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Abstract

UV–vis and photoluminescence spectra of the hydrothermally synthesized crystalline lithium metasilicate (Li2SiO3)
and lithium disilicate (Li2Si2O5) nanomaterials are studied. The intensity of the bands in the emission spectra
increases with increasing reaction time in both compounds. The electronic band structure along with density of
states calculated by the density functional theory (DFT) method indicates that Li2SiO3 and Li2Si2O5 have an indirect
energy band gap of 4.575 and 4.776 eV respectively. The optical properties, including the dielectric, absorption,
reflectivity, and energy loss spectra of the compounds, are calculated by DFT method and analyzed based on the
electronic structures.
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Background
Silicates are the most abundant and most complicated class
of minerals on earth that have tremendous technological
applications in fields such as catalysis, microelectronics,
biomedicine, photonics, and traditional glass and ceramic
industries [1]. In particular, the crystalline lithium silicates
are present as important phases in silicate glass ceramics
[2] and are of research interest because of their techno-
logical applications in areas such as CO2 captures
[3-12], lithium battery cathode materials [13], fast ion
conductors [14], optical waveguides [15], and tritium
breeding materials [16,17].
Synthesis of lithium silicates has been achieved using

different methods, such as solid state reaction, precipita-
tion, sol–gel method, extrusion-spherodisation process,
rotating/melting procedures, combustion, electrochemical
method, and recently via hydrothermal method. However,
most of the time, a mixture of Li2SiO3, Li2Si2O5, Li4SiO4,
and SiO2 were obtained [13,15,18-21]. On the other hand,
the synthesis of nanocrystalline ceramic materials imposes
a challenge on the traditional solid state synthesis methods
which fail to offer a sufficiently narrow size distribution
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and desired homogeneity at the nanometer level [22].
However, the hydrothermal synthesis method has an
advantage for the production of highly crystalline and
pure nanoparticles [23].
Moreover, despite of some significant experimental

achievements, our knowledge on the electronic structure
and optical properties of the crystalline lithium silicates
is still rather limited. The electronic structure of the
lithium metasilicate (Li2SiO3) and lithium disilicates
(Li2Si2O5) are previously calculated [1]. However, the
predicted band gaps are wider than even those experi-
mentally measured for the related nanocrystals described
in this research work. Moreover, the optical properties
of these materials are not calculated.
Recently, we have reported the synthesis of highly

crystalline and pure lithium metasilicate and lithium
disilicate nanomaterials through a mild condition via
hydrothermal method [24]. Herein, we will report the
powder X-ray diffraction (PXRD) and scanning electron
microscopy (SEM) analysis results in more details. In
addition, the UV–vis and photoluminescence spectra of
the obtained materials will be discussed. Moreover, we
will present the electronic and optical properties of the
synthesized materials through the density functional
theory calculations.
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Figure 1 PXRD patterns of the synthesized Li2SiO3 nanomaterials
after different times at 180°C. (a) 48, (b) 72, and (c) 96 h.

Figure 2 PXRD patterns of the synthesized Li2Si2O5 nanomaterials
after different times at 180°C. (a) 48, (b) 72, (c) 96, and (d) 120 h.
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Methods
The synthesis procedures are reported previously [24].
Phase identifications were performed on a powder X-ray
diffractometer Siemens D5000 (Siemens AG, Munich,
Germany) using Cu-Kα radiation. The morphology of the
obtained materials was examined with a Philips XL30
scanning electron microscope (North Billerica, MA,
USA). Absorption and photoluminescence spectra were
recorded on a Jena Analytik Specord 40 (AnalytikJena UK,
Wembley, UK) and a PerkinElmer LF-5 spectrometer
(PerkinElmer, Waltham, MA, USA) respectively.

Computational details
The electronic band structures along with the density of
states (DOS) of the compounds are calculated by density
functional theory (DFT) using one of the three non-local
gradient-corrected exchange-correlation functionals (gen-
eralized gradient approximation-Perdew-Burke-Ernzerhof
parametrization, GGA-PBE). Calculations were performed
with the CASTEP code [25,26], which uses a plane wave
basis set for the valence electrons and norm-conserving
pseudopotential [27] for the core electrons. The number
of plane waves included in the basis was determined by a
cutoff energy Ec of 500.0 eV. The summation over the
Brillouin zone was carried out with a k-point sampling
using a Monkhorst-Pack grid [28] with parameters of 5 ×
5 × 5 and 4 × 5 × 2 for Li2SiO3 and Li2Si2O5, respectively.
Pseudoatomic calculations were performed for Li-2 s2, Si-3
s23p2, O-2s22p4. The parameters used in the calculations
and convergence criteria were set by the default values of
the CASTEP code, e.g., reciprocal space pseudo-potentials
representations, eigen-energy convergence tolerance of
1 × 10−6 eV, Gaussian smearing scheme with the smearing
width of 0.1 eV, and Fermi energy convergence tolerance
of 1 × 10−7 eV.

Results and discussion
PXRD analysis
Figure 1 represents the PXRD patterns of the obtained
Li2SiO3 nanomaterials after reaction times of 48, 72, and
96 h. The PXRD measurements confirm that when the
Li/Si molar ratio in the reaction mixture is 1:2, a pure
phase of the orthorhombic Li2SiO3 (space group of
Cmc21 [29-35]) is formed. In contrast, as shown in
Figure 2, with the Li/Si molar ratio of 1:3 in the reaction
mixture, a mixture of meta-stable Li2Si2O5 (space group
of Pbcn [36,37]) and Li2SiO3 is obtained after 48 h. By
increasing the reaction time to 72, 96, or 120 h, a pure
highly crystalline phase of meta-stable Li2Si2O5 is
obtained. A stable form of this compound crystallizes in
the space group of Ccc2 [38]. However, most papers
refer to a monoclinic cell [19,39-43] despite noticing a
discrepancy in diffraction peak intensities between the
experiment and calculation. The monoclinic cell has a
different symmetry but the same size as the Ccc2 stable
form (β = 90°) [44]. Particle sizes that were measured via
Debye-Sherrer equation are as follows: Lithium metasilicate
particle sizes are 26.12, 26.82, and 24.58 nm for 48, 72, and
96 h reaction times, respectively. Lithium disilicate particle
sizes are 20.696, 22.50, and 23.86 nm for 72, 96, and 120 h
reaction times, respectively. Also, interplanar spacing in the
crystalline material are calculated via Bragg’s law (nλ = 2dhkl
sin θ)). Thus compared to those of the nanoparticles of
pure lithium silicates, with increasing the reaction time,
the diffraction lines in the powder XRD patterns of the
nanoparticles of lithium metasilicates shift to higher
2θ values (Δ2θ = 26.84(48 h) − 26.88(96 h) = 0.04° and
Δd = 3.3177 Å (48 h) − 3.3128 Å (96 h) = 0.0049 Å; and
with increasing the reaction time, the diffraction lines in
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the powder XRD patterns of the nanoparticles of lithium
disilicates shift to lower 2θ values Δ2θ = 30.66(72 h) −
30.59(120 h) = 0.07°, Δd = 2.9190 Å (120 h) − 2.9125 Å
(72 h) = 0.065 Å. According to above measurements,
particle sizes measured with Debye-Sherrer equation are in
good agreement with interplanar spacing in the crystalline
material measured via Bragg’s law.

Microstructure analysis
The SEM images of the synthesized Li2SiO3 nanomaterials
are given in Figure 3. With the reaction time of 48 h,
ununiform sheet-like nanoparticles of Li2SiO3 are obtained
(Figure 3a). The thicknesses, widths, and lengths of the
resultant sheets are approximately 100 nm, 600 nm and
2 μm, respectively. With increasing the reaction time to
72 h, the morphology of the obtained materials has been
changed to the very compact sheets with heterogeneous
morphology (Figure 3b). This is while with the reaction
time of 96 h, uniform flower-like nanoparticles are obtained
(Figure 3c).
Figure 4 represents the SEM images of the synthesized

Li2Si2O5 nanomaterials. After 48 h, the morphology of
the obtained material is sponge-like, consisting of sheet-like
and flower-like nanoparticles (Figure 4a). With increasing
the reaction time to 72, 96, and 120 h, the morphology of
Figure 3 The SEM images of the synthesized Li2SiO3 nanomaterials o
the obtained materials has been changed to the rectangular
sheets and high homogeny in the size is achieved.
According to Figure 3 with image magnification of 15,000,
it is clear that with increasing reaction time, the grain size
has been decreased. Moreover, according to Figure 4,
with image magnification of 15,000, it is clear that with
increasing the reaction time the grain size has been
increased. So Figures 3 and 4 are in agreement with the
calculated particle size and interplanar spacing in the
crystalline material measured in PXRD analysis section.

Spectroscopic studies
The electronic absorption spectra and also the emis-
sion spectra of the synthesized Li2SiO3 and Li2Si2O5

nanomaterials are given in Figures 5 and 6, respectively.
An intense absorption band at 276, 275, and 275 nm is
observed in the electronic absorption spectra of the
Li2SiO3 nanomaterials obtained after 48, 72, and 96 h at
180°C respectively. A similar intense absorption band is
observed at 272, 274, and 277 nm in the electronic
absorption spectra of the Li2Si2O5 nanomaterials obtained
after 48, 72, and 96 h at 180°C, respectively.
In the excitation spectrum of the synthesized Li2SiO3

and Li2Si2O5 nanomaterials, a band is observed with
maxima at 360 and 250 nm, respectively. Accordingly, in
btained after different times at 180°C. (a) 48, (b) 72, and (c) 96 h.



Figure 4 The SEM images of the synthesized Li2Si2O5 nanomaterials obtained after different times at 180°C. (a) 48, (b) 72, (c) 96, and (d) 120 h.
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the emission spectrum of the synthesized Li2SiO3

nanomaterials, an intense peak appears at 410.03 nm. In
comparison, an intense peak at 291.45 nm is observed in
the emission spectrum of the synthesized Li2Si2O5

nanomaterials. With increasing in the reaction time, no
shift is observed in the emission spectrum of the obtained
Li2SiO3 and Li2Si2O5 nanomaterials. However, increasing
band intensities in the emission spectra of both compounds
are observed with increasing reaction time.

Structural optimization
The crystal structure and locations of the atoms of the
Li2SiO3 [45] and Li2Si2O5 [36] determined from X-ray
diffraction data are used as a starting point for total energy
minimization. The optimized unit cells of the Li2SiO3 and
Li2Si2O5 are shown in Figures 3 and 4, respectively.
Optimization (relaxation) of the atomic positions and
crystal cell parameters was performed before the main
calculations of the electronic characteristics, total electronic
energy, band energy dispersion, density of electronic states,
and optical properties.

Electronic structures
The calculated band structure of the compounds along
high symmetry points of the first Brillouin zone is
plotted in Figure 7, where the labeled k points are
present as G (0.000, 0.000, 0.000), Z (0.000, 0.000, 0.500),
T (−0.500, 0.500, 0.500), Y (−0.500, 0.500, 0.000), S (0.000,
0.500, 0.000), and R (0.000, 0.500, 0.500) for Li2SiO3; and
G (0.000, 0.000, 0.000), Z (0.000, 0.000, 0.500), T (−0.500,
0.000, 0.500), Y (−0.500, 0.000, 0.000), S (−0.500, 0.500,
0.000), X (0.000, 0.500, 0.000), U (0.000, 0.500, 0.500), and



Figure 5 Electronic absorption spectra of Li2SiO3 and Li2Si2O5

obtained after 96 h at 180°C. The electronic absorption spectra of
the synthesized Li2SiO3 (a) and Li2Si2O5 (b) nanomaterials obtained
after 96 h at 180°C.

Figure 6 Emission spectra of Li2SiO3 and Li2Si2O5 obtained after
96 h at 180°C. The emission spectra of the synthesized Li2SiO3 (a) and
Li2Si2O5 (b) nanomaterials obtained after 96 h at 180°C.
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R (−0.500, 0.500, 0.500) for Li2Si2O5. It is found that the
top of the valence bands (VBs) has a small dispersion,
whereas the bottom of the conduction bands (CBs) has a
big dispersion for both Li2SiO3 and Li2Si2O5. The lowest
energy (4.575 eV) of the conduction bands (CBs) of
Li2SiO3 is localized at the G point, and the highest energy
(0.00 eV) of VBs is localized at the Z point. In the case of
the Li2Si2O5, the lowest energy (4.776 eV) of the conduc-
tion bands (CBs) is localized at the G point, and the highest
energy (0.00 eV) of VBs is localized at the X point.
To our knowledge, the optical band gap of the bulk

Li2SiO3 and Li2Si2O5 has not been measured. It is well
known that both local-density approximation and GGA
density functional theory calculations systematically under-
estimate the band gap of insulators and semiconductors
[1]. On the other hand, nanomaterials, compared to the
corresponding bulk materials, have wider band gap and
therefore show a blue shift in the electronic absorption and
photoluminescence spectra [46,47]. In the orthogonalized
linear combination of atomic orbital calculations, the band
gap of Li2SiO3 and Li2Si2O5 was found to be 7.26 and
7.45 eV respectively [48]. Also, a band gap of 5.7 eV [1]
and 5.36 eV [49] for Li2SiO3 and 5.5 eV [1] for Li2Si2O5 is
predicted by DFT calculations using the GGA within
Perdew and Wang (PW91) scheme. However, according to
our calculations, the values of the calculated band gap for
Li2SiO3 and Li2Si2O5 are 4.575 and 4.776 eV respectively,
which are comparable with the experimental values
(4.49 and 4.56 eV obtained for Li2SiO3 and Li2Si2O5

nanomaterials obtained after 96 h at 180°C) measured
from the electronic absorption spectrum of the synthe-
sized nanomaterials.
The total density of states and partial densities of

states for Li2SiO3 and Li2Si2O5 are shown in Figures 8
and 9 respectively. The VBs at −19.42 to −15.00 eV for
Li2SiO3 and at −19.61 to −15.00 eV for Li2Si2O5 have
significant contributions from O-2 s states; however, small
contributions from Si-3 s, 3p and Li-2 s, O-2p states still
can be observed at these energy intervals.
The most complex VBs are from −8.07 eV in Li2SiO3

and −8.84 eV in Li2Si2O5 to the Fermi level (0.0 eV).
According to the partial density of states, it is confirmed



Figure 7 Calculated band structures of Li2SiO3 (top) Li2Si2O5 (bottom).
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that the valence bands at these energy intervals are
essentially formed by O-2p for both compounds, along
with small admixture Li-2 s, while the contributions
from Si-3 s, 3p states in Li2Si2O5 are significant and
cannot be neglected. Such characteristic indicates that
covalent bonds could be formed among O-2p and Si-3
p, 3 s states in Li2Si2O5. However, in the case of
Li2SiO3, these contributions are weaker. The valence
bands at these energy ranges can be further divided
into two parts. Such a splitting characteristic of
valence bands reflects different bonding behaviors. The
first parts located at −8.84 to −5.19 eV (for Li2SiO3)
and −8.07 to −4.62 eV (for Li2Si2O5) are due to the
bonding between Si-3 s, 3p, Li-2 s orbits and O-2p
orbits, while the second part from −5.19 to −4.62 eV
for Li2SiO3 and Li2Si2O5, respectively, to the Fermi
level (0.0 eV) indicates the small interaction between
Si-3p, Li-2 s orbits and O-2p orbits. Analyzing the
PDOS also suggests ionic interactions between Si-2 s,
2p orbits and O-2 s, 2p orbits.
The conduction bands between 4.23 and 14.61 eV

for Li2SiO3 come from Si-3 s, 3p states, Li-2 s states,
and O-3 s, 3p states. In comparison, the bands between
4.23 and 10.00 eV for Li2Si2O5 come primarily from Si-3p
states, with small contribution from Si-3 s states, Li-2 s
states, and O-2 s, 2p states. The hybridization between
Si-3 s, 3p orbits and O-2 s, 2p orbits at upper valence
bands is the important structural character of the two
compounds.
Optical properties
The optical properties can be gained from the complex
dielectric function [50,51]:

ε ωð Þ ¼ ε1 ωð Þ þ i ε2 ωð Þ: ð1Þ

This is mainly connected with the electronic structures
and characterizes the linear response of the material to
an electromagnetic radiation, and therefore governs the
propagation behavior of radiation in a medium. The
imaginary part of the dielectric function ε2(ω) represents
the optical absorption in the crystal, which can be calcu-
lated from the electronic structure through the joint density
of states and the momentum matrix elements between the
occupied and the unoccupied wave functions within the
selection rules and is given

ð
a� 2 ¼ 2e2

�Ua� 0

X
k;v;c
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where e is the electronic charge, and ϕc
k and ϕv

k are the
conduction band and valence band wavefunctions at k,
respectively.
The real part ε1(ω) is evaluated from the imaginary part

ε2(ω) by the Kramers-Kronig transformation. The other op-
tical constants such as the refractive index n(ω), extinction
coefficient k(ω), optical reflectivity R(ω) absorption coeffi-
cient α(ω), energy loss spectrum L(ω), and the complex



Figure 8 Total and partial densities of states for Li2SiO3. The position of the Fermi level is set at 0.0 eV.
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conductivity function σ(ω) can be computed from the
complex dielectric function ε1(ω), through the following
relations [49,50]:

nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� ð Þj j þ a�1

p
ð Þ=2 ð3Þ

kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The dielectric functions of Li2SiO3 and Li2Si2O5 were
calculated based on the electronic structure. The ε1(ω)
and ε2(ω) as a function of the photon energy are shown
in Figure 10 for Li2SiO3 and Li2Si2O5.
The imaginary part of ε(ω) in Li2SiO3 has three intense

bands located at 9.02, 11.11, and 14.35 eV. The first peak
corresponds mainly to the transition from O-2p states
(VBs) to the empty Li-2 s and Si-3 s states (CBs) above the
Fermi level. The second and third peaks are mainly due to
the transitions from O-2p states (VBs) to the Si-3p and
Li-2 s states (CBs) above the Fermi level. In contrast,
Li2Si2O5 has a prominent absorption peak, located at the
photon energies of 9 eV and two weaker bands located at

ó óó
ð
ù ùù ù ù



Figure 9 Total and partial densities of states for Li2Si2O5. The position of the Fermi level is set at 0.0 eV.

Figure 10 Dielectric functions of Li2SiO3 (top) Li2Si2O5 (bottom).
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11.74 and 15 eV. The main peak at the 9 eV is due to strong
interband transitions between the O-2p states (VBs) and
Si-3p empty states (CBs). It is noted that a peak in ε2(ω)
does not correspond to a single interband transition since
many direct or indirect transitions may be found in the
band structure with an energy corresponding to the same
peak [52]. The peak amplitudes of Li2SiO3 are larger than
those of the Li2Si2O5 crystals, due to the fact that the band
structures for the two compounds are not similar.
For the real part ε1(ω) of the dielectric function ε(ω),

the most important quantity is the 0 frequency limit ε1
(0), which is the electronic part of the static dielectric
constant and depends strongly on the band gap. A
smaller energy gap yields a larger ε1(0) value. This could
be explained on the basis of the Penn model [52]:

ε1 0ð Þ≈1þ hωp=Eg
� �2

: ð9Þ



Figure 11 Calculated absorption spectra of Li2SiO3 (top) and
Li2Si2O5 (bottom).
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The energy gap (Eg) could be determined from this
expression by using the values of ε1(0) and the plasma
energy hωp. The calculated and experimental Eg and also
the calculated static dielectric constants ε1(0) of Li2SiO3

and Li2Si2O5 are listed in Table 1.
The calculated results on the absorption, reflectivity, and

energy loss spectra by norm-conserving pseudo-potentials
were shown in Figures 11, 12, 13. According to the
absorption spectra, the absorption edges are located
at 9.11, 11.85, and 14.70 eV for lithium metasilicate
and at 8.2, 11.60, and 15 eV for lithium disilicate. The
absorption coefficients decrease rapidly in the low-energy
region, which is the representative character of the
semiconductors and insulators.
The calculated reflectivity for lithium metasilicate at 0 to

5 eV is lower than 10% and a maximum value of roughly
35.0% is calculated at about 17.53 eV. In comparison, the
reflectivity for lithium disilicate at 0 to 5 eV is calculated to
be lower than 2%. The calculated reflectivity spectrum of
lithium disilicate shows a maximum value of about 15% at
9.9 eV. According to the absorption and reflectivity spectra,
it is concluded that lithium metasilicate and lithium
disilicate are transmitting for frequencies of <4.00 eV.
The energy loss spectrum describes the energy loss of

a fast electron traversing in the material [53]. The main
peak is generally defined as the bulk plasma frequency
[54]. At energies smaller than 5.0 eV, no distinct peak is
calculated due to the fact that ε2(ω) is still large at these
energy values. The main peaks of energy loss spectra,
as shown in Figure 13, are calculated at about 12.82
and 15.55 eV for lithium disilicate and 19.5 eV for
lithium metasilicate. Such calculations may stimulate
the experimental investigations.

Conclusions
This study describes the hydrothermal synthesis of
highly crystalline and pure lithium metasilicate and lithium
disilicate nanoparticles. The PXRD patterns indicate
that the pure lithium metasilicate and lithium disilicate
Table 1 Theoretical and experimental energy gaps (Eg)
and the calculated average static dielectric constant of
Li2SiO3 and Li2Si2O5

Li2SiO3 Li2Si2O5

Calculated Experimental Calculated Experimental

Pseudo-
potentials

Norm-
conserving

- Norm-
conserving

-

Eg (eV) 4.575 4.49 (a) 4.776 4.56 (a)

4.51 (b) 4.53 (b)

4.51 (c) 4.48 (c)

ε1(0) 2.39 - 1.70 -

The experimental Eg values calculated from the UV–vis spectra for the
synthesized Li2SiO3 and Li2Si2O5 nanomaterials after (a) 48, (b) 72 and (c) 96 h
at 180°C.
crystallized well under hydrothermal condition. SEM
images show the reaction time effect on the morphology
and homogeneity of the synthesized materials. The intensity
of the bands in the emission spectra increases with
increasing reaction time in both lithium metasilicate
and lithium disilicate.
The electronic band structure along with DOS calculated

by the DFT method indicates that Li2SiO3 and Li2Si2O5

have indirect energy band gaps of about 4.575 and
4.776 eV, respectively. The hybridized interactions between
Si-3 s, 3p orbits and O-2p orbits are revealed as the import-
ant structural characteristics of the two compounds, which
leads to large band gaps.
The optical properties, including the dielectric function,

absorption coefficient, reflectivity and energy loss spectra,
also have been calculated by DFT methods. According to
the calculated absorption and reflectivity spectra, Li2SiO3

and Li2Si2O5 are theoretically transmitting for frequencies
of <4.00 eV. Therefore, Li2SiO3 and Li2Si2O5 are the excel-
lent visible and IR transparent materials, which have been
Figure 12 Calculated reflectivity of Li2SiO3 (top) and Li2Si2O5

(bottom).



Figure 13 Calculated energy loss function for Li2SiO3 (top) and
Li2Si2O5 (bottom).
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experimentally proved. Furthermore, for both compounds,
the imaginary part ε2(ω) of the dielectric function ε(ω) has
been discussed in detail according to the band structure. It
is found that the peak intensities in Li2SiO3 are obviously
enhanced compared to that in Li2Si2O5.
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