Cadmium chloride: a simple and efficient catalyst for the synthesis of 1,4-dihydropyridine (Hantzsch pyridines)

Yekkirala Venkateswarlu, Sudhagani Ramesh Kumar and Panugati Leelavathi*

Abstract

1,4-Dihydropyridine synthesis has been carried out using cadmium chloride as a catalyst. This protocol is applicable to a variety of aldehydes with β-ketoester and ammonium acetate to afford the corresponding Hantzsch pyridines in excellent yields. This multicomponent condensation took place very smoothly in acetonitrile reflux.

Keywords: Aldehydes, Diketones, $\mathrm{NH}_{4} \mathrm{OAc}, \mathrm{CdCl}_{2}, 1,4$-dihydropyridine

Background

Multicomponent condensation strategies offer significant advantages over conventional linear-type synthesis in providing products with the diversity needed for the discovery of new lead compounds or lead optimization employing combinatorial chemistry [1-6]. In 1882, Arthur Rudolf Hantzsch, a German chemist, reported a cyclocondensation between ethyl acetoacetate, aldehyde and aqueous ammonium hydroxide to afford a heterocyclic system of 1,4-dihydropyridine; since then, it became familiar as the Hantzsch reaction $[7,8]$.
The dihydropyridine derivatives exhibit a large range of biological activities such as anticonvulsant, antitumor, antianxiety, vasodilator, bronchodilator, antidepressant, analgesic, hypnotic, anti-inflammatory and neuroprotectants as well as platelet antiaggregatory agents [9-12]. Dihydropyridines are commercially used as calcium channel blockers for the treatment of cardiovascular diseases (Figure 1). The tremendous biological activity of Hantzsch pyridines attracted many researchers and academicians. Hence, several attempts have been made to synthesize 1,4-dihydropyridine derivatives using various catalysts and reaction conditions such as triphenyl phosphine [13], CAN [14], heteropoly acids [15], Zn complex [16], phenylboronic acid [17], magnesium perchlorate [18],

[^0]cyanuric chloride [19], $\mathrm{Yb}(\mathrm{OTf})_{3}$ [20], ionic liquid [21], organocatalyst [22], L-proline [23], molecular iodine [24], tetrabutylammonium hydrogen sulfate [25] and glycerine- $\mathrm{CeClO}_{2} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ [26,27]. But many of the methods are suffering from some drawbacks such as long reaction time, low yields, tedious workup procedures and the use of expensive catalysts. Therefore, the development of efficient protocol is still in demand. As part of our research program in developing new methodologies [28-31], we report herein a simple and efficient procedure for the synthesis of 1,4-dihydropyridine derivatives using cadmium chloride as a catalyst. Cadmium chloride is a nonhygroscopic white solid that is highly soluble in water, a mild Lewis acid and a catalyst known for various organic transformations in the literature [32-34].

Methods

Results and discussions

In a model reaction, benzaldehyde, β-ketoester and ammonium acetate were reacted in the presence of a catalytic amount ($10 \mathrm{~mol} \%$) of CdCl_{2} at acetonitrile reflux. The reaction was completed within 3 h to afford the corresponding product, diethyl-2,6-dimethyl-4-phenyl-1,4-dihydropyridine-3,5-dicarboxylate (compound 3a), in excellent yields as shown in Scheme 1.
Encouraged by the result obtained with benzaldehyde, we had applied this methodology to a variety of aldehydes such as aromatic, heteroaromatic and aliphatic

Figure 1 Dihydropyridines commercially used as calcium channel blockers for the treatment of cardiovascular diseases.
aldehydes successfully. The condensation reaction proceeded smoothly with β-ketoester and ammonium acetate in the presence of a catalytic amount of cadmium chloride at acetonitrile reflux to give the corresponding 1,4-dihydropyridine derivatives in very good yields. The acid sensitive aldehydes such as cinnamaldehyde (compound 1e), pyridine-2-aldehyde (compound 1 h) and 2-furfuraldehyde (compound 1i) worked well under these reaction conditions. The aromatic aldehydes having electron-withdrawing group react a little slower than aromatic aldehydes, and the aromatic aldehydes having electron-donating group react a little faster than aromatic aldehydes. In a similar manner, the aromatic aldehydes reacted comparatively faster than aliphatic aldehydes. This protocol is successfully applicable to both elec-tron-rich as well as electron-deficient aldehydes. In general, all the reactions were completed within 3 to 5 h at $80^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and the products of 1,4-dihydropyridine derivatives were obtained in 75% to 93% yields. All the products were confirmed by their proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR), infrared (IR) and mass spectroscopy data.

Experimental

All Commercial grecgent were used without purification and all solvents were regenegrade

All the reaction mixtures were stirred megnetically and were monitored by TLC using 0.25 mm . E-Mercu Silica gel $60 f_{254}$ percolated glass plates, which were visualixed with UV light Metting points were recorded on a Buchie R-535 apparatus (BUCHI india private Ltd., Mumbai,

India) and were uncorrected. IR speetro were recorded on a perkin-Elmer FT-IR 240-c Spectrophotometer (perkin Elmer Inc., Walthans, MA, USA) (IdORZBA) India private Ltd., New Delhi, india) in coely using TMS as internal standard Mass Spectro were recorded on a Finnigan MAT 1020 mass Spectrometer Thermo Scientific, Walthon, MA, USA) operating at 70er. General procedure for the synthesis of 1,4-dihydropyridinesTo a stirred mixture of aldehyde ($212 \mathrm{mg}, 2 \mathrm{mmol}$) and ethyl acetoacetate ($572 \mathrm{mg}, 4.4 \mathrm{mmol}$) in acetonitrile (10 mL) was added ammonium acetate ($170 \mathrm{mg}, 2.2 \mathrm{mmol}$) and cadmium chloride ($36.6 \mathrm{mg}, 0.2 \mathrm{mmol}$). The resulting reaction mixture was refluxed for a specified period (Table 1). After completion of the reaction, as indicated by TLC, the solvent was removed under reduced pressure, and the residue was extracted with ethyl acetate $(2 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain the crude products, which were purified by column chromatography using silica gel 60 to 120 mesh and eluted with ethyl acetate-hexane mixture in 3:7 ratio. All the products were confirmed by their spectral data and compared with literature reports.

Spectral data for all the compounds

Diethyl-2,6-dimethyl-4-phenyl-1,4-dihydropyridine-3,5dicarboxylate (3a)
Solid, Melting point (Mp) $155^{\circ} \mathrm{C}$ to $156^{\circ} \mathrm{C}$. IR (KBr): v 3,342, 3,061, 2,978, 2,931, 1,690, 1,651, 1,489, $1,453,1,375,1,300,1,248,1,212,1,121,1,091,1,024,825$,

Scheme 1 The benzaldehyde, β-ketoester and ammonium acetate reaction.

Table 1 Cadmium chloride-catalyzed synthesis of Hantzsch pyridines

Entry	Aldehyde (R)	Product (3a to $3 n)^{a}$	Reaction time (h)	Yield ${ }^{\text {b }}$ (\%)
a			3.0	91
b			3.0	93
c			5.0	82
d			4.0	90
e			4.0	75
f			5.0	82
g			4.0	89
h			4.0	82
i			3.0	92

j

1

Table 1 Cadmium chloride-catalyzed synthesis of Hantzsch pyridines (Continued)

a ${ }^{\text {Products }}$ were confirmed by their ${ }^{1} \mathrm{H}$ NMR, IR and mass spectroscopy. ${ }^{\text {b }}$ Yields were isolated by column chromatography.

767 and $701 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.25(\mathrm{t}$, $6 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.35(\mathrm{~s}, 6 \mathrm{H}), 4.10(\mathrm{q}, 4 \mathrm{H}, J=6.0 \mathrm{~Hz}), 4.90$ (s, 1 H), 5.52 (brs, $1 \mathrm{H}, \mathrm{NH}$) and 7.08 to $7.25(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.3,146.1,143.9,136.1$, 129.2, 126.8, 103.9, 60.1, 40.0, 20.5 and 14.3; EIMS m / z (\%): 328 ($\mathrm{m}^{+} 95$), 284 (100), 256 (25), 252 (35), 225 (15), 219 (10), 195 (10), 181 (12), 173 (25), 131 (15) and 107 (20).

Diethyl-2,6-dimethyl-4-(3,4,5-trimethoxyphenyl)-1, 4-dihydropyridine-3,5-dicarboxylate (3b)
IR (KBr): v 3,357, 2,928, 2,853, 1,696, 1,636, 1,593, 1,497, $1,460,1,378,1,317,1,273,1,205,1,127,1,092,1,001,864$, 803, 748 and $627 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $1.28(\mathrm{t}, 6 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.35(\mathrm{~s}, 6 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 3.80$ (s, 3 H), 4.12 ($\mathrm{q}, 4 \mathrm{H}, J=6.0 \mathrm{~Hz}$), 4.90 (s, 1 H$), 5.52$ (brs, $1 \mathrm{H}, \mathrm{NH}$) and 6.45 (s, 2 H); EIMS $m / z(\%): 420\left(\mathrm{~m}^{+1} 30\right)$, 374 (25), 346 (20), 328 (10), 252 (100), 227 (10), 170 (10) and 121 (10).

Diethyl-2,6-dimethyl-4-(4-nitrophenyl)-1,4-dihydropyridine-3,

 5-dicarboxylate (3c)Solid, Mp $130^{\circ} \mathrm{C}$ to $131^{\circ} \mathrm{C}$. IR (KBr): v 3,341, 3,084, $2,979,2,927,2,855,1,683,1,518,1,484,1,344,1,301$, 1,213, 1,101, 1,020, 828, 754 and $706 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.25(\mathrm{t}, 6 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.35(\mathrm{~s}$, $6 \mathrm{H}), 4.10(\mathrm{q}, 4 \mathrm{H}, J=6.0 \mathrm{~Hz}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 5.70$ (brs, $1 \mathrm{H}, \mathrm{NH}), 7.41(\mathrm{~d}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz})$ and $8.06(\mathrm{~d}, 2 \mathrm{H}$, $J=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.9,156.0$, 145.9, 144.7, 128.3, 123.5, 103.4, 60.1, 40.2, 20.3 and 14.2; EIMS $m / z(\%): 375$ ($\mathrm{m}^{+1} 45$), 348 (10), 329 (100), 320 (10), 301 (25) and 102 (10).

Diethyl-2,6-dimethyl-4-(3-chlorophenyl)-1,4-dihydropyridine-3,

5-dicarboxylate (3d)

Solid, Mp 130 to $131^{\circ} \mathrm{C}$. IR (KBr): v 3,323, 3,246, 3,098, $2,979,2,925,1,705,1,649,1,488,1,375,1,333,1,299$, $1,214,1,119,1,022,869,788,751$ and $694 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 1.23(\mathrm{t}, 6 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.36$ $(\mathrm{s}, 6 \mathrm{H}), 4.10(\mathrm{q}, 4 \mathrm{H}, J=6.0 \mathrm{~Hz}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 5.58$ (brs, $1 \mathrm{H}, \mathrm{NH}$), 7.05 to $7.20(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 167.9,150.1,144.1,143.5,132.6,128.0,127.6$, 126.0, 103.6, 60.1, 40.2, 19.3 and 14.8; EIMS m / z (\%): $386\left(\mathrm{~m}^{+1} 65\right), 364$ (40), 318 (100), 292 (10), 251 (20), 201 (10) and 171 (25).

(E)-Diethyl-2,6-dimethyl-4-styryl-1,4-dihydropyridine-3, 5-dicarboxylate (3e)

Solid, Mp 148° to $150^{\circ} \mathrm{C}$. IR (KBr): v 3,334, 3,095, 2,924, $1,690,1,644,1,490,1,375,1,326,1,296,1,219,1,161$, 1,116, 1,025, 783, 755 and $715 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.22(\mathrm{t}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.38(\mathrm{~s}$, $6 \mathrm{H}), 3.92$ (s, 3 H), 4.18 (q, $2 \mathrm{H}, J=6.0 \mathrm{~Hz}$), 5.14 (d, 1 H , $J=4.5 \mathrm{~Hz}$), 5.6.0 (brs, 1 H), 6.15 (dd, $1 \mathrm{H}, J=4.5$ \& $14.8 \mathrm{~Hz}), 7.18$ (d, $1 \mathrm{H}, J=14.8 \mathrm{~Hz}$) and 7.22 to 7.34 (m, 5 H); EIMS m/z (\%): 341 ($\mathrm{m}^{+1} 20$), 327 (10), 297 (100), 269 (10), 211 (15), 183 (20), 104 (18), 81 (25), 76 (35) and 51 (22).

Diethyl-4-decyl-2,6-dimethyl-1,4-dihydropyrimidine-3, 5-dicarboxylate (3f)

IR (neat): v 3,377, 2,926, 2,855, 1,728, 1,567, 1,461, $1,376,1,282,1,233,1,104,1,041,860$ and $772 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.90(\mathrm{t}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}$), 1.20 to $1.36(\mathrm{~m}, 24 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H}), 3.85(\mathrm{t}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz})$, $4.20(\mathrm{q}, 4 \mathrm{H}, J=6.0 \mathrm{~Hz})$ and 5.48 (brs, $1 \mathrm{H}, \mathrm{NH}$); EIMS m / z (\%): 393 ($\mathrm{m}^{-1} 100$), 335 (10) and 320 (10).

Diethyl-4-benzyl-2,6-dimethyl-1,4-dihydropyridine-3, 5-dicarboxylate (3g)

IR (neat): v 2,978, 2,927, 1,719, 1,592, 1,443, 1,369, 1,289, 1,252, 1,222, 1,105, 1,043, 863, 769 and $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.26(\mathrm{t}$, $6 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.15(\mathrm{~s}, 6 \mathrm{H}), 2.55(\mathrm{~d}, 2 \mathrm{H}$, $J=5.0 \mathrm{~Hz}), 4.05(\mathrm{q}, 4 \mathrm{H}, J=6.0 \mathrm{~Hz}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 5.45$ (brs, $1 \mathrm{H}, \mathrm{NH}$), $6.98(\mathrm{~d}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}$) and 7.10 to 7.20 (m, 3 H); EIMS m/z (\%): 344 ($\mathrm{m}^{+1} 20$), 342 (10), 318 (10), 250 (10), 298 (25), 252 (100) and 224 (10).

Diethyl-2,6-dimethyl-4-(pyridin-2-yl)-1,4-dihydropyridine-3, 5-dicarboxylate (3h)

IR (KBr): v 3,273, 3,172, 3,054, 2,925, 1,676, 1,593, 1,508, $1,437,1,371,1,304,1,256,1,212,1,116,1,018,751$ and $677 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.20(\mathrm{t}, 6 \mathrm{H}$, $J=6.0 \mathrm{~Hz}), 2.25(\mathrm{~s}, 6 \mathrm{H}), 4.05(\mathrm{q}, 4 \mathrm{H}, J=6.0 \mathrm{~Hz}), 5.12(\mathrm{~s}$, $1 \mathrm{H}), 7.08$ to 7.12 (m, 1 H$), 7.32$ to 7.38 (m, 1 H$), 7.51$ to 7.58 (m, 1 H), 8.05 (brs, 1 H) and 8.48 (d, 1 H , $J=6.0 \mathrm{~Hz}$); EIMS $m / z(\%): 331\left(\mathrm{~m}^{+1} 100\right)$, 308 (10), 286 (55), 292 (10) and 262 (10)

Diethyl-4-(furan-2-yl)-2,6-dimethyl-1,4-dihydropyridine-3, 5-dicarboxylate (3i)

Solid, Mp $158^{\circ} \mathrm{C}$ to $160^{\circ} \mathrm{C}$. IR (KBr): v 3,346, 2,981, $1,702,1,650,1,487,1,373,1,331,1,298,1,262,1,209$, $1,119,1,095,1,047,1,013,807,731$ and $687 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 1.28(\mathrm{t}, 6 \mathrm{H}$, $J=6.0 \mathrm{~Hz}), 2.32(\mathrm{~s}, 6 \mathrm{H}), 4.10$ to $4.22(\mathrm{~m}, 4 \mathrm{H}), 5.12$ (s, 1 H), 5.61 (brs, 1 H), $5.90(\mathrm{~s}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H})$ and 7.18 (s, 1 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 168.1, 159.0, 145.5, 141.2, 109.8, 104.9, 99.8, 60.2,
33.5, 20.1 and 14.5; EIMS $m / z(\%): 320\left(\mathrm{~m}^{+1} 45\right)$, 318 (25), 304 (40), 274 (10), 261 (10), 252 (100) and 214 (15).

Diethyl-4-(2-chloro-6-methylquinolin-3-yl)-2,6-dimethyl-1, 4-dihydropyridine-3,5-di carboxylate (3j)

IR (neat): u 3,338, 2,981, 1,725, 1,695, 1,560, 1,495, 1,448, 1,375, 1,301, 1,275, 1,213, 1,171, 1,104, 1,043, 925, 824 and $755 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.19$ (t, $6 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.32(\mathrm{~s}, 6 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 4.01$ to 4.12 (m, 4 H$), 5.42$ (s, 1 H), 5.65 (brs, 1 H$), 7.40$ to 7.50 (m, 2 H), $7.82(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz})$ and $7.99(\mathrm{~s}, 1 \mathrm{H})$. EIMS m / z (\%): 429 ($\mathrm{m}^{+1} 100$), 393 (35), 251 (10) and 178 (20).

Diethyl-4-(2,6-dimethylhept-5-enyl)-2,6-dimethyl-1, 4-dihydropyridine-3,5-dicarboxylate (3k)

IR (neat): v 3,373, 2,967, 2,927, 1,728, 1,565, 1,449, $1,377,1,283,1,236,1,106,1,040,859$ and $775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.88(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H})$, 0.98 to $1.10(\mathrm{~m}, 1 \mathrm{H}), 1.20$ to $1.35(\mathrm{~m}, 10 \mathrm{H}), 1.58(\mathrm{~s}$, $3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.80$ to $1.95(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H})$, $4.20(\mathrm{q}, 4 \mathrm{H}, J=6.0 \mathrm{~Hz})$ and 5.48 (brs, $1 \mathrm{H}, \mathrm{NH}$); EIMS m / z (\%): 378 ($\mathrm{m}^{+1} 40$), 376 (50), 332 (20), 306 (10), 274 (15), 252 (100), 197 (10), 161 (10), 116 (10), 81 (10) and 65 (18).

Diethyl-4-[4-(dimethylamino)phenyl]-2,6-dimethyl-1, 4-dihydropyridine-3,5-dicarboxylate (31)

IR (KBr): v 3,319, 3,095, 2,979, 2,923, 2,804, 1,697, 1,674, $1,613,1,519,1,492,1,446,1,352,1,302,1,276,1,203,1,128$, $1,096,1,050,1,021,945,818,785,747$ and $683 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.26(\mathrm{t}, 6 \mathrm{H}, J=6.0 \mathrm{~Hz}$), $2.32(\mathrm{~s}, 6 \mathrm{H}), 2.90(\mathrm{~s}, 6 \mathrm{H}), 4.02$ to $4.15(\mathrm{~m}, 4 \mathrm{H}), 4.81$ (s, 1 H), 5.50 (brs, $1 \mathrm{H}, \mathrm{NH}$), 6.60 to $6.70(\mathrm{~m}, 2 \mathrm{H})$ and $7.10(\mathrm{~d}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz})$; EIMS $m / z(\%): 373\left(\mathrm{~m}^{+1}\right.$ 100), 252 (25), 227 (10), 205 (10), 116 (10), 65 (10) and 55 (10).

Diethyl-4-[4-(benzyloxy)-3-methoxyphenyl]-2,6-dimethyl-1, 4-dihydropyridine-3,5-dicarboxylate (3m)

IR (KBr): v 3,365, 3,063, 2,926, 2,853, 1,693, 1,642, 1,621, $1,511,1,484,1,422,1,380,1,270,1,201,1,161,1,093$, $1,049,1,007,862,812,748,703$ and $658 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.25(\mathrm{t}, 6 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.32(\mathrm{~s}$, $6 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.06$ to $4.15(\mathrm{~m}, 4 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H})$, 5.05 (s, 2 H), 5.42 (brs, $1 \mathrm{H}, \mathrm{NH}), 6.62$ to $6.70(\mathrm{~m}, 2 \mathrm{H})$, $6.82(\mathrm{~s}, 1 \mathrm{H})$ and 7.28 to $7.42(\mathrm{~m}, 5 \mathrm{H})$; EIMS m / z (\%): 465 (m ${ }^{+} 35$), 464 (65), 420 (15), 392 (20), 367 (10), 322 (10), 252 (100), 152 (10), 115 (10), 102 (15) and 75 (10).

Conclusion

In conclusion, we have demonstrated a simple and efficient three-component process for the synthesis of 1 , 4-dihydropyridines by condensation of aldehyde, β -
ketoester and ammonium acetate using cadmium chloride as the catalyst. The notable features of this protocol are mild reaction conditions, simplicity in operation, improved yields, and cleaner reaction profiles.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

WV lu caried out-synthesis of 1,4 dihydropyridine derivatives - SRK participated in the design of the study spectral analysis, PL conceived of thye study and participated in its design and coordination. All authors read and approved the final manmuscript.

Authors' information

Department of Chemistry, University College for women noti asmania University, Hydevabac 500095, India. YV Lu and SRK are research scholars and PL is a Proffesor.

Acknowledgement

The authors are thankful to the direct IICT for providing working space and chemicals.

Received: 29 December 2010 Accepted: 28 March 2012
Published: 22 August 2012

References

Eynde JJV, Mayence A (2003) Molecules 8:381
2. Syamala M (2009) Org Prep Proc Int 41:1
3. Saini A, Kumar S, Sandhu JS (2008) J Sci Ind Res 67:95
4. Hopes PA, Parker AJ, Patel I (2006) Org Pro Res Dev 10:808
5. Domling A, Ugi I (2000) Angew Chem Int Ed 39:3168
6. He R, Toy PH, Lam Y (2008) Adv Syn Catal $350: 54$
7. Hantzsch A (1881) Ber 14:1637
8. Hantzsch A (1882) Jusfus Liebigs Ann Chem 215:1
9. Cosconati S, Marinelli L, Lavecchia A, Novellino E (2007) J Med Chem 50:1504
10. Mannhold R, Jablonka B, Voigdt W, Schoenafinger K, Schravan K (1992) Eur J Med Chem 27:229
11. Miri R, Javidnia K, Sarkarzadeh H, Hemmateenejad B (2006) Bioorg Med Chem Lett 14:4842
12. Boer R, Gekeler V (1995) Drugs Future 20:499
13. Debache A, Ghalem W, Boulcina R, Belfaitah A, Rhouati S, Carboni B (2009) Tetrahedron Lett 50:5248
14. Sridharan V, Perumal PT, Avendano C, Manendez JC (2007) Tetrahedron 63:4407
15. Heravi MM, Bakhtiari K, Javadi NM, Bamoharram FF, Saeedi M, Oskooie HA (2007) J Mol Catal A 264:50
16. Murugan VS, Kumar RS, Chamy MP, Murugesan V (2005) J Heterocyclic Chem 42:969
17. Debache A, Boulcina R, Belfaitah A, Rhouati S, Carboni B (2008) Synlett 4:509
18. Bartoli G, Babiuch K, Bosco M, Carlone A, Galzerano P, Melchiorre P, Sambri L (2007) Synlett 18:2897
19. Sharma GVM, Reddy KL, Lakshmi PS, Krishna PR (2006) Synthesis $1: 55$
20. Wang LM, Sheng J, Zhang L, Han JW, Fan ZY, Tian H, Qian CT (2005) Tetrahedron 61:1539
21. Yadav JS, Reddy BVS, Basak AK, Narsaiah AV (2003) Green Chem 5:60
22. Kumar A, Maurya RM (2008) Tetrahedron 64:3477
23. Karade NN, Budhewari VH, Shinde SV, Jadav WN (2007) Lett Org Chem 4:16
24. Akbari JD, Tala SD, Daduk MF, Joshi HS (2008) Arkivoc XII:126
25. Tewari N, Dwivedi N, Tripathi RP (2004) Tetrahedron Lett 45:9011
26. Narsaiah AV, Nagaiah B (2010) Asian J Chem 22:8099
27. Shen L, Cao S, Wu J, Zhang J, Li H, Liu N, Qian X (2009) Green Chem 11:1414
28. Kumar SR, Leelavathi P (2005) J Mol Catal A 240:99
29. Kumar SR, Leelavathi P (2007) J Mol Catal A 266:65
30. Kumar SR, Leelavathi P (2007) Can J Chem $85: 37$
31. Venkateswarlu Y, Leelavathi P (2010) Lett Org Chem 7:208
. Narsaiah AV, Basak AK, Nagaiah K (2004) Synthesis $35: 1253$
Baruah B, Baruah A, Prajapati D, Sandhu JS (1996) Tetrahedron Lett 37:9087 Vijender M, Kishore P, Satyanarayana B (2007) Synth Commun 37:591
doi:10.1186/2228-5547-3-18
Cite this article as: Venkateswarlu et al.: Cadmium chloride: a simple and efficient catalyst for the synthesis of 1,4-dihydropyridine (Hantzsch pyridines). International Journal of Industrial Chemistry 2012 3:18.

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

[^0]: * Correspondence: yekkiralavenkat@gmail.com

 Department of Chemistry, University College for Women, Koti, Osmania University, Hyderabad, 500095, India

