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Abstract

Background: Artificial neural networks (ANNs) as a solution for semi-structural or non-structural problems have
widespread applications in engineering and science with acceptable results. In this research, the ability of multilayer
perceptron artificial neural networks based on back-propagation algorithm was investigated to estimate sulfur
dioxide densities.

Results: The best network configuration for this case was determined as a three-layer network including 15, 10,
and 1 neurons in its layers, respectively, using Levenberg-Marquardt training algorithm. The uncertainties in the
presented network for prediction of unseen data including PρT and saturated liquid densities are less than 0.5%
and 1%, respectively. Another network for estimation of vapor pressure has trained with uncertainty less than 0.67%.
Comparisons among the artificial neural network predictions, several equations of state, and experimental data sets
show that the ANN results are in good agreement with the experimental data better than the equations of states.

Conclusion: Artificial neural network can be a successful tool to represent thermophysical properties effectively, if
developed efficiently.
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Background
In order to study chemical systems, thermophysical
properties of pure compounds and mixtures under spe-
cified conditions are required. It is not always possible
to find reliable experimental values of these properties
for interesting compounds nor is it practical to measure
the properties as the need arises. Particularly in process
simulation, reliable and accurate property estimation
methods play an important role in the solution of vari-
ous simulation problems [1].
Sulfur dioxide (SO2) is a colorless gas or liquid with a

pungent odor. It is produced from the burning of fossil
fuels (coal and oil) and the smelting of mineral ores
(aluminum, copper, zinc, lead, and iron) that contain
sulfur. It is one of the major primary pollutants in the
atmosphere [2]. It is the most important industrial-
based sulfur product, especially used in the manufacture
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of sulfuric acid. Apart from this main use, sulfur dioxide
is used in different applications, from refining raw ma-
terials to preserving food, paper and pulp production,
sulfoxidation and sulfochlorination, disinfectants, and
water and waste treatment [3,4].
Since the 1940s, artificial neural networks (ANNs) have

been used in various applications in engineering and sci-
ence. ANNs are generally the software systems that imitate
the neural networks of the human brain. The ANNs show
graceful degradation, they can easily form models for com-
plex problems. Especially in the development of solutions
for semi-structural or non-structural problems, ANN
models can have very acceptable results. Moreover, they
can be cheaper, faster, and more adaptable than traditional
methods [5]. One of the major advantages of ANN is effi-
cient handling of highly nonlinear relationships in the
data, even when the exact nature of such relationship is
unknown.
Recently, ANN has been used to predict some pure

substances and petroleum fraction's properties [6], activ-
ity coefficients of isobaric binary systems [7], dew point
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Figure 1 Generalized neural network training algorithm.

Table 1 Comparison among networks containing one and
two hidden layers

Number of
hidden layers

Neuron number
in each layer

Train MSE Test MSE

1 10-1 44.793 66.928

1 15-1 0.9877 3.2875

1 20-1 0.5267 0.9468

1 25-1 1.6491 143.25

2 5-5-1 0.0529 0.2960

2 10-5-1 0.0036 0.0748

2 5-10-1 0.0174 0.1246
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pressure [8], vapor-liquid equilibrium data [9], thermo-
dynamic properties of refrigerants [10,11], and activity coef-
ficient ratio of electrolytes in amino acid solutions [12], etc.
The aim of this work is to construct artificial neural

networks that can predict SO2 densities (in the sub- and
supercritical conditions) and vapor pressures in large
ranges of temperatures and pressures. It was shown that
multilayer perceptron networks can approximate any
continuous function that sufficient connection weights
are used. Consequently, multilayer perceptrons can be
used in all of the models. The neural network toolbox of
MATLAB7.0, as a popular numerical computation and
visualization software, has been used for training and
testing of multilayer networks. Finally, estimations of the
ANN have been compared with the experimental data
and results of several equations of state.

Methods
Artificial neural network
ANN can be considered as a black box consisting of a
series of complicated equations for the calculation of
outputs based on a given series of input values. It is able
to develop a model relating the output of network to
existing actual data used as inputs. One of the major ad-
vantages of ANN is efficient handling of highly
nonlinear relationships in the data when the exact na-
ture of such relationship is unknown [5].
Figure 2 The feed-forward neural network architecture.
Commonly, neural networks are adjusted (or trained)
so that a particular input leads to a specific target output
(Figure 1). The network adjusts based on a comparison
of the output and the target, until the network output
matches the target. Typically, many input/target pairs
are used in supervised learning to train a network [13].
The most popular ANN is the feed-forward multilayer

network that uses back-propagation learning algorithm
as shown in Figure 2.
Feed-forward neural network usually has one or more

hidden layers and an output layer, which enable the net-
work to model nonlinear and complex functions. Scaled
data are introduced into the input layer of the network
then propagated from the input layer to the hidden layer
and finally to the output layer.
A parameter Wij (known as weight) is associated with

each connection between two cells. Thus, each cell in
the upper layer receives weighted inputs from each node
in the layer below and then processes these collective in-
puts before the unit sends a signal to other layers.
At first, each neuron in the hidden or output layer acts

as a summing junction that combines and modifies the
inputs from the previous layer using the following equa-
tion [14]:

Ai ¼ bj þ
Xn

j¼1

XjWij ð1Þ

Yj ¼ S Aj
� �

; ð2Þ

where Aj is the net input to node j in the hidden or output
layer; Xj, the inputs to node j (or outputs of the previous
layer); Wij, the weights representing the strength of the
Table 2 Performance parameters used for the learning
process

Parameter Value

Maximum iteration 1,500

Minimum gradient 1e−9

mu, mu_dec, mu_inc, mu_max 0.001, 0.1, 10, 1e10



Figure 3 Comparison among produced training MSEs using different numbers of neurons.
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connection between the ith node and jth node; i, the num-
ber of nodes; and bj, the bias associated with node j. Each
neuron consists of a transfer function expressing internal
activation level. Generally, the transfer functions for func-
tion approximation (regression) are sigmoidal function,
hyperbolic tangent, and linear function, in which sigmoidal
function is widely used for nonlinear relationship. Yj (the
output of node j) is also an element of the inputs to the
nodes in the next layer [5].
There are many various back-propagation algorithms.

The simplest implementation of back-propagation learn-
ing updates the network weights and biases in the direc-
tion of performance function decreasing. An iteration of
this algorithm is as follows [14]:

xkþ1 ¼ xk � akgk ; ð3Þ

where xk is the vector of current weights and biases; gk,
the current gradient; and αk, the learning rate.
There are two different ways for this gradient descent

algorithm: incremental mode and batch mode. The gra-
dient is computed in the incremental mode, and the
weights are updated after each input is applied to the
network. In the batch mode, all of the inputs are applied
to the network before the weights are updated. The ob-
jective is to find the value of the weight that minimizes dif-
ferences between the actual output and the predicted
Figure 4 Comparison among produced testing MSEs using different n
output in the output layer in order to minimize the mean
squared errors (MSEs), the average squared error between
the network predicted outputs, and the target outputs.
The Levenberg-Marquardt algorithm is one of the best

training rules that designed to approach second-order
network training speed [15]. This algorithm trains 10 to
100 times faster than the usual gradient descent back-
propagation method and update as follows:

xkþ1 ¼ xk � JT J þ μI
� ��1

JT e; ð4Þ

where J is the Jacobian matrix that contains first derivatives
of the network errors with respect to the weights and
biases; e, the vector of network errors; and I, always the
ones square matrix that is the same size as the JTJ. The
Jacobian matrix can be computed through a standard back-
propagation technique. The scalar μ decreases after each
successful step (reduction in the performance function) and
increases only when a tentative step would increase the per-
formance function. In this way, the performance function
will reduce at each iteration of the algorithm [13].
In the learning process, several variables influence on the

ANN training. These variables are the number of iterations,
learning rate, the momentum coefficient, the number of
hidden layers, and the number of hidden neurons. To find
the best amount of variables and parameters, all of those
must be varied and the best combination chosen [13].
umbers of neurons.



Figure 5 Absolute deviation of ANN results in contrast with the
experimental data in the training step.
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Results and discussion
Development of ANN models
At the following experimental section, it is mentioned that
we have 363 overall data points. More than 80% of the data
set has been used to train each ANN, and the rest have
been used to evaluate their accuracy and trend stability.
After determining the number of input variables by stat-

istical analyses, the most appropriate architecture for the
network should be determined. In this stage, two networks
should be considered for training and testing. The number
of layers, the optimum number of neurons per layer, and
the transfer function(s) in the hidden layer(s) are obtained
by trial and error. As a rule of thumb, the number of ad-
justable parameters should be equal or smaller than the
number of available training data [5]. Numbers of adjust-
able parameters are related to neuron numbers directly.
Therefore, several feed-forward neural networks with

different architectures were tried to finally arrive at a three-
layer network, including two hidden layers. Summarily,
comparison between two network architectures is given
in Table 1.
As it is considered, the performances of two hidden

layer neural networks are much better than the one-layer
networks, even when a two-layer network has fewer neu-
rons. It shows less computational requirements and of
course better operation. Therefore, a feed-forward net-
work with two hidden layers is used, in which temperature
Figure 6 Deviation of ANN results in comparison with the
unseen experimental densities.
and pressure are input variables and density is the output
variable.
In all networks, linear transfer functions have been

used in the outer layers. Experiments were done using
different transfer functions, which are located in either
layers of the network. However, it has been proven that
utilizing hyperbolic tangent sigmoid (tansig) in the first
layer and logarithmic sigmoid (logsig) in the second
layer will produce better results.
The input and output data are normalized between −1

and 1, then the Levenberg-Marquardt back-propagation
algorithm that represents a simplified version of
Newton's method is applied as the training algorithm
in this study. The MSE as an excellent criterion for
evaluating the performance of the neural network is
used. Furthermore, the network has been trained with
Levenberg-Marquardt algorithm in MATLAB environ-
ment. This algorithm appears to be the fastest method for
training moderate-sized feed-forward neural networks (up
to several hundred weights) [13]. The performance param-
eters used in the training step of the networks are given in
Table 2.
The parameter mu is the initial value for μ. This value

is multiplied by mu_dec whenever the performance
function is reduced in a step. It is multiplied by mu_inc
whenever a step would increase the performance func-
tion. If mu becomes larger than mu_max, the algorithm
is stopped. In addition, training stops when the max-
imum number of iteration (repetitions) is reached or the
performance gradient falls below the minimum gradient.
The optimum performance for the network is obtained

iteratively by changing the number of neurons in the hid-
den layers. On the other hand, we replaced neuron num-
bers from 5 to 30 in the first and second hidden layers and
checked the testing error for each structure. The network
with the least testing and training error and the most con-
vergence rate has been selected. The results of networks
using different numbers of neurons are presented below.
Comparisons between produced MSEs to determine the
best number of neurons in each hidden layer, from the
Figure 7 Deviation of ANN results in comparison with the
unseen experimental saturated liquid densities.



Figure 8 Deviation of ANN results in comparison with the unseen experimental compressibility factors.

Table 4 Comparison among deviations of different EoS
results for SO2 densities

EoS AAD (%)
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training and testing data, are shown in Figures 3 and 4,
respectively.
If there are a few neurons in the hidden layers, the

performance of the network is not satisfactory. However,
if there are too many, convergence is very slow and may
be compromised by local minima. The optimal number
of hidden neurons is determined empirically, as the min-
imal number of neurons for which the prediction per-
formance is sufficient without leading to over fitting or
an unreasonably long computational time.
Network training for at least five times indicates that

using 15 and 10 neurons in order in the first and second
layers has better results. Using this structure, the train
and test MSEs are 0.000561 and 0.1085, respectively.
Figure 5 shows absolute error fluctuations of data in the
training step. It is defined as follows:

Absolute deviation ¼ ρexp � ρANN
� �

: ð5Þ

The results show that the ANN can predict densities
much close to the experimentally measured ones.
In addition, the ANN results are compared with some

other unseen experimental data sets. Percent deviations
of predicted densities using ANN in comparison with
the testing data measured by Ihmels et al. [3] and finally
Table 3 Deviation of ANN results in comparison with the
unseen experimental compressibility factors

Temperature (K) Pressure range (MPa) Z-factor range AAD (%)

430.65 8.612 to 31.917 0.199 to 0.531 0.6955

448.15 10.132 to 31.917 0.347 to 0.536 0.7526

473.15 9.625 to 31.917 0.393 to 0.615 0.7569

498.15 9.626 to 30.397 0.494 to 0.712 0.7804

523.15 9.119 to 29.891 0.580 to 0.786 1.3952
other experimental data set reported by Kang et al. [16]
are presented. Results are shown in Figure 6.
Also, for saturated liquid densities, percents of devia-

tions between predicted data by ANN and collected data
in some other references [16-18] are calculated. Results
are presented in Figure 7.
As another test, compressibility factors of sulfur diox-

ide are calculated using the network outputs (densities)
and compared with the experimental values reported by
Kang et al. [16]. Results are shown in Figure 8. Then,
they are presented quantitatively in Table 3; the average
absolute deviation (AAD) is as follows:

AAD ¼ 1
n

X

n

ρ exp � ρcalc
ρ exp

�����

�����: ð6Þ

Comparisons indicate the percentage of absolute devia-
tions in PρT, saturated liquid density, and compressibility
factors which are lower than 0.5%, 1%, and 2.5%, respect-
ively. These results show the ability of presented network
obviously.
Soave-Redlich-Kwong - 1972 [20] 11.64037

Peng-Robinson - 1975 [21] 7.66589

Heyen - 1983 [22] 6.15123

Modified PT by Valderrama and Cisternas - 1986 [23] 3.15492

Duan-Hu - 2003 [24] 3.63235

Dashtizadeh et al. - 2006 [25] 7.81983

Pazuki et al. - 2007 [26] 4.06891

This work 0.02893



Figure 9 Vapor pressures of sulfur dioxide.
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Validation of ANN results in contrast with the equations
of state
Equations of state play an important role in chemical en-
gineering design, and they have assumed an expanding
role in the study of thermophysical properties. The ac-
curate and simple equations of states (EOSs) are widely
used for theoretical and practical studies in chemical
process design, petroleum industry, reservoir fluids, etc.
Among various types of EOSs, the cubic EOSs are simple,
flexible to handle, and reliable (according to its accuracy)
in different practical applications [19]. Consequently, in
this work, the cubic equations of state are used as a
chosen role to calculate sulfur dioxide densities in com-
parison with the ANN results. Some of the cubic equa-
tions of state used were as follows: (a) Soave-Redlish
-Kwong equation [20], (b) Peng-Robinson equation [21],
(c) Heyen equation [22], (d) the modified Patel and Teja
equation reported by Valderrama and Cisternas [23], (e)
Duan-Hu equation [24], (f) equation of state reported by
Dashtizadeh et al. [25], and (g) the new equation of state
reported by Pazuki et al. [26].
The first step in our analyses of the equations involves the

calculation of SO2 density at large ranges of temperatures
and pressures. The densities are calculated at temperatures
from 273 to 523 K and pressures up to 35 MPa (363 data
points), for which densities between 194 and 1,485 kg/m3

were covered. Then, the differences between calculated
Table 5 Comparison between ANN and the equation presente
pressure

Data set Temperature range (K) Pressure

Kang 323.15 to 430.65 0.859 to

Hirth 283.15 to 423.15 0.229 to

Giauque and Stephenson 197.64 to 263.48 0.002 to

Cardoso and Fiorentino 323.15 to 423.15 0.845 to

Toriumi and Hara 323.15 to 423.15 0.846 to

Hellwig 323.15 to 423.15 0.856 to
aDeviation of ANN results in contrast with the experimental data set; bdeviation of P
densities and experimental values have been determined.
The results of these comparisons are listed in Table 4. As it
is shown, equations of state lead to densities with an uncer-
tainty (AAD) more than 3%.
As it is clear, the ANN predictions are very closer to the

experimental values than the EoSs results. These results
prove the ability of the network clearly. Note that ANNs
can act similar to EoSs. When each equation of state con-
siders as a nonlinear function between some inputs and
outputs, it may be presented in shape of a network that
takes the EoS inputs and gives back outputs accurately.
Then, the main point is network training or detection of
adjustable parameters. As it is clear, artificial neural net-
works have more generality than usual EoSs. In addition,
they trained for any specific system and present high ac-
curacy answers.

Prediction of vapor pressure
Vapor pressure sulfur dioxide is studied as another
thermophysical property. Existing equations often do
not have enough accuracy, e.g., Lee-Kesler and Antoine
and their modified forms. Therefore, a simple network
for predicting vapor pressure has been trained as a func-
tion of temperature to obtain accurate results.
After comparisons of several networks with different

structures (different neurons and layers), an optimal net-
work consisting of two layers (one hidden layer and one
output layer) is selected, in which the temperature and
vapor pressure are the input and output variables, re-
spectively. In addition, numbers of neurons in the first
and second layers are three and one neurons, respect-
ively. In the first layer, the hyperbolic tangent sigmoid
function was used as the neuron transfer function. In
addition, the linear transfer function was applied for the
output layer neuron. This network is trained using the
experimental data (14 data points) reported by Kang
et al. [16], Hirth [27], and Giauque and Stephenson [28]
which are measured between 200.803 K (2.202 kPa) up
to near the critical point. This network has been trained
using the Levenberg-Marquardt back-propagation algo-
rithm by MATLAB environment, like the presented net-
work for densities. Then, the network results have been
d in Perry's Handbook for calculation of SO2 vapor

range (MPa) AADa (%) AADb (%) Reference

7.883 0.158 2.111 [16]

6.973 0.503 2.463 [28]

0.103 0.623 1.417 [29]

6.931 0.479 2.679 [16]

6.910 0.670 2.590 [16]

6.966 0.271 1.993 [19]

erry's equation in contrast with the experimental data set.
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compared with several sets of unseen experimental
temperature-vapor pressure data. These comparisons are
shown in Figure 9.
The references of experimental data used in this figure,

their temperature and pressure ranges, and deviations of
ANN results from the experimental data, in addition, de-
viation of another equation for estimation of vapor pres-
sure of SO2 by Perry's Chemical Engineers' Handbook
[29] are presented in Table 5. As it is clear, deviations
between ANN results and experimental data are lower
than 0.67% that it is very better than 2.68% for Perry's
equation. These results show the capability of the
presented network obviously.
Experimental
For sulfur dioxide density, several thermophysical data are
found in the literature. In this study, detailed data reported
by Ihmels et al. [3] have been used to train the network.
Densities have been measured with a computer-controlled
high-temperature, high-pressure vibrating tube densimeter
system in the sub- and supercritical states at temperatures
from 273 to 523 K and pressures up to 35 MPa (363 over-
all data points), for which densities between 194 and 1,485
kg/m3 were covered. The uncertainty in density measure-
ment was estimated to be no greater than 0.1% in the
liquid and compressed supercritical states, but near
the critical temperature and pressure, the uncertainty in-
creases to 1%.

Conclusion
The ability of artificial neural networks based on back-
propagation algorithm to predict densities of sulfur diox-
ide have been investigated. To predict densities, several
feed-forward neural networks with different architectures
have been used. A feed-forward network with two hidden
layers is used, in which temperature and pressure were in-
put variables and density was the output variable. In
addition, it has been proven that utilizing hyperbolic tan-
gent sigmoid in the first layer and logarithmic sigmoid in
the second layer will produce better results. The
Levenberg-Marquardt algorithm has been applied as the
training rule. Training a network for at least ten times in-
dicates that using 15 and 10 neurons in the first and
second layers, respectively has better results. Network pre-
dictions in comparison with several equations of state have
proven that the ANN results are more accurate
than predictions of EoSs. This has been shown with com-
parisons among several experimental set of PρT data, sat-
urated liquid densities, and compressibility factors in
contrast with the ANN predictions, too. These results
show the capability of the presented network obviously.
For predicting vapor pressures, a feed-forward net-

work with two layers is used in which, temperature and
vapor pressure are its input and output variables, re-
spectively. Also, comparisons have shown good agreement
between the experimental data and predicted results. All of
these results prove that artificial neural networks can be a
successful tool to represent complex nonlinear systems ef-
fectively (e.g., prediction of thermophysical properties), if
developed efficiently.
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