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Abstract

This paper presents molecular dynamics (MD) modeling for calculating the specific heat of nanofluids containing
copper nanoparticles. The Cu nanoparticles with 2-nm diameter were considered to be dispersed in water as base
liquid. The MD modeling procedure presented and implemented to calculate the specific heat of nanofluids with
volume fractions of 2 to 10%. Obtained results show that the specific heat capacity of Cu-water nanofluids
decreases gradually with increasing volume concentration of nanoparticles. The simulation results are compared
with two existing applied models for prediction of the specific heat of the nanofluid. The obtained specific heat
results from the MD simulation and the prediction from the thermal equilibrium model for calculating specific heat
of nanofluids exhibit good agreement and the other simple mixing model fails to predict the specific heat capacity
of Cu-water nanofluids particularly at high volume fractions.
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Background
Nanofluids are a new class of nanotechnology-based
heat transfer fluids produced by dispersing nanoparticles
with sizes typically smaller than 100 nm into traditional
heat transfer fluids such as water, ethylene glycol, and en-
gine oil. Due to small sizes and very large specific surface
areas of the nanoparticles, nanofluids have novel proper-
ties like high thermal conductivity, superior critical heat
flux (CHF), minimal clogging in flow, and improved heat
transfer coefficient [1-4]. These characteristics of nanofluids
make them potentially useful in a plethora of engineering
applications ranging from use in the automotive industry to
the medical field to use in power plant cooling systems as
well as computers [5].
In order to study the heat transfer performance of

nanofluids and use them in practical applications, it is
necessary first to study their thermal properties. Until
now, there are numerous experimental and theoretical
reports for the thermal conductivity and the viscosity of a
variety of nanofluids [6-12]. The density of the nanofluids
has been reported to be consistent with the mixing theory
[13,14]. However, the specific heat capacity, cp, one of the
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main parameters involved in calculating heat transfer rate
of nanofluids, has received very little attention. This prop-
erty has an important role in describing the nanofluid flow
thermal status, measuring the thermal diffusivity and the
spatial temperature inside the flow.
Two models have been extensively applied in the ex-

perimental and numerical nanofluid investigations; the
first one is similar to the mixing theory for ideal gas
mixtures. In this model, the specific heat capacity of a
nanofluid is given as

cp;nf ¼ φcp;n þ 1−φð Þcp;bf ; ð1Þ

where φ is the volume fraction of nanoparticles. The
subscripts nf, bf, and n refer to the nanofluid, base fluid,
and nanoparticles, respectively. Many researchers have
used this model to calculate the specific heat capacity of
nanofluids in their studies [13,15-21].
The second model assumes that the base fluid and the

nanoparticles are in thermal equilibrium. Therefore, the
nanofluid specific heat capacity is expressed as

cp;nf ¼
φ ρcp
� �

n þ 1−φð Þ ρcp
� �

bf

φρn þ 1−φð Þρbf
; ð2Þ

where ρ is the density.
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This model has also been chosen as a base formula in
many nanofluid studies [22-26]. It should be noted that the
deviation between the two models is too large to be ig-
nored, especially for high volume fractions of nanoparticles.
Zhou and Ni [27] conducted an experimental study of

the specific heat capacity of water-based Al2O3 nanofluid
with a differential scanning calorimeter (DSC). Their re-
sults indicated that the specific heat capacity of nanofluids
decreases gradually as the nanoparticle volume fraction
increases. Moreover, their results are in good agreement
with the thermal equilibrium model, Equation (2), and
the other simple mixing model, Equation (1), failed to
predict the specific heat capacity of nanofluids. Vajjha and
Das [28] measured the specific heat of three nanofluids
containing aluminum oxide, zinc oxide, and silicon dioxide
nanoparticles. The base fluids were ethylene glycol and
water (60:40 EG/W) and deionized water. Measurements
were conducted over a temperature range of 315 to 363 K.
Their results were not in close agreement with the existing
equations for the specific heat of nanofluids. They devel-
oped a new general correlation for the specific heat as
functions of particle volumetric concentration, temperature,
and the specific heat of both the particle and the base fluid
from their set of experimental data.
In another study, Zhou et al. [29] reviewed briefly the

definition of heat capacity and measured the specific
heat capacity of nanofluids made by ethylene glycol with
the inclusion of CuO nanoparticles at room temperature
using the quasisteady-state principle. The comparison of
their measured experimental data and the predictions of
models illustrated that they are in good agreement with
the thermal equilibrium model.
The purpose of our study is to investigate the specific

heat capacity of nanofluids using the molecular dynamics
(MD) simulation method and to compare the results with
the mentioned models.
The MD is a powerful computational technique that

simulates the real behavior of materials by solving the
equation of motion for a system of particles [30-32]. It
can predict the physical properties of materials by as-
suming an interacting potential between particles. Using
this method, the trajectory and physical movements of
atoms, molecules, and nanoparticles in the system can
be determined. The atoms are allowed to interact with each
other and various quantities such as pressure, temperature,
energy, and so on are calculated. Moreover, it can predict
the physical properties of materials by assuming a suit-
able potential between particles. The interactions be-
tween atoms are described by different potentials and
force fields. Since there is no further essential assump-
tion in MD, it can be used as an accurate tool to study
the results obtained from other classical models with a
wide range of applicability in nanotechnology, biochem-
istry, and biophysics fields. However, there are some
limitations in MD simulations such as number of parti-
cles and simulation time due to the available computa-
tional power. During the past few years, MD has been
widely employed for prediction of thermal properties
of nanofluids which provided comprehensive know-
ledge of heat transfer mechanism at nanoscale [33-40].
In this way, most of the studies have been focused on
thermal conductivity enhancement and one could not
find adequate MD literature on specific heat capacities of
nanofluids.
In this paper, we have modeled the Cu-water nanofluids

with different volume fractions of copper nanoparticles
using MD simulation and compared the specific heat cap-
acity of nanofluids with theoretical models. The simula-
tion details, results on specific heat capacities, and their
variations with different volume fractions are explained in
the following sections.

Methods
MD Simulation details
Copper nanoparticles with 2-nm diameter have been con-
sidered in water as base fluid. The equilibrium structure
of a nanofluid is shown in Figure 1. The water molecules
are randomly distributed around the nanoparticles. The
inter-atomic interaction between nanoparticles is modeled
by pair-wise Lennard-Jones (LJ) potential as

ULJ rð Þ ¼ 4ε
σ

r

� �12
−

σ

r

� �6
� �

ð3Þ

where ε and σ are the LJ energy and length parameters,
respectively, and r is the inter-atomic distance. The LJ
potential has lower computational costs compared with
the other existing potentials for modeling copper. The
LJ parameters, i.e., ε and σ, for copper are shown in
Table 1. Here, water molecules are considered by the
rigid TIP3P model as implemented in CHARMM which
specifies a three-site rigid water molecule with charges
and Lennard-Jones parameter assigned to each of the three
atoms [41]. This model is very popular for MD simulations
because of simplicity and computational efficiency. To
compute for the long-range Coulombic interactions, we
used the particle-particle-particle-mesh (pppm) method
[42]. An additional switching function S(r) that ramps
the energy and force smoothly to zero is used in both LJ
and Columbic potentials as

S rð Þ ¼
r2c;out−r

2
h i2

r2c;out þ 2r2−3r2c;in
h i

r2c;out−r2c;in
h i3 ; ð4Þ

where rc,in and rc,out are inner and outer cut off radii
equal to 8 and 10 Å, respectively.
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Figure 1 Nanofluid MD model: Cu nanoparticle (blue) and surrounding water.
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The water-Cu and water-water interactions are described
by common Lorentz-Berthelot combination rule as

σ ij ¼ 1
2 σ ii þ σ jj
� ��

εij ¼ ffiffiffiffiffiffiffiffiffi
εiiεjj

p
: ð5Þ

where i and j are denoted to non-bonded atoms in the
system. The LJ parameters for nonbonding interactions
are shown in Table 1.
The Molecular dynamics simulations are performed ini-

tially in NVE ensembles as well as the Langevin thermo-
stat over 100 ps to relax the system. The system is then
performed in NPT integration for 400 ps, using the Nose/
Hoover temperature thermostat [44] and the Nose/Hoover
pressure barostat [45], implemented as described in [46].
After reaching the system to T = 298.5 K and atmospheric
pressure, the thermodynamics quantities are recorded every
1 fs time steps. All MD simulations were performed using
the Large-scale Atomic/Molecular Massively Parallel Simu-
lator Package (LAMMPS) [47].
Table 1 LJ parameters for non-bonding interactions [35,43]

Interaction type ε (Kcal/mole) σ (A)

Cu-Cu 9.4390 2.3377

H-H 0.0460 0.4000

O-O 0.1521 3.1507
The constant-pressure specific heat is considered as
cp = (∂E/∂T)p, which is usually defined in terms of energy
fluctuations as

cp ¼
δE2

 �

NPT

kBT 2 ; ð6Þ

where 〈δE2〉 = 〈E2〉 − 〈E〉2 [48,49].
The energy fluctuation for a particular case (φ = 2%)

is shown in Figure 2. Since, in the NPT ensemble, the
temperature is artificially controlled by the thermostat,
the total energy fluctuates around its mean value.
Results and discussion
Validation for pure water and copper
As the existing literature does not give any information
about experimental results for the specific heat of Cu-
water nanofluids, to validate our MD simulation proced-
ure, the specific heat of pure water and pure copper at
standard condition (T = 298.5 K and P = 1 atm) were
calculated separately. To compute for the specific heat,
we consider 1,000 molecules of water and 500 copper
atoms. These values are the minimum number of particles
used in all our simulations. The specific heat capacities
of water and copper are computed for different total
number of time steps for averaging in Equation (6). Figure 3
shows that the results are converging and 105 number
of time steps for averaging is sufficient to be in good
agreement with experimental values of specific heat cap-
acities of water and copper.
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Figure 2 The total energy and temperature fluctuations of the system, for T = 298.5 K and volume fractions of 2%.
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Specific heat capacity for water-Cu nanofluid
After validating our method, the MD simulation results
of the specific heat of nanofluid are presented here.
Moreover, the obtained results by MD are compared with
the mentioned theoretical models. The nanofluids with
2%, 4%, 6%, 8%, and 10% volume fractions are consid-
ered in the MD simulations. In all cases, the diameters
of Cu nanoparticles are set to 2 nm. It should be noted
that the Cu nanoparticles have not tethered to its initial
position and can freely have its Brownian motions in
our simulation.
Figure 3 The specific heat capacities of pure water and copper are co
MD results and experimental values are converging for large sufficient num
The specific heat results are plotted in Figure 4. As
shown, the cp decreases when the volume fraction is
increased. As shown in Figure 3, the specific heat of
Cu nanoparticles is much lower than the water base fluid.
Therefore, by the increase in nanoparticle fraction, the
portion of heat absorption with these lower specific heat
nanoparticles is increased and lead to the decreasing in
nanofluid specific heat. This reduction is consistent with
the theoretical models. Moreover, the same reduction in
specific heat by increasing in nanoparticle fraction has
been observed in experimental studies [27].
mputed for different total number of time steps for averaging.
ber of time steps.
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Figure 4 Specific heat capacity of nanofluid. Computed with MD (black points), mixing model Equation 1 (green points), and thermal
equilibrium model Equation 2 (red points) for different volume fractions.
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Figure 4 illustrates that there are good agreements be-
tween MD results and thermal equilibrium model predic-
tions, Equation (2) (black points), and the other mixing
model, Equation (1) (green points), failed to predict the
specific heat of nanofluids particularly for large values of
nanoparticle volume fractions. However, at very small
values of volume fractions, both models and MD simula-
tion data are converging.
Moreover, the effects of the number and size of the

nanoparticles have been investigated by considering two
Cu nanoparticles with diameter of 1 nm. It is found that
the result is very close to the case of simulating one Cu
nanoparticle with a 2-nm diameter in the water with the
same volume fraction. Therefore, it can be concluded that
the particle aggregation has no effect on the results.
Conclusion
In this paper, the specific heat capacities of the Cu-water
nanofluids with different volume fractions were determined
using MD simulation. The MD results were validated with
experimental data for the specific heat of pure water and
pure copper. The specific heat of nanofluid was found to
decrease with the increase in the volume fraction of copper
nanoparticles. It was also observed that the MD results are
in good agreement with the thermal equilibrium model for
predicting the specific heat of nanofluids, and the other
model based on the mixing theory for ideal gas mixtures
failed to predict the specific heat of nanofluids.
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