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FeCl3-mediated efficient method for the synthesis
of tetrahydropyran derivatives via cross-
cyclization of epoxides and homoallylic alcohols
Nagavani Sunkaraneni, Chandra Mouleswar Rao Jillepalli and Madhukar Jeripothula*
Abstract

Background: An efficient methodology for the synthesis of tetrahydropyran derivatives has been developed under
mild reaction conditions. The reactions were carried out using epoxides and homoallylic alcohols as reactants and
ferric chloride as catalyst. All the reactions were done at room temperature in methylene dichloride.

Results: In all cases, the reactions proceeded efficiently at ambient temperature under mild conditions showing the
generality of the reaction. The reaction also proceeded well with the cyclic epoxide 1,2-dihydronaphthalene oxide
to give the corresponding spirotetrahydropyrans in good yield. The proton on the carbon bearing the halide group
(4-H) (δ 3.80, J = 4.46 and 11.80 Hz) shows NOE with the proton on the carbons bearing the benzyl group (2-H)
(δ 3.46, J = 11.80 Hz) and the proton on the carbon bearing the methyl group (6-H) (δ 3.40, J = 11.80 Hz).
This confirms that the protons 2-H, 4-H, and 6-H are on the same side and occupy the axial position of a chair
conformation.

Conclusion: The attractive features of this process are mild reaction conditions, which are environmentally friendly,
inexpensive reagents, with short reaction times, and cleaner reactions with improved yields, which make it a useful
process for the synthesis of tetrahydropyran derivatives.
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Background
Substituted tetrahydropyrans are the common structural
motif of many natural products [1,2] such as avermectins,
aplysiatoxin, oscillatoxins, latrunculins, talaromycins,
acutiphycins,and apicularens. Despite their potential im-
portance to construct structurally complex molecules, the
synthesis of dihydropyrans remains underutilized. Al-
though several methods are reported [3-19], many of these
procedures involve extended reaction timings and the use
of expensive reagents. So, the development of efficient and
versatile catalytic methods would be a preferable approach
especially that low cost, environmental friendly and mild
conditions are in high demand. In this respect, ferric
chloride has been found as potential Lewis acid in various
organic reactions [16,17,20-23]. Because of the numerous
advantages, we undertook a study of the utility of the
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ferric chloride for the tetrahydropyran synthesis. Epoxides
are the most convenient starting materials for the prepa-
ration of various compounds because of their ease of forma-
tion, wide reactivity, and ability to undergo regioselective
ring opening reactions which contribute largely to
their synthetic value [24-29]. In this report, we describe
a simple and efficient protocol for the cyclization reac-
tions of commercially available ferric-mediated reaction
of epoxides and homoallylic alcohols to produce
tetrahydropyrans.

Methods
All reactions were carried out under an inert atmosphere
of nitrogen in oven-dried glassware with magnetic stir-
ring, unless otherwise noted. DCM was distilled from
calcium hydride prior to use. Ferric chloride was pur-
chased from a commercial supplier. Reactions were
monitored by thin-layer chromatography (TLC) carried
out on 0.25 mm coated commercial silica gel plates
(F254 pre-coated glass plates) using UV light as
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visualizing agent and p-Anisaldehyde and heat as a de-
veloping agent. Flash chromatography was performed on
silica gel (100–200 mesh). 1H and 13C NMR spectra
were obtained at 100, 200 or 400 MHz at 298 K, unless
otherwise indicated. Abbreviations for multiplicity are as
follows: d indicates doublet, t indicates triplet, q indi-
cates quartet, m indicates multiplet, dd indicates doublet
of doublet, and dt indicates doublet of triplet. Chemical
shifts are reported in ppm referenced to the internal
solvent residual of CDCl3 at 7.27 ppm for 1H NMR and
77.1 ppm for 13C NMR, respectively. IR spectra were
obtained on an FT-IR spectrophotometer using NaCl
plates. Mass spectrometry data were obtained by ESI
mass spectrometer.

Results and discussions
In order to delineate the standard operating conditions,
a mixture of styrene oxide and 3-buten-1-ol was treated
with ferric chloride in dry methylene dichloride. The
mixture was stirred at room temperature for 1 h and
after work-up; the crude product was purified over silica
gel to provide the product in 70% yield. By spectroscopic
analysis, the product was confirmed as 3a by comparing
with the literature data (Scheme 1).
This methodology has been generalized by reacting a

series of epoxides with homoallylic alcohols to give the
corresponding tetrahydropyran derivatives in excellent
yields ranging from 80% to 95% as illustrated in Figure 1.
The corresponding dihydropyran derivatives in good
yields range from 65% to 80% (Figure 1). In all cases, the
reactions proceeded efficiently at ambient temperature
under mild conditions showing the generality of the
reaction. The reaction also proceeded well with the cyclic
epoxide 1,2-dihydronaphthalene oxide to give the corre-
sponding spirotetrahydropyrans in good yield (Figure 1,
entries 7 to 9).
The stereochemistry assignment of 3b was based on

the1H NMR spectrum and NOE experiment. From the
NOE, it is seen that the proton on the carbon bearing
the halide group (4-H) (δ 3.80, J = 4.46 and 11.80 Hz)
shows NOE with the proton on the carbons bearing the
benzyl group (2-H) (δ 3.46, J = 11.80 Hz) and the proton
on the carbon bearing the methyl group (6-H) (δ 3.40,
J = 11.80 Hz). This confirms that the protons 2-H, 4-H,
and 6-H are on the same side and occupy the axial
O

OH
FeCl3

DCM, r

1a 2a

Scheme 1 (2R, 4R)-2-benzyl-4-chlorotetrahydro-2H-pyran (cis) (3a).
position of a chair conformation. This observation is
consistent with vicinal 3J couplings and unequivocally
confirms a ‘R’ configuration at C-4 position. The pre-
dominant formation of a single stereoisomer is probably
due to thermodynamic factors (Figure 2).

Experimental
General procedure
To a stirred solution of 3-buten-1-ol (290 mg, 4 mmol)
and styrene oxide (720 mg, 6 mmol) in dry methylene
dichloride (20 mL), anhydrous ferric chloride (1.3 g, 8
mmol) was added at room temperature. The mixture
was stirred under a nitrogen atmosphere for 1 h. After
completion of the reaction as indicated by TLC, the re-
action mixture was quenched by adding crushed ice and
extracted with methylene dichloride (2 × 25 mL). The
combined organic layer was washed with brine, dried
over Na2SO4 and concentrated under reduced pressure.
The obtained crude product was purified by column
chromatography over silica gel (ethyl acetate-hexane,
3:7). Both diastereomers of 6a were obtained in a 3:1
ratio. All the products were characterized by their spec-
tral data.

(2R, 4R)-2-benzyl-4-chlorotetrahydro-2H-pyran (cis) (3a)
IR (neat): υ 2960, 2843, 1495, 1453, 1103, 1074, 764, 741
cm−1;1H NMR (400 MHz, CDCl3): δ 7.24 to 7.40
(m, 5H), 3.95 to 4.10 (m, 2H), 3.45 to 3.55 (m, 1H), 3.42
(dt, 1H, J = 2.0, 12.1 Hz), 3.0 (dd, 1H, J = 6.8, 13.8 Hz),
2.75 (dd, 1H, J = 6.5, 13.8 Hz), 2.10 to 2.20 (m, 2H), 1.92
(dt, 1H, J = 4.7, 12.0 Hz), 1.65 (q, 1H, J = 1.5 Hz); 13C
NMR (100 MHz, CDCl3): δ 137.8, 129.5, 128.1, 126.7,
78.4, 67.3, 55.6, 42.1, 42.6, 37.5. Analysis calculated for
C12H15ClO: C, 68.41; H, 7.18. Found: C, 67.97; H, 7.71.

(Trans) (3a)
IR (neat): υ 3025, 2948, 2846, 1494, 1451, 762, 753, 691
cm−1;1H NMR (400 MHz, CDCl3): δ 7.20 to 7.30
(m, 5H), 4.52 to 4.59 (m, 1H), 4.02 to 4.10 (m, 1H), 3.95
(dt, 1H, J = 2.0, 11.7 Hz), 3.86 (dd, 1H J = 5.0, 12.0 Hz),
2.90 (dd, 1H, J = 7.4, 13.8 Hz), 2.70 (dd, 1H, J = 5.9, 13.8
Hz), 2.02 to 2.10 (m, 1H), 1.75 to 2.02 (m, 3H);13C NMR
(100 MHz, CDCl3): δ 138.1, 129.3, 128.3, 126.5, 72.2,
62.6, 56.3, 42.2, 39.0, 33.8.
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Figure 1 Ferric chloride-meditated cross-cyclization of epixodes and homoallylic alcohols.
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Figure 2 (2R, 4R, 6S)-2-Bbenzyl-4-chloro-6-methyltetrahydro-
2H-pyran (3b). 1H NMR (200 MHz, CDCl3): δ 7.10 to7.30 (m, 5H),
3.80 to 4.00 (m, 1H), 3.30 to 3.50 (m, 2H), 2.95 (dd, 1H, J = 5.9,
13.3 Hz), 2.65 (dd, 1H, J = 6.6, 13.3 Hz), 2.05 (dt, 2H, J = 2.2, 12.6
Hz), 1.40 to 1.60 (m, 2H), 1.20 (d, 3H, J = 5.9 Hz); EIMS m/z: 224
(10) M+, 150 (15), 133 (100), 97 (30), 69 (85), 41 (35). Analysis
calculated for C13H17ClO (224.73): C, 69.48; H, 7.62%. Found: C,
69.56; H, 7.87%.
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(2R, 4R, 6S)-2-Bbenzyl-4-chloro-6-methyltetrahydro-2H-
pyran (3b)
1H NMR (200 MHz, CDCl3): δ 7.10 to 7.30 (m, 5H),
3.80to 4.00 (m, 1H), 3.30 to 3.50 (m, 2H), 2.95 (dd, 1H,
J = 5.9, 13.3 Hz), 2.65 (dd, 1H, J = 6.6, 13.3 Hz), 2.05
(dt, 2H, J = 2.2, 12.6 Hz), 1.40 to 1.60 (m, 2H), 1.20
(d, 3H, J = 5.9 Hz); EIMS m/z: 224 (10) M+, 150 (15),
133 (100), 97 (30), 69 (85), 41 (35). Analysis calculated
for C13H17ClO (224.73): C, 69.48; H, 7.62%. Found: C,
69.56; H, 7.87%.
(2R, 4S, 6R)-2-benzyl-4-chloro-6-phenyltetrahydro-2H-pyran
(cis) (3d)
IR (neat): υ 3021, 2956, 2852, 1596, 1492, 1445, 746, 695
cm−1;1H NMR (200 MHz, CDCl3): δ 7.20 to 7.36
(m, 10H), 3.95 to 4.10 (m, 4H), 3.46 (dt, 1H, J = 2.0, 8.4
Hz), 2.05 to 2.20 (m, 2H), 1.80 to 1.90 (m, 1H), 1.55 to
1.65 (m, 1H);13C NMR (100 MHz, CDCl3): δ 141.8,
141.7, 128.6, 128.6, 128.4, 128.3, 126.7, 126.4, 78.9, 67.2,
57.4, 56.1, 41.5, 36.9. EIMS m/z: 286 M+.
(Trans) (3d)
IR (neat): υ 3085, 3059, 2961, 2805, 1594, 1491, 750, 698
cm−1;1H NMR (400 MHz, CDCl3): δ 7.10 to 7.30
(m, 10H), 4.52 (dt, 1H, J = 8.0 Hz), 4.53 (singlet (s), 1H),
3.92 (triplet (t), 1H, J = 12.0 Hz), 3.75to 3.85 (m, 2H),
1.92 to 1.99 (m, 1H), 1.65to 1.75 (m, 3H);13C NMR (100
MHz, CDCl3): δ 142.1, 124.0, 128.6, 128.4, 128.3, 126.5,
126.3, 73.3, 62.5, 57.1, 56.6, 38.2, 33.6. EIMS m/z: 286
M+. Analysis calculated for C18H19ClO: C, 75.38; H,
6.68. Found: C, 75.62; H, 7.09.
(2S, 4R)-4-chloro-2-(diphenylmethyl)-tetrahydro-2H-pyran
(3e)
1H NMR (200 MHz, CDCl3): δ 7.10 to 7.30 (m, 10H),
3.85 to 4.00 (m, 3H), 3.40to 3.50 (m, 1H), 2.10 (dt, 1H,
J = 1.4, 2.2 Hz), 1.92 (dt, 1H, J = 1.4, 2.2 Hz), 1.40to 1.56
(m, 2H), 1.18 (d, 3H, J = 6.6 Hz); EIMSm/z: 300 (10) M+,
166 (45), 134 (100), 98 (25), 69 (70), 41 (30). Analysis
calculated for C19H21ClO (300.82): C, 75.86; H, 7.04%.
Found: C, 76.15; H, 7.23%.

(2S, 4S, 6R)-4-chloro-2-(diphenylmethyl)-6-phenyltetrahydro-
2H-pyran (3f)
1H NMR (200 MHz, CDCl3): δ 7.15to 7.45 (m, 15H),
4.50 (dd, 1H, J = 11.2, 12.8 Hz), 4.15 to 4.30 (m, 2H),
4.10 (d, 1H, J = 7.2 Hz), 2.40 to 2.55 (m, 1H), 1.60 to
2.10 (m, 3H);13C NMR (200 MHz, CDCl3): δ 40.8, 43.8,
44.3, 56.1, 77.0, 78.7, 125.5, 125.8, 126.4, 126.6, 127.4,
127.7, 128.1, 128.3, 128.5, 128.6, 129.1; EIMS m/z: 362
(10) M+, 271 (10), 236 (10), 165(40), 130 (40), 116 (30),
103 (100), 90 (30), 66 (20), 50 (15). Analysis calculated
for C24H23ClO (362.89): C, 79.43; H, 6.39. Found: C,
79.69; H, 6.62.

(2R, 4′R)-4′-chloro-3,3′,4,4′,5′,6′-hexahydro-1H-spiro-
[naphthalene-2,2′-pyran] (3g)
1H NMR (200 MHz, CDCl3): δ 6.88 to 7.02 (m, 4H),
4.12 to 4.25 (m, 1H), 3.80 (dd, 1H, J = 2.0, 2.7 Hz), 3.65
(dd, 1H, J = 2.0, 2.7 Hz), 2.84 to 2.97 (m, 1H), 2.68 to
2.76 (s, 2H), 2.55 to 2.64 (m, 1H), 1.96 to 2.16 (m, 2H),
1.56 to 1.92 (m, 4H); EIMS m/z: 236 (25) M+, 201 (80),
129 (55), 104 (100), 91 (35), 55 (70); Analysis calculated
for C14H17ClO (236.74): C, 71.03; H, 7.24%. Found: C,
71.46; H, 7.32%.

(2R,4′R,6′S)-4′-chloro-6′-methyl-3,3′,4,4′,5′,6′-hexahydro-1H-
spiro-[naphthalene-2,2′-pyran] (3h)
1H NMR (200 MHz, CDCl3): δ 6.90 to 7.05 (m, 4H),
4.15 to 4.25 (m, 1H), 3.65 to3.85 (m, 1H), 2.50 to 3.02
(m, 4H), 2.01 to 2.12 (m, 2H), 1.45 to 1.90 (m, 4H), 1.17
(d, 3H, J = 5.9 Hz). EIMS m/z: 250 (15) M+, 216 (100),
215 (20), 129 (25), 104 (50), 91 (10), 42 (10). Analysis
calculated for C15H19ClO (250.76): C, 71.84; H, 7.64%.
Found: C, 71.95; H, 7.85%.

Conclusion
In summary, we have described a simple and highly effi-
cient protocol for the preparation of tetrahydropyran de-
rivatives through the reaction between epoxides and
homoallylic alcohols using ferric chloride. The attractive
features of this process are mild reaction conditions,
which are environmentally friendly, inexpensive re-
agents, with short reaction times, and cleaner reactions
with improved yields, which make it a useful process for
the synthesis of tetrahydropyran derivatives.
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