EPA supplementation. A decrease
in n-6:n-3 fatty acids ratio was observed in both
FABP2 and PPARα genotypes after EPA supplementation
too. Although the n-6:n-3 fatty acids ratio decreased in
both FABP2 and PPARα genotypes, these effects were
more pronounced in Thr54 and Val162 than in Ala54
and Leu162 carriers. On the other hand, the ratio of AA:
EPA decreased in both Thr54 and Ala54 after EPA
supplementation, but no significant differences were
observed between the two carriers. For nucleus receptors
n-3 fatty acids are stronger ligands than n-6 fatty acids.
In Greenland and Japanese people this ratio decreased in
both Thr54 and Ala54 carriers after EPA supplementa-
tion [38,39].
There is increasing scientific evidence that genetic fac-

tors, conferring either protection or risk, also contribute
importantly to the incidence of these diseases. SNPs are
of particular interest because they can influence disease
in a complex but largely unknown manner by interacting
with environmental and lifestyle factors.
We showed that EPA supplementation could change

the blood fatty acids composition, and thus it could be
beneficial for lowering some plasma fatty acids. Since we
observed more pronounced changes in blood fatty acids
in Thr and Val than in Ala and Leu carriers, we suggest
EPA supplementation to be used based on people
genotypes.
In conclusion, EPA consumption has more favorable

effects on blood n-3 fatty acids and can change the level
of plasma n-3 fatty acids, particularly EPA. Because the
FABP2 Thr54 polymorphism appears to be prevalent in
hypertriglyceridemic subjects, increasing EPA intake in
these subjects could be an effective strategy for prevent-
ing cardiovascular diseases. Finally, for high-risk people
diet and micronutrients recommendation should be
individualized.
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